JPH0626640A - Combustion apparatus - Google Patents
Combustion apparatusInfo
- Publication number
- JPH0626640A JPH0626640A JP4180109A JP18010992A JPH0626640A JP H0626640 A JPH0626640 A JP H0626640A JP 4180109 A JP4180109 A JP 4180109A JP 18010992 A JP18010992 A JP 18010992A JP H0626640 A JPH0626640 A JP H0626640A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel supply
- supply amount
- supply rate
- limiting current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 62
- 239000000446 fuel Substances 0.000 claims abstract description 136
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 60
- 239000001301 oxygen Substances 0.000 claims abstract description 60
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000007789 gas Substances 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 9
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 9
- 230000002349 favourable effect Effects 0.000 abstract 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- -1 oxygen ion Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
Landscapes
- Regulation And Control Of Combustion (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、限界電流式酸素センサ
を用いて燃料供給量または空気供給量を制御しながら燃
焼を行う燃焼機器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion device for performing combustion while controlling a fuel supply amount or an air supply amount using a limiting current type oxygen sensor.
【0002】[0002]
【従来の技術】従来の燃焼機器は、完全燃焼が得られる
ように予め空気供給量と燃料供給量との比率(以下、空
燃比という)を計算し、その計算をもとにした空気供給
量または燃料供給量で燃焼させるものであった。しかし
ながら、燃焼機器を様々な環境下で使用すると外気温度
の変動・気圧の変動、さらに燃料供給手段や空気供給手
段の耐久性にまつわる変動のため空燃比が当初の計算値
より変動し、例えば海抜2000メートルの酸素希薄環
境の高地で空燃比が平地で求めた当初の計算値のまま使
用すると不完全燃焼が発生する場合がある。2. Description of the Related Art In conventional combustion equipment, the ratio of the air supply amount to the fuel supply amount (hereinafter referred to as the air-fuel ratio) is calculated in advance so that complete combustion can be obtained, and the air supply amount based on the calculation. Alternatively, it was burned with the fuel supply amount. However, when the combustion equipment is used in various environments, the air-fuel ratio fluctuates from the initially calculated value due to fluctuations in outside air temperature and atmospheric pressure, and fluctuations in the durability of the fuel supply means and air supply means. Incomplete combustion may occur if the air-fuel ratio is used as it was originally calculated on a flat land in a high altitude of oxygen-diluted environment of m.
【0003】このことを解決する手段として空燃比が燃
焼排ガス中の酸素濃度と相関があることに着目し、酸素
濃度を計測する限界電流式酸素センサを開発し、このセ
ンサを燃焼排ガス流路中に配置して最適な空燃比の制御
を行う燃焼機器の開発が試みられている。As a means to solve this, focusing on the fact that the air-fuel ratio correlates with the oxygen concentration in the combustion exhaust gas, a limiting current type oxygen sensor for measuring the oxygen concentration was developed, and this sensor was used in the combustion exhaust gas passage. Attempts have been made to develop combustion equipment that is placed in the air conditioner to control the optimum air-fuel ratio.
【0004】図4に、従来の燃焼機器の例を示す。この
燃焼機器は、燃料供給手段41で燃料を供給し、空気供
給手段42で空気を供給しながら燃料を燃焼部43で燃
焼させ、燃焼排ガスを限界電流式酸素センサ44を配置
した排ガス流路45を通して排気させる構成である。一
方、限界電流式酸素センサ44は直列に直流電圧源46
と限界電流検出手段47を接続して閉回路を構成し、さ
らに限界電流検出手段47の出力側をマイクロコンピュ
ータ48に接続して限界電流式酸素センサ44からの酸
素濃度信号をマイクロコンピュータ48で検知するとと
もに、マイクロコンピュータ48と空気供給手段42お
よび燃料供給手段41を電気的に接続し、限界電流式酸
素センサ44からの酸素濃度信号に基づいて供給空気量
または供給燃料量をマイクロコンピュータ48で制御す
る構成としている。FIG. 4 shows an example of conventional combustion equipment. In this combustion apparatus, the fuel is supplied by the fuel supply means 41, the air is supplied by the air supply means 42, the fuel is burned in the combustion section 43, and the combustion exhaust gas is exhaust gas passage 45 in which the limiting current type oxygen sensor 44 is arranged. It is configured to exhaust through. On the other hand, the limiting current type oxygen sensor 44 is connected to the DC voltage source 46 in series.
And the limiting current detecting means 47 are connected to form a closed circuit, and the output side of the limiting current detecting means 47 is connected to the microcomputer 48 to detect the oxygen concentration signal from the limiting current type oxygen sensor 44 by the microcomputer 48. In addition, the microcomputer 48 is electrically connected to the air supply means 42 and the fuel supply means 41, and the supplied air amount or supplied fuel amount is controlled by the microcomputer 48 based on the oxygen concentration signal from the limiting current type oxygen sensor 44. It is configured to do.
【0005】そして図5において、49は酸素イオン伝
導性固体電解質板のZrO2 ・Y2O3 であり、対とな
る白金電極膜が両面に対で形成されている。この固体電
解質板49の片側上部に白金電極膜でできているカソー
ド側電極膜50を囲み、始端と終端が相互に間隔を有す
るように配置された硝子製の螺旋型スペーサ51が配置
されている。そして螺旋型スペーサ51の上部にシール
板52が配置され、さらにシール板52の上部に加熱部
53が配置されセンサ素子を構成している。なお、拡散
律速体は、螺旋型スペーサ51とシール板52とからな
り、酸素拡散通路54が螺旋型スペーサ51の相対向す
る隔壁と固体電解質板49とシール板52で囲まれる螺
旋型の空間で形成される。酸素は酸素拡散通路54を経
由してカソード側電極膜50へ拡散し限界電流特性を示
す。センサの動作温度は450℃である。In FIG. 5, reference numeral 49 is ZrO 2 .Y 2 O 3 which is an oxygen ion conductive solid electrolyte plate, and a pair of platinum electrode films is formed on both sides in pairs. A spiral spacer 51 made of glass, which surrounds a cathode-side electrode film 50 made of a platinum electrode film and is arranged so that its start end and end end are spaced apart from each other, is arranged above one side of the solid electrolyte plate 49. . A seal plate 52 is arranged on the upper part of the spiral spacer 51, and a heating part 53 is arranged on the upper part of the seal plate 52 to form a sensor element. The diffusion-controlling body is composed of a spiral spacer 51 and a seal plate 52, and the oxygen diffusion passage 54 is a spiral space surrounded by the opposing partition walls of the spiral spacer 51, the solid electrolyte plate 49, and the seal plate 52. It is formed. Oxygen diffuses into the cathode-side electrode film 50 via the oxygen diffusion passage 54 and exhibits limiting current characteristics. The operating temperature of the sensor is 450 ° C.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、限界電
流式酸素センサを用いて空燃比制御を行う構成において
は、450℃で動作する限界電流式酸素センサを用いる
とその応答性が遅いため良好な燃焼特性が得られず、酸
素濃度が設定濃度(設定空燃比値)まで安定するまで
は、不完全燃焼で多量の一酸化炭素が発生する問題があ
る。そのため、応答性を速めるため限界電流式酸素セン
サの動作温度を700℃まで高めて使用する必要がある
が、動作温度が高いため寿命が短くて定期的にセンサ交
換が必要である。However, in the configuration in which the air-fuel ratio control is performed by using the limiting current type oxygen sensor, if the limiting current type oxygen sensor operating at 450 ° C. is used, the response is slow and good combustion is achieved. There is a problem that a large amount of carbon monoxide is generated by incomplete combustion until the characteristics are not obtained and the oxygen concentration stabilizes up to the set concentration (set air-fuel ratio value). Therefore, the operating temperature of the limiting current type oxygen sensor needs to be raised to 700 ° C. in order to speed up the response, but the operating temperature is high, so that the life is short and the sensor needs to be replaced periodically.
【0007】本発明はかかる従来の問題点を解決するも
ので、応答性が遅いセンサでも不完全燃焼を発生せず、
常に最適な空燃比で燃焼する高信頼性の燃焼機器を提供
することを目的とする。The present invention solves the above-mentioned problems of the prior art. Even if the sensor has a slow response, incomplete combustion does not occur.
It is an object of the present invention to provide a highly reliable combustion device that always burns at an optimum air-fuel ratio.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
本発明の燃焼機器は、排ガス流路内に配置した限界電流
式酸素センサからの酸素濃度信号に基づいて燃焼部に空
気を供給する空気供給手段を制御部にて制御する燃焼機
器において、燃焼部に燃料を供給する燃料供給手段に、
燃料供給手段での燃料供給量を検知する燃料供給量検知
手段と、燃料供給手段での燃料供給量を新規に指令する
燃料供給量指令手段と、燃料供給量検知手段で検知した
燃料供給量と新規に指令された燃料供給量の差に応じて
徐々に燃料供給量を変化させる燃料供給量変化手段とを
有し、燃料供給量の変化が燃料供給量指令手段で新規に
指令された燃料供給量に基づいて徐々に行われる構成と
した。In order to solve the above-mentioned problems, the combustion equipment of the present invention is an air supply system for supplying air to a combustion section based on an oxygen concentration signal from a limiting current type oxygen sensor arranged in an exhaust gas passage. In the combustion device that controls the supply unit by the control unit, the fuel supply unit that supplies the fuel to the combustion unit,
Fuel supply amount detecting means for detecting the fuel supply amount in the fuel supply means, fuel supply amount command means for newly instructing the fuel supply amount in the fuel supply means, and fuel supply amount detected in the fuel supply amount detecting means A fuel supply amount changing means for gradually changing the fuel supply amount according to the difference in the newly supplied fuel supply amount, and the fuel supply amount change means newly instructing the fuel supply amount change means. It is configured to be gradually performed based on the amount.
【0009】[0009]
【作用】上記構成により燃焼機器は、新規に指令された
燃料供給量に基づいて徐々に燃料供給量を変化させるの
で、応答性が遅い限界電流式酸素センサを用いても空気
供給量がそれに伴い徐々に変化するので、不完全燃焼で
多量の一酸化炭素が発生することなく良好な燃焼特性が
常に得られる。With the above structure, the combustion device gradually changes the fuel supply amount based on the newly commanded fuel supply amount. Therefore, even if a limiting current type oxygen sensor having a slow response is used, the air supply amount is accordingly changed. Since it changes gradually, good combustion characteristics can always be obtained without generating a large amount of carbon monoxide due to incomplete combustion.
【0010】[0010]
【実施例】以下、本発明の一実施例を添付図面に基づい
て説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.
【0011】図1において、燃焼機器は、燃料供給手段
1で燃料を供給し、空気供給手段2で空気を供給しなが
ら燃料を燃焼部3で燃焼させ、燃焼排ガスを限界電流式
酸素センサ4を配置した排ガス流路5を通して排気させ
る構成である。一方、限界電流式酸素センサ4は直列に
直流電圧源6と限界電流検出手段7を接続して閉回路を
構成し、さらに限界電流検出手段7の出力側を制御部8
に接続して限界電流式酸素センサ4からの酸素濃度信号
を制御部8で検知している。また、制御部8と燃料供給
手段1および空気供給手段2を電気的に接続し、限界電
流式酸素センサ4からの酸素濃度信号に基づいて供給空
気量を制御部8で制御する構成としている。In FIG. 1, the combustion equipment supplies fuel by a fuel supply means 1 and burns fuel in a combustion part 3 while supplying air by an air supply means 2 to generate a combustion exhaust gas by a limiting current type oxygen sensor 4. The exhaust gas is arranged to be exhausted through the arranged exhaust gas passage 5. On the other hand, the limiting current type oxygen sensor 4 is connected in series with a DC voltage source 6 and a limiting current detecting means 7 to form a closed circuit, and the output side of the limiting current detecting means 7 is connected to a control section 8.
The oxygen concentration signal from the limiting current type oxygen sensor 4 is detected by the control unit 8 by being connected to. Further, the control unit 8 is electrically connected to the fuel supply unit 1 and the air supply unit 2, and the supply amount of air is controlled by the control unit 8 based on the oxygen concentration signal from the limiting current type oxygen sensor 4.
【0012】一方、燃料供給手段1には、燃料供給手段
1での燃料供給量を検知する燃料供給量検知手段9と、
燃料供給手段1での燃料供給量を新規に指令する燃料供
給量指令手段10と、この新規に指令された燃料供給量
と燃料供給量検知手段9で検知した燃料供給量との差に
応じて徐々に燃料供給量を変化させる燃料供給量変化手
段11が併設され電気的に接続されている。従って燃料
供給量の変化は、燃料供給量指令手段10で新規に指令
された燃料供給量と燃料供給量検知手段9で検知した燃
料供給量との差に応じて徐々に行われる。On the other hand, the fuel supply means 1 includes a fuel supply amount detection means 9 for detecting the fuel supply amount in the fuel supply means 1.
Depending on the fuel supply amount command means 10 for newly instructing the fuel supply amount in the fuel supply means 1, and the difference between the newly commanded fuel supply amount and the fuel supply amount detected by the fuel supply amount detecting means 9. A fuel supply amount changing means 11 for gradually changing the fuel supply amount is provided side by side and electrically connected. Therefore, the change in the fuel supply amount is gradually performed according to the difference between the fuel supply amount newly instructed by the fuel supply amount commanding means 10 and the fuel supply amount detected by the fuel supply amount detecting means 9.
【0013】図2は本発明の一実施例である燃焼機器の
制御のフローチャートである。図2において、スタート
ボタンを押すとマイクロコンピュータのRAMがクリア
され、新しいデータの書き込みが可能となる。そして燃
焼が開始されると、燃料供給量Qnが検知される。次
に、新規に指令された燃料供給量Qが呼び出され、Qn
とQの比較によりその差に応じて燃料供給量が徐々に変
化するように設定される。一方、燃焼排ガス中の酸素濃
度はBnとして読み込まれる。そして、予め記憶させた
設定値Bが呼び出され、燃焼排ガス中の酸素濃度Bnと
予め記憶させた設定値Bの比較が行われる。燃焼排ガス
中の酸素濃度Bnが設定値Bより大きい値の場合、供給
空気量の減少を行い、再び燃焼排ガス中の酸素濃度がB
nとして読み込まれる。一方、燃焼排ガス中の酸素濃度
Bnが設定値Bより小さい値の場合、供給空気量の増加
を行い、再び燃焼排ガス中の酸素濃度がBnとして読み
込まれる。以下、この繰り返しで最適な酸素濃度Bへの
制御が行われる。FIG. 2 is a flow chart of the control of the combustion equipment which is an embodiment of the present invention. In FIG. 2, when the start button is pressed, the RAM of the microcomputer is cleared and new data can be written. When the combustion is started, the fuel supply amount Qn is detected. Next, the newly commanded fuel supply amount Q is called, and Qn
By comparing Q and Q, the fuel supply amount is set to gradually change according to the difference. On the other hand, the oxygen concentration in the combustion exhaust gas is read as Bn. Then, the preset value B stored in advance is called, and the oxygen concentration Bn in the combustion exhaust gas is compared with the preset value B stored in advance. When the oxygen concentration Bn in the combustion exhaust gas is larger than the set value B, the supply air amount is reduced, and the oxygen concentration in the combustion exhaust gas becomes B again.
read as n. On the other hand, when the oxygen concentration Bn in the combustion exhaust gas is smaller than the set value B, the supply air amount is increased and the oxygen concentration in the combustion exhaust gas is read again as Bn. Hereinafter, the control to the optimum oxygen concentration B is performed by repeating this.
【0014】一方、検知した燃料供給量Qnと新規に指
令された燃料供給量Qの比較であるが、本制御流れとは
別に常にその比較が行われている。新規に指令された燃
料供給量Qが発生すると、Qの比較によりその差に応じ
て燃料供給量が徐々に変化するように設定され、新規に
指令された燃料供給量Qが発生しないと検知した燃料供
給量Qn通りの燃料が供給される。On the other hand, regarding the comparison between the detected fuel supply amount Qn and the newly commanded fuel supply amount Q, the comparison is always performed separately from this control flow. When the newly commanded fuel supply amount Q is generated, the fuel supply amount is set to gradually change according to the difference by comparing Q, and it is detected that the newly commanded fuel supply amount Q does not occur. Fuel of the fuel supply amount Qn is supplied.
【0015】本発明の効果を、図5の限界電流式酸素セ
ンサおよび図1の燃焼機器を用いて評価した。図1の燃
焼機器において最も応答が遅いのは限界電流式酸素セン
サでありその応答性は90%応答で20秒である。なお
他手段は1秒以下で応答する。The effect of the present invention was evaluated using the limiting current type oxygen sensor of FIG. 5 and the combustion equipment of FIG. In the combustion device of FIG. 1, the slowest response is the limiting current type oxygen sensor, which has a 90% response for 20 seconds. Other means respond in less than 1 second.
【0016】図3は、燃焼機器において酸素濃度つまり
空燃比を変化させた場合の限界電流式酸素センサから発
生する限界電流値、燃焼排ガス中の一酸化炭素濃度を燃
焼が安定した状態で測定したものである。限界電流式酸
素センサから発生する限界電流値は、酸素濃度に概略比
例した特性を示しさらに空燃比にも概略比例した特性を
示す。一方、燃焼排ガス中の一酸化炭素は、空燃比1.2
〜2.0の場合に最も少ない特性を示す。In FIG. 3, the limiting current value generated from the limiting current type oxygen sensor and the carbon monoxide concentration in the combustion exhaust gas when the oxygen concentration, that is, the air-fuel ratio is changed in the combustion equipment, are measured in a stable combustion state. It is a thing. The limiting current value generated from the limiting current type oxygen sensor shows a characteristic approximately proportional to the oxygen concentration and further a characteristic substantially proportional to the air-fuel ratio. On the other hand, carbon monoxide in the combustion exhaust gas has an air-fuel ratio of 1.2.
In the case of up to 2.0, the least characteristic is shown.
【0017】燃焼機器に800g/時の灯油と13.68
Nm3 の空気を供給して燃焼を開始した後、新規に供給
する燃料供給量を400g/時として指令した。この新
規供給量指令400g/時に基づき、現行供給量800
g/時との差400g/時に応じて徐々に燃料供給量を
変化させるため、10秒ごとに100g/時の割合で燃
料供給量を変化させる制御モードを設定し、40秒後に
新規供給量指令400g/時になるようした。一方、限
界電流式酸素センサによる空燃比制御は、一酸化炭素の
発生量が少ない酸素濃度7.0%領域を燃焼目標とし、そ
の時の限界電流式酸素センサから発生する限界電流値が
37μAとなるように制御部8が酸素濃度信号に基づい
て空気供給手段2を制御するようにした。その結果、燃
料供給量が800g/時から400g/時に変化する約
40秒およびそれ以後も、酸素濃度は7.0%領域を常に
維持した。これは、燃料供給量が微少しか変化しないの
で空気供給量も微少しか変化せず、この微少変化なら応
答が遅い限界電流式酸素センサでも十分に対応できるた
めである。従って図3からもわかる様に、一酸化炭素の
発生量が少ない領域に常に空燃比はある良好燃焼の空燃
比制御ができた。一方、燃焼機器を応答が遅い限界電流
式酸素センサだけで空燃比制御を行う場合、新規供給燃
料供給量の400g/時に即座に燃焼量を変化させると
供給空気量が最適値になるのが遅く、供給空気量が最適
値になるまでの間の約20秒は空燃比がずれて一酸化炭
素が多く発生する問題があった。800g / hr of kerosene and 13.68 in combustion equipment
After supplying air of Nm 3 to start combustion, the fuel supply amount to be newly supplied was commanded to be 400 g / hour. Based on this new supply amount command of 400 g / hour, the current supply amount of 800
In order to gradually change the fuel supply rate according to the difference of 400 g / hour from g / hour, a control mode is set to change the fuel supply rate at a rate of 100 g / hour every 10 seconds, and a new supply rate command is issued after 40 seconds. It was set to 400 g / hour. On the other hand, in the air-fuel ratio control by the limiting current type oxygen sensor, the combustion target is the oxygen concentration 7.0% region where the generation amount of carbon monoxide is small, and the limiting current value generated by the limiting current type oxygen sensor at that time is 37 μA. Thus, the control unit 8 controls the air supply means 2 based on the oxygen concentration signal. As a result, the oxygen concentration always maintained the 7.0% region even after the fuel supply amount changed from 800 g / hour to 400 g / hour for about 40 seconds and thereafter. This is because the fuel supply amount does not change slightly or the air supply amount does not change slightly, and if the change is small, a limiting current type oxygen sensor having a slow response can sufficiently cope with the change. Therefore, as can be seen from FIG. 3, the air-fuel ratio control of good combustion in which the air-fuel ratio is always present in the region where the amount of carbon monoxide generated is small was achieved. On the other hand, in the case of performing air-fuel ratio control with only the limiting current type oxygen sensor with a slow response in the combustion equipment, if the combustion amount is immediately changed to 400 g / hour of the newly supplied fuel amount, the supply air amount will be delayed to the optimum value. However, there is a problem that the air-fuel ratio shifts and a large amount of carbon monoxide is generated for about 20 seconds until the supply air amount reaches the optimum value.
【0018】[0018]
【発明の効果】以上のように本発明は、排ガス流路内に
配置した限界電流式酸素センサからの酸素濃度信号に基
づいて燃焼部に空気を供給する空気供給手段を制御部に
て制御し、さらに燃焼部に燃料を供給する燃料供給手段
に、燃料供給手段での燃料供給量を検知する燃料供給量
検知手段と、燃料供給手段での燃料供給量を新規に指令
する燃料供給量指令手段と、燃料供給量検知手段で検知
した燃料供給量と新規に指令された燃料供給量の差に応
じて徐々に燃料供給量を変化させる燃料供給量変化手段
とが接合されて併設され、燃料供給量の変化を燃料供給
量指令手段で新規に指令された燃料供給量との差に応じ
て徐々に行う構成としている。そのため、新規に指令さ
れた燃料供給量に基づいて徐々に燃料供給量を変化させ
るので、応答性が遅い限界電流式酸素センサを用いても
空気供給量がそれに伴い徐々に変化し、不完全燃焼で多
量の一酸化炭素が発生することなく良好な燃焼特性が常
に得られる。As described above, according to the present invention, the control section controls the air supply means for supplying the air to the combustion section based on the oxygen concentration signal from the limiting current type oxygen sensor arranged in the exhaust gas passage. A fuel supply amount detecting means for detecting the fuel supply amount of the fuel supply means, and a fuel supply amount command means for newly instructing the fuel supply amount of the fuel supply means And the fuel supply amount changing means for gradually changing the fuel supply amount according to the difference between the fuel supply amount detected by the fuel supply amount detecting means and the newly commanded fuel supply amount, are jointly provided side by side. The fuel supply amount command means gradually changes the fuel amount in accordance with the difference from the fuel supply amount newly commanded. Therefore, since the fuel supply amount is gradually changed based on the newly commanded fuel supply amount, the air supply amount is gradually changed with the use of the limiting current type oxygen sensor having a slow response, and incomplete combustion occurs. Therefore, good combustion characteristics are always obtained without generating a large amount of carbon monoxide.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例の燃焼機器のブロック図FIG. 1 is a block diagram of a combustion device according to an embodiment of the present invention.
【図2】同制御流れのフローチャートFIG. 2 is a flowchart of the control flow.
【図3】同センサおよび燃焼機器の特性図FIG. 3 is a characteristic diagram of the sensor and the combustion device.
【図4】従来の燃焼機器のブロック図FIG. 4 is a block diagram of a conventional combustion device.
【図5】同限界電流式酸素センサの断面斜視図FIG. 5 is a sectional perspective view of the same limiting current type oxygen sensor.
1 燃料供給手段 2 空気供給手段 3 燃焼部 4 限界電流式酸素センサ 5 排ガス流路 6 直流電圧源 7 限界電流検出手段 8 制御部 9 燃料供給量検知手段 10 燃料供給量指令手段 11 燃料供給量変化手段 1 Fuel Supply Means 2 Air Supply Means 3 Combustion Section 4 Limiting Current Oxygen Sensor 5 Exhaust Gas Flow Path 6 DC Voltage Source 7 Limiting Current Detecting Means 8 Control Section 9 Fuel Supply Quantity Detecting Means 10 Fuel Supply Quantity Command Means 11 Fuel Supply Quantity Change means
Claims (1)
手段で空気を供給しながら前記燃料を燃焼部で燃焼さ
せ、燃焼排ガスを排ガス流路を通して排気させ前記排ガ
ス流路内に限界電流式酸素センサを配置し、前記限界電
流式酸素センサに直列に直流電圧源と限界電流検出手段
を接続して閉回路を構成し、さらに前記限界電流検出手
段の出力側を制御部に接続して前記限界電流式酸素セン
サからの酸素濃度信号を前記制御部で検知するととも
に、前記制御部と前記空気供給手段および前記燃料供給
手段を電気的に接続して、前記限界電流式酸素センサか
らの酸素濃度信号に基づいて前記空気供給手段を前記制
御部で制御する燃焼機器において、前記燃焼部に燃料を
供給する燃料供給手段に、前記燃料供給手段での燃料供
給量を検知する燃料供給量検知手段と、前記燃料供給手
段での燃料供給量を新規に指令する燃料供給量指令手段
と、前記燃料供給量検知手段で検知した燃料供給量と新
規に指令された燃料供給量の差に応じて徐々に燃料供給
量を変化させる燃料供給量変化手段とを接続し、燃料供
給量変化手段が前記燃料供給量指令手段で新規に指令さ
れた燃料供給量との差に応じて燃料供給量の変化を徐々
に行う燃焼機器。1. A fuel supply device supplies fuel, and an air supply device supplies air to burn the fuel in a combusting section, exhaust combustion exhaust gas through an exhaust gas passage, and a limiting current type in the exhaust gas passage. An oxygen sensor is arranged, a direct current voltage source and a limiting current detecting means are connected in series to the limiting current type oxygen sensor to form a closed circuit, and the output side of the limiting current detecting means is further connected to a control unit, and The oxygen concentration signal from the limiting current type oxygen sensor is detected by the control unit, and the control unit and the air supply unit and the fuel supply unit are electrically connected to each other to obtain the oxygen concentration from the limiting current type oxygen sensor. In a combustion device in which the control unit controls the air supply unit based on a signal, a fuel supply unit for supplying fuel to the combustion unit detects a fuel supply amount of the fuel supply unit. An amount detection means, a fuel supply amount command means for newly instructing the fuel supply amount in the fuel supply means, and a difference between the fuel supply amount detected by the fuel supply amount detection means and the newly instructed fuel supply amount. A fuel supply amount changing means for gradually changing the fuel supply amount is connected to the fuel supply amount changing means, and the fuel supply amount is changed according to the difference from the fuel supply amount newly instructed by the fuel supply amount instruction means. Combustion equipment that gradually changes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4180109A JP3012955B2 (en) | 1992-07-07 | 1992-07-07 | Combustion equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4180109A JP3012955B2 (en) | 1992-07-07 | 1992-07-07 | Combustion equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0626640A true JPH0626640A (en) | 1994-02-04 |
JP3012955B2 JP3012955B2 (en) | 2000-02-28 |
Family
ID=16077584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4180109A Expired - Fee Related JP3012955B2 (en) | 1992-07-07 | 1992-07-07 | Combustion equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3012955B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002333128A (en) * | 2001-05-14 | 2002-11-22 | Noritz Corp | Combustion apparatus |
-
1992
- 1992-07-07 JP JP4180109A patent/JP3012955B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002333128A (en) * | 2001-05-14 | 2002-11-22 | Noritz Corp | Combustion apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3012955B2 (en) | 2000-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4543176A (en) | Oxygen concentration detector under temperature control | |
JP4697052B2 (en) | Gas concentration detector | |
JPS644145B2 (en) | ||
JP2004317488A (en) | Gas concentration detector | |
JP2006010583A (en) | Gas concentration detecting apparatus | |
JPH0260142B2 (en) | ||
GB1593622A (en) | Method of and means for controlling internal combustion engine air-to-fuel ratios | |
JP4872198B2 (en) | Gas concentration detector | |
US4698209A (en) | Device for sensing an oxygen concentration in gaseous body with a source of pump current for an oxygen pump element | |
JPH06100125B2 (en) | Air-fuel ratio controller | |
JPH0626640A (en) | Combustion apparatus | |
JP5067469B2 (en) | Gas concentration detector | |
JP3012954B2 (en) | Combustion equipment | |
JP4576934B2 (en) | Gas concentration detector | |
US10934958B2 (en) | Air-fuel ratio detection device and air-fuel ratio detection method | |
JPH01155262A (en) | Temperature controlling device of oxygen concentration sensor | |
JP3012965B2 (en) | Combustion equipment | |
JPH05272755A (en) | Combustor | |
JP3113373B2 (en) | Reference oxygen supply method for air-fuel ratio sensor | |
JP3012960B2 (en) | Combustion equipment | |
JP3146975B2 (en) | Combustion control method | |
JPS61241652A (en) | Method for discriminating activation of oxygen concentration sensor | |
JP3012966B2 (en) | Combustion equipment | |
JPH0783428A (en) | Oxygen sensor controller | |
JPS62175658A (en) | Method of discriminating activity of oxygen concentration sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |