JPH06265525A - Apparatus for measuring particle size of crystal of steel plate - Google Patents
Apparatus for measuring particle size of crystal of steel plateInfo
- Publication number
- JPH06265525A JPH06265525A JP5385793A JP5385793A JPH06265525A JP H06265525 A JPH06265525 A JP H06265525A JP 5385793 A JP5385793 A JP 5385793A JP 5385793 A JP5385793 A JP 5385793A JP H06265525 A JPH06265525 A JP H06265525A
- Authority
- JP
- Japan
- Prior art keywords
- coercive force
- magnetic
- measured
- grain size
- average value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、熱延鋼板や冷延鋼板
などの鋼板についてその保磁力を表す値、磁気異方性の
大きさ、及び透磁率を非破壊・非接触式にて測定し、こ
れらの測定データに基づいて前記鋼板の結晶粒径を求め
て結晶粒径の間接測定を行うようにした、鋼板の結晶粒
径の測定装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the value of coercive force, the magnitude of magnetic anisotropy, and the magnetic permeability of a steel sheet such as a hot-rolled steel sheet or a cold-rolled steel sheet by a nondestructive noncontact method. The present invention also relates to an apparatus for measuring the crystal grain size of a steel sheet, which is used to determine the crystal grain size of the steel sheet based on these measurement data and indirectly measure the crystal grain size.
【0002】[0002]
【従来の技術】製鉄所の鋼板生産ラインにおいては、連
続的に搬送・走行されている鋼板の機械的性質をその鋼
板全長にわたってオンラインで検査できるようにするこ
とが要望されている。この場合、鋼板の機械的性質を推
定する重要なパラメータの一つに鋼板の結晶粒径があ
る。そして、鋼板の結晶粒径の逆数は、その鋼板の保磁
力に比例する関係にあることが知られている(近角ほ
か:磁性体ハンドブック,1070頁,朝倉書房,1987
年)。2. Description of the Related Art In the steel plate production line of a steel mill, it is desired to be able to inspect online the mechanical properties of a steel plate continuously conveyed and run over the entire length of the steel plate. In this case, the crystal grain size of the steel sheet is one of the important parameters for estimating the mechanical properties of the steel sheet. It is known that the reciprocal of the crystal grain size of a steel sheet is proportional to the coercive force of the steel sheet (Kinakuka et al .: Handbook of Magnetic Materials, page 1070, Asakura Shobo, 1987).
Year).
【0003】そこで、本発明者らの一部の者は、保磁力
検出用センサを用いて非接触式にて測定対象鋼板の保磁
力に相当する値を測定し、その保磁力相当値と結晶粒径
の逆数とが前述したように直線的な比例関係にあること
を利用して、測定された保磁力相当値を用いてその鋼板
の結晶粒径を求め、結晶粒径の間接測定を行うようにし
た方法について、先に文献に開示している(第31回計測
自動制御学会学術講演予稿集, 655〜 656頁,1992
年)。Therefore, some of the inventors of the present invention measured the value corresponding to the coercive force of the steel sheet to be measured in a non-contact manner using a coercive force detecting sensor, and measured the coercive force equivalent value and the crystal. Utilizing the fact that the reciprocal of the grain size is in a linear proportional relationship as described above, the crystal grain size of the steel sheet is obtained using the measured coercive force equivalent value, and the indirect measurement of the crystal grain size is performed. This method was previously disclosed in the literature (Proceedings of the 31st SICE Conference Lecture, 655-656, 1992).
Year).
【0004】さらに、本出願人は、前記文献に開示した
方法の改良を図った、鋼板の結晶粒径測定方法を先に提
案している(特願平5 −5956号)。以下、この従来の結
晶粒径測定方法について説明する。図5は従来の結晶粒
径測定方法の実施に用いられる結晶粒径測定装置の一実
施例の全体構成を示す図、図6は図5に示す鋼板保磁力
測定装置の構成説明図、図7は図6に示す鋼板保磁力測
定装置の動作を説明するためのタイミングチャート図で
ある。Furthermore, the present applicant has previously proposed a method for measuring the crystal grain size of a steel sheet, which is an improvement of the method disclosed in the above-mentioned document (Japanese Patent Application No. 5-5956). Hereinafter, this conventional crystal grain size measuring method will be described. FIG. 5 is a diagram showing an overall configuration of an example of a crystal grain size measuring device used for carrying out a conventional crystal grain size measuring method, FIG. 6 is a configuration explanatory diagram of the steel plate coercive force measuring device shown in FIG. 5, and FIG. FIG. 7 is a timing chart diagram for explaining the operation of the steel plate coercive force measuring device shown in FIG. 6.
【0005】まず、鋼板の結晶粒径を間接測定するため
に用いられる鋼板保磁力測定装置について、図6及び図
7を参照しつつ以下に説明する。この例における鋼板保
磁力測定装置E1は、図6に示すように、U字型のコア
(フェライトコア)101 を有する保磁力検出用センサ
(保磁力検出用ヘッド)100と、保磁力測定装置本体200
とから構成されている。そして、保磁力測定装置本体2
00 は、保磁力検出用センサ100 の励磁コイル103a,103
bに交流の励磁電流を供給する交流励磁電流発生器300
と、励磁コイル103a,103bに流れる励磁電流を検出し、
その電圧信号を出力するシャント抵抗を用いた励磁電流
検出器400 と、保磁力検出用センサ100 の検出コイル10
2 に発生する誘起電圧と検出器400 にて検出された励磁
電流とを入力とし、後述する信号処理を行うことで測定
対象鋼板(被測定鋼板)Sの保磁力相当値を検出してそ
の信号を出力する信号処理装置500 とにより構成されて
いる。First, a steel plate coercive force measuring device used for indirectly measuring the crystal grain size of a steel plate will be described below with reference to FIGS. 6 and 7. As shown in FIG. 6, the steel plate coercive force measuring device E1 in this example includes a coercive force detecting sensor (coercive force detecting head) 100 having a U-shaped core (ferrite core) 101, and a coercive force measuring device main body. 200
It consists of and. And the coercive force measuring device body 2
00 is the exciting coils 103a, 103 of the coercive force detecting sensor 100.
AC excitation current generator 300 that supplies AC excitation current to b
And the exciting current flowing through the exciting coils 103a and 103b is detected,
Excitation current detector 400 that uses a shunt resistor that outputs the voltage signal, and detection coil 10 of coercive force detection sensor 100.
The induced voltage generated in 2 and the exciting current detected by the detector 400 are used as input, and the signal processing described below is performed to detect the coercive force equivalent value of the steel plate (measured steel plate) S to be measured and to output the signal. And a signal processing device 500 for outputting.
【0006】前記保磁力検出用センサ100 は、図6に示
すように、U字型のコア101 の両脚部の各々にコイルを
施して、交流の励磁電流が供給されることで磁束が、交
互に、一方の磁極から出て測定対象鋼板S中を通って他
方の磁極へ入るように前記両コイルを直列に接続して励
磁コイル103a,103bとし、さらにコア中央部に検出コイ
ル102 を施してなるものである。また、前記信号処理装
置500 は、ゲート回路501 、微分器502 、ゼロ点検出器
503 、第1サンプルホールド回路504a、第2サンプルホ
ールド回路504b、及び演算回路505 により構成されてい
る。As shown in FIG. 6, the coercive force detecting sensor 100 has coils formed on both legs of a U-shaped core 101, and alternating magnetic flux is supplied by supplying an alternating exciting current. Then, the two coils are connected in series so as to come out from one magnetic pole, pass through the steel plate S to be measured, and enter the other magnetic pole to form exciting coils 103a and 103b, and a detecting coil 102 is further provided at the center of the core. It will be. Further, the signal processing device 500 includes a gate circuit 501, a differentiator 502, and a zero point detector.
503, a first sample and hold circuit 504a, a second sample and hold circuit 504b, and an arithmetic circuit 505.
【0007】前記ゲート回路501 と微分器502 及びゼロ
点検出器503 は、測定対象鋼板Sに磁束を通した際に、
検出コイル102 に発生する誘起電圧が磁化半サイクル毎
に尖頭値(ピーク値)をとった時点を検出するためのも
のである。サンプルホールド回路504a,504bは、検出コ
イル102 に発生する誘起電圧が先の磁化半サイクルにお
いて尖頭値をとった時点の励磁電流値と次の磁化半サイ
クルにおいて尖頭値をとった時点の励磁電流値とを検出
するための回路である。また、演算回路505 は、前記両
励磁電流値の大きさの平均値を求め、その値の大きさを
測定対象鋼板Sの保磁力相当値として検出してこれを出
力する回路である。The gate circuit 501, the differentiator 502, and the zero-point detector 503, when the magnetic flux is passed through the steel plate S to be measured,
This is for detecting the time when the induced voltage generated in the detection coil 102 takes a peak value (peak value) every magnetization half cycle. The sample-and-hold circuits 504a and 504b have an exciting current value when the induced voltage generated in the detection coil 102 has a peak value in the previous magnetization half cycle and an excitation current value when the induced voltage has a peak value in the next magnetization half cycle. It is a circuit for detecting a current value. Further, the arithmetic circuit 505 is a circuit for obtaining an average value of the magnitudes of the two exciting current values, detecting the magnitude value as a coercive force equivalent value of the steel plate S to be measured, and outputting the value.
【0008】次に動作を説明すると、測定対象鋼板Sの
上に、保磁力検出用センサ100 をそのコア101 の二つの
磁極と鋼板Sとの間に隙間を持たせて配置する。そし
て、保磁力検出用センサ100 の励磁コイル103a,103bに
図7の(e)に示すように交流の励磁電流を流して、測
定対象鋼板S中に磁束を通すと、保磁力検出用センサ10
0 の検出コイル102 には、図7の(b)に示すように、
磁化半サイクル毎にその極性が交互に変化する正負のパ
ルス状の誘起電圧が出力される。保磁力は磁束密度がゼ
ロクロスする時の磁界の強さであるから、磁束密度の時
間微分を示すものである検出コイル102 の出力が尖頭値
(ピーク値)をとる時点を検出し、その時点の磁界の強
さにあたる励磁電流値を検出することにより、保磁力相
当値が求められる。Next, the operation will be described. On the steel plate S to be measured, the coercive force detecting sensor 100 is arranged with a gap between the two magnetic poles of the core 101 and the steel plate S. Then, as shown in FIG. 7 (e), an alternating exciting current is passed through the exciting coils 103a and 103b of the coercive force detecting sensor 100 to pass a magnetic flux through the steel plate S to be measured.
In the detection coil 102 of 0, as shown in FIG.
Positive and negative pulsed induced voltages whose polarities alternately change every magnetization half cycle are output. Since the coercive force is the strength of the magnetic field when the magnetic flux density crosses zero, it indicates the time derivative of the magnetic flux density, and the time when the output of the detection coil 102 takes a peak value (peak value) is detected. The coercive force equivalent value can be obtained by detecting the exciting current value corresponding to the strength of the magnetic field.
【0009】さて、検出コイル102 の出力がゲート回路
501 及び微分器502 に与えられ、ゲート回路501 から
は、図7の(c)に示すように、基準電位であるゼロボ
ルト点に対して設定された正の微小閾値を検出コイル10
2 の出力が正の極性において超えている期間と、負の微
小閾値を検出コイル102 の出力が負の極性において超え
ている期間とでハイレベルとなる出力がゼロ点検出器50
3 に入力される。また、同時に、ゼロ点検出器503 に
は、微分器502 から図7の(d)に示す波形の信号が入
力される。The output of the detection coil 102 is a gate circuit.
As shown in FIG. 7C, the gate circuit 501 supplies a positive minute threshold value set to the zero volt point, which is the reference potential, to the detection coil 10 and the differentiator 502.
The output which becomes high level during the period when the output of 2 exceeds the positive polarity and the period when the output of the detection coil 102 exceeds the negative minute threshold in the negative polarity is the zero point detector 50.
Entered in 3. At the same time, the zero-point detector 503 receives the signal having the waveform shown in FIG. 7D from the differentiator 502.
【0010】ゼロ点検出器503 は、ゲート回路501 の出
力がハイレベルの期間において微分器502 の出力がゼロ
ボルト点を横切る時点、つまり、検出コイル102 の出力
が正の尖頭値をとった時点と負の尖頭値をとった時点と
をそれぞれ検出する。そして、ゼロ点検出器503 は、検
出コイル102 の出力が正の尖頭値をとった時、第1サン
プルホールド回路504aに第1サンプルホールド指令信号
S1を与える一方、検出コイル102 の出力が負の尖頭値を
とった時、第2サンプルホールド回路504bに第2サンプ
ルホールド指令信号S2を与える。The zero-point detector 503 detects when the output of the differentiator 502 crosses the zero volt point while the output of the gate circuit 501 is at a high level, that is, when the output of the detection coil 102 has a positive peak value. And when the negative peak value is taken, respectively. The zero-point detector 503 sends the first sample hold command signal to the first sample hold circuit 504a when the output of the detection coil 102 has a positive peak value.
Meanwhile, when the output of the detection coil 102 has a negative peak value while giving S1, the second sample hold command signal S2 is given to the second sample hold circuit 504b.
【0011】第1サンプルホールド回路504aは、前記指
令信号S1が与えられたときの励磁電流検出器400 の出力
をサンプリングして保持し、この検出した信号、すなわ
ち、検出コイル102 の出力が正の尖頭値をとった時点に
おける励磁コイル103a,103bに流れる励磁電流値を示す
信号(IH )を演算回路505 に出力する。また、第2サ
ンプルホールド回路504bは、前記指令信号S2が与えられ
たときの励磁電流検出器400 の出力をサンプリングして
保持し、この検出した信号、すなわち、検出コイル102
の出力が負の尖頭値をとった時点における励磁電流値を
示す信号(−I H )を演算回路505 に出力する。The first sample and hold circuit 504a includes the finger
Output of exciting current detector 400 when command signal S1 is given
Sampling and holding this detected signal,
Then, when the output of the detection coil 102 takes a positive peak value,
Indicates the value of the exciting current flowing through the exciting coils 103a and 103b in
Signal (IH) Is output to the arithmetic circuit 505. In addition, the second service
The sample and hold circuit 504b receives the command signal S2.
Sampling the exciting current detector 400 output
Hold and detect this detected signal, ie the detection coil 102
The exciting current value at the time when the output of has a negative peak value
Signal (-I H) Is output to the arithmetic circuit 505.
【0012】演算回路505 は、第1サンプルホールド回
路504aの出力(IH )と第2サンプルホールド回路504b
の出力(−IH )とが与えられると、〔(IH )−(−
IH)〕/2の演算を行い、その値の大きさに対応する
ものを測定対象鋼板Sの保磁力相当値としてその信号を
出力するようになっている。The arithmetic circuit 505 outputs the output (I H ) of the first sample hold circuit 504a and the second sample hold circuit 504b.
Given the output (-I H ) of [(I H )-(-
I H )] / 2, and the signal corresponding to the magnitude of the value is output as the coercive force equivalent value of the steel plate S to be measured.
【0013】さてここで、鋼板について前述のようにし
て測定される保磁力相当値が、方向依存性(角度依存
性)を有することについて説明する。図4は鋼板の保磁
力相当値の方向依存性を示す図である。同図は、前記保
磁力検出用センサを、二つの磁極と測定対象鋼板の間隔
距離が1mm程度となるようにして測定対象鋼板の上に位
置させた状態で、その平面内において角度6°ピッチに
て1回転させて、角度6°ごとに測定した保磁力相当値
をプロットしたものである。図4においては、横軸にお
ける角度0°及び角度 180°における保磁力相当値が、
測定対象鋼板中を通る磁束が圧延方向となるように保磁
力検出用センサを位置させたときのものである。Now, it will be explained that the coercive force equivalent value of the steel sheet measured as described above has direction dependency (angle dependency). FIG. 4 is a diagram showing the direction dependence of the coercive force equivalent value of the steel sheet. The figure shows that the coercive force detection sensor is positioned on the steel plate to be measured such that the distance between the two magnetic poles and the steel plate to be measured is about 1 mm. It is a plot of coercive force-equivalent values measured at every 6 ° with one rotation. In FIG. 4, coercive force equivalent values at an angle of 0 ° and an angle of 180 ° on the horizontal axis are
The coercive force detection sensor is positioned so that the magnetic flux passing through the steel sheet to be measured is in the rolling direction.
【0014】このように鋼板の保磁力相当値には方向依
存性があり、その方向依存性の程度は、各鋼板の磁気異
方性エネルギの大きさの違いによると推定される原因に
より、各鋼板によって異なっている。このため、鋼板の
結晶粒径を間接測定によって求める際には、求められる
結晶粒径が、前記保磁力相当値の持つ方向依存性に起因
して誤差が生じることのないようにする必要がある。As described above, the coercive force equivalent value of the steel sheet has a direction dependence, and the degree of the direction dependence depends on the difference in the magnitude of the magnetic anisotropy energy of each steel sheet. It depends on the steel plate. Therefore, when the crystal grain size of the steel sheet is obtained by indirect measurement, it is necessary that the obtained crystal grain size does not cause an error due to the direction dependence of the coercive force equivalent value. .
【0015】そこで、従来方法では、鋼板の結晶粒径を
間接測定によって求めるための情報として、鋼板面内に
おける少なくとも互いに直交する二方向における各保磁
力相当値を測定し、それらの算術平均である保磁力相当
値の平均値を用いるようにしている。すなわち、図5に
示すように、この例においては結晶粒径測定装置は、二
つの鋼板保磁力測定装置E1,E1′と、これらに接続され
たコンピュータ600 とにより構成されている。先にその
構成を説明した鋼板保磁力測定装置E1の保磁力検出用セ
ンサ100 は、測定対象鋼板Sの上に非接触にてその磁極
間方向が鋼板圧延方向に一致するように支持具(図示省
略)により位置されており、保磁力測定装置本体 200′
を有し前記装置E1と同構成になる他方の鋼板保磁力測定
装置E1′の保磁力検出用センサ 100′は、前記センサ10
0 に近接して配され、測定対象鋼板Sの上に非接触にて
その磁極間方向が板幅方向(鋼板圧延方向と直交する方
向)に一致するように支持具(図示省略)により位置さ
れている。Therefore, in the conventional method, as information for obtaining the crystal grain size of the steel sheet by indirect measurement, coercive force equivalent values in at least two directions orthogonal to each other in the plane of the steel sheet are measured and the arithmetic mean thereof is obtained. The average value of coercive force equivalent values is used. That is, as shown in FIG. 5, in this example, the crystal grain size measuring device is composed of two steel plate coercive force measuring devices E1 and E1 'and a computer 600 connected thereto. The coercive force detection sensor 100 of the steel plate coercive force measuring device E1 whose configuration has been described above has a support (not shown) on the steel plate S to be measured so that the direction between the magnetic poles thereof coincides with the rolling direction of the steel plate. The coercive force measuring device main body 200 '
The sensor 100 'for detecting the coercive force of the other steel plate coercive force measuring device E1' having the same configuration as the device E1 has
It is placed close to 0 and is positioned by a support tool (not shown) on the steel plate S to be measured in a non-contact manner so that the direction between the magnetic poles matches the plate width direction (direction orthogonal to the steel plate rolling direction). ing.
【0016】次に前記装置を用いて行う結晶粒径の測定
方法について説明すると、まず、サンプル用鋼板を用意
し、その結晶粒径を顕微鏡写真による周知の切断法によ
り測定し、その結晶粒径の値dをデータとしてコンピュ
ータ600 に入力する。さらに、そのサンプル用鋼板につ
いて、一方の保磁力検出用センサ100 を前述したように
鋼板圧延方向に沿わせて位置させた際の保磁力相当値を
測定し、その保磁力相当値HC1をデータとしてコンピュ
ータ600 に入力するとともに、他方の保磁力検出用セン
サ 100′を板幅方向(圧延方向と直交する方向)に沿わ
せて位置させた際の保磁力相当値を測定し、その保磁力
相当値HC2をデータとしてコンピュータ600 に入力す
る。コンピュータ600 は、保磁力相当値の平均値H
CAを、HCA=(HC1+HC2)/2の演算により求め、前
記既知の結晶粒径dとそれにおける保磁力相当値の平均
値HCAとをデータとして記憶しておく。Next, the method of measuring the crystal grain size using the above apparatus will be described. First, a sample steel plate is prepared, the crystal grain size is measured by a known cutting method using a micrograph, and the crystal grain size is measured. The value d of is input to the computer 600 as data. Further, with respect to the sample steel plate, the coercive force equivalent value when one of the coercive force detecting sensors 100 is positioned along the steel plate rolling direction as described above is measured, and the coercive force equivalent value H C1 is calculated. Is input to the computer 600, and the coercive force equivalent value is measured when the other sensor 100 'for detecting coercive force is positioned along the strip width direction (direction orthogonal to the rolling direction). The value H C2 is input to the computer 600 as data. The computer 600 displays the average value H of coercive force equivalent values.
CA is obtained by the calculation of H CA = (H C1 + H C2 ) / 2, and the known crystal grain size d and the average value H CA of coercive force equivalent values therein are stored as data.
【0017】次いで、結晶粒径を間接測定すべき測定対
象鋼板Sについて、一方の保磁力検出用センサ100 を鋼
板圧延方向に沿わせて位置させた際の保磁力相当値が測
定され、その保磁力相当値HC1′を示す出力がコンピュ
ータ600 に与えられるとともに、他方の保磁力検出用セ
ンサ 100′を板幅方向(圧延方向と直交する方向)に沿
わせて位置させた際の保磁力相当値が測定され、その保
磁力相当値HC2′を示す出力がコンピュータ600 に与え
られる。Next, for the steel sheet S to be measured for which the crystal grain size is to be indirectly measured, the coercive force equivalent value when one coercive force detection sensor 100 is positioned along the steel sheet rolling direction is measured. An output indicating the magnetic force equivalent value H C1 ′ is given to the computer 600, and the coercive force equivalent when the other coercive force detecting sensor 100 ′ is positioned along the strip width direction (direction orthogonal to the rolling direction). The value is measured, and the output indicating the coercive force equivalent value H C2 'is provided to the computer 600.
【0018】そして、コンピュータ600 により、HCA′
=(HC1′+HC2′)/2の演算により求められた保磁
力相当値の平均値HCA′と、前記予め求めておいた実測
による既知の結晶粒径dとそれにおける保磁力相当値の
平均値HCAとから、結晶粒径の逆数と保磁力相当値とが
直線的な比例関係にあることを利用して、d′=(d・
HCA)/HCA′の演算により測定対象鋼板Sの結晶粒径
d′を求めるようになされている。Then, by the computer 600, H CA ′
= (H C1 ′ + H C2 ′) / 2, the average value H CA ′ of the coercive force equivalent values obtained by the calculation, the previously determined actual crystal grain size d by actual measurement, and the coercive force equivalent value thereof. Using the fact that the reciprocal of the crystal grain size and the coercive force equivalent value have a linear proportional relationship from the average value H CA of d ′ = (d ·
The crystal grain size d ′ of the steel plate S to be measured is calculated by the calculation of H CA ) / H CA ′.
【0019】図8は、従来技術に係るものであって、熱
延鋼板の保磁力相当値の平均値と、実測結晶粒径の逆数
との関係を示す図である。図8に示すグラフは、鋼中の
炭素値と熱処理条件とを変えて、結晶粒径を変化させた
14種類のサンプル用の熱延鋼板を作製し、それらにおけ
る保磁力相当値の平均値を、回転機構を備えた保磁力検
出用センサを用いて測定して得たものである。図の横軸
は、保磁力検出用センサを角度6゜ピッチにて1回転さ
せ、角度6゜ごとにおける各保磁力相当値を算術平均し
たものである保磁力相当値の平均値を示し、縦軸は、切
断法により実測した結晶粒径の逆数を示している。FIG. 8 relates to the prior art and is a diagram showing the relationship between the average value of coercive force equivalent values of hot-rolled steel sheet and the reciprocal of the actually measured grain size. In the graph shown in FIG. 8, the crystal grain size was changed by changing the carbon value in the steel and the heat treatment conditions.
This is obtained by producing 14 kinds of hot-rolled steel sheets for samples, and measuring the average value of the coercive force equivalent values in them using a coercive force detecting sensor equipped with a rotating mechanism. The horizontal axis of the figure shows the average value of the coercive force equivalent value which is the arithmetic mean of the coercive force equivalent values at every 6 ° angle when the coercive force detecting sensor is rotated once at an angle of 6 °. The axis shows the reciprocal of the crystal grain size measured by the cutting method.
【0020】このように、従来方法では、熱延鋼板につ
いては、図8に示すように、実測結晶粒径の逆数と保磁
力相当値の平均値とがほぼ線形な関係を満たすことか
ら、保磁力相当値の平均値を用いて結晶粒径を求めるこ
とで、大きな誤差を生じることなく結晶粒径の間接測定
が可能であった。As described above, according to the conventional method, as to the hot-rolled steel sheet, as shown in FIG. 8, the reciprocal of the measured crystal grain size and the average value of the coercive force equivalent values satisfy a substantially linear relationship. By obtaining the crystal grain size using the average value of the magnetic force equivalent values, it was possible to indirectly measure the crystal grain size without causing a large error.
【0021】[0021]
【発明が解決しようとする課題】図9は、従来技術に係
るものであって、熱延鋼板及び冷延鋼板の保磁力相当値
の平均値と、実測結晶粒径の逆数との関係を示す図であ
る。図9のグラフは、冷延後に焼鈍処理されてなる3種
類のサンプル用の冷延鋼板について前記図8の場合と同
様に測定された保磁力相当値の平均値と、その各冷延鋼
板の実測結晶粒径の逆数とを、前記図8に重ねてプロッ
トしたものである。このように、従来方法では、図9か
らわかるように、熱延鋼板とは集合組織の異なる冷延鋼
板については、実測結晶粒径の逆数と保磁力相当値の平
均値との関係が線形な関係からはずれるものがあって、
結晶粒径の間接測定結果に大きな誤差が含まれることが
あるという問題があることがわかった。FIG. 9 relates to the prior art and shows the relationship between the average value of coercive force equivalent values of hot-rolled steel sheet and cold-rolled steel sheet and the reciprocal of the actually measured grain size. It is a figure. The graph of FIG. 9 shows an average value of coercive force equivalent values measured in the same manner as in the case of FIG. 8 for three types of cold-rolled steel sheets for samples that have been annealed after cold-rolling and their respective cold-rolled steel sheets. The reciprocal of the measured crystal grain size is plotted by being superimposed on FIG. As described above, according to the conventional method, as can be seen from FIG. 9, the relationship between the reciprocal of the actually measured grain size and the average value of the coercive force equivalent values is linear for the cold-rolled steel sheet having a different texture from the hot-rolled steel sheet. Something is out of relationship,
It was found that there is a problem that a large error may be included in the indirect measurement result of the crystal grain size.
【0022】この発明は、鋼板の結晶粒径を、その鋼板
の磁気特性を非破壊・非接触にて求めることによって間
接測定する装置であって、前記問題点を解消して、熱延
鋼板のみならずこれと集合組織の異なる冷延鋼板につい
ての結晶粒径をも大きな誤差を生じることなく求めるこ
とができる、鋼板の結晶粒径の測定装置を提供すること
を目的とする。The present invention is an apparatus for indirectly measuring the crystal grain size of a steel sheet by determining the magnetic characteristics of the steel sheet in a non-destructive and non-contact manner. It is another object of the present invention to provide a measuring apparatus for crystal grain size of a steel sheet, which can determine the crystal grain size of a cold-rolled steel sheet having a texture different from that of the above without causing a large error.
【0023】[0023]
【課題を解決するための手段】前記の目的を達成するた
めに、この発明による鋼板の結晶粒径の測定装置は、
(a) 測定対象鋼板中に磁束を通すための交流の励磁
電流が流される励磁コイルと検出コイルとが施された一
方のU字型コアと、他の検出コイルのみが施された他方
のU字型コアとを有し、これら二つのU字型コアを、互
いにコア中央部にて直交するように交差させて、その四
つの磁極が同一平面上における正方形の各頂点に位置す
る状態にて測定対象鋼板に対して所定の間隔を有して平
行に回転可能なように、一体に固定してなる磁気特性検
出用センサと、(b) 前記磁気特性検出用センサに交
流の励磁電流が流されたときに、前記励磁コイルが施さ
れた前記一方のU字型コアの検出コイルに発生する誘起
電圧が尖頭値をとった時点の励磁電流値を、その測定対
象鋼板の保磁力に相当する値として検出し、交流の励磁
電流が流された前記磁気特性検出用センサを少なくとも
半回転させる間における前記保磁力相当値の平均値を求
める保磁力相当値の平均値測定手段と、(c) 交流の
励磁電流が流された前記磁気特性検出用センサを少なく
とも半回転させる間における、磁気特性検出用センサの
前記他方のU字型コアの検出コイルの出力に基づいて、
測定対象鋼板の磁気異方性の大きさを測定する磁気異方
性測定手段と、(d) 測定対象鋼板の透磁率を非接触
にて測定する透磁率測定装置と、(e) 3種類以上の
鋼板の各々についての、実測による結晶粒径、前記保磁
力相当値の平均値測定手段による保磁力相当値の平均
値、前記磁気異方性測定手段による磁気異方性の大き
さ、及び前記透磁率測定装置による透磁率とが与えら
れ、これらのデータを用いた多変量解析により、結晶粒
径の逆数を目的変数、保磁力相当値の平均値、磁気異方
性の大きさ、及び透磁率を説明変数とする回帰式におけ
る各説明変数の回帰係数を求めるデータ処理手段と、
(f) 結晶粒径を間接測定すべき鋼板についての、前
記保磁力相当値の平均値測定手段による保磁力相当値の
平均値、前記磁気異方性測定手段による磁気異方性の大
きさ、及び前記透磁率測定装置による透磁率を、前記デ
ータ処理手段にて前記回帰係数が定められた前記回帰式
に代入することにより、その結晶粒径を求める計算手段
と、を備えたことを特徴とするものである。In order to achieve the above object, the apparatus for measuring the grain size of a steel sheet according to the present invention comprises:
(A) One U-shaped core provided with an excitation coil and a detection coil through which an alternating excitation current for passing magnetic flux is passed through the steel plate to be measured, and the other U-shaped core provided with only the other detection coil A U-shaped core, and these two U-shaped cores are made to intersect with each other so as to be orthogonal to each other in the central part of the core, and the four magnetic poles are located at each vertex of a square on the same plane. A magnetic characteristic detecting sensor integrally fixed so as to be rotatable in parallel to the steel plate to be measured with a predetermined distance, and (b) an alternating excitation current flows through the magnetic characteristic detecting sensor. At this time, the exciting current value at the time when the induced voltage generated in the detection coil of the one U-shaped core provided with the exciting coil has a peak value corresponds to the coercive force of the steel plate to be measured. Is detected as the value of the An average value measuring means of the coercive force equivalent value for obtaining an average value of the coercive force equivalent value during at least half rotation of the gas characteristic detecting sensor; and (c) the magnetic characteristic detecting sensor to which an alternating exciting current is applied. Based on the output of the detection coil of the other U-shaped core of the magnetic characteristic detection sensor during at least half rotation of
Magnetic anisotropy measuring means for measuring the magnitude of magnetic anisotropy of the steel sheet to be measured, (d) Permeability measuring device for measuring the magnetic permeability of the steel sheet to be measured in a non-contact manner, (e) 3 or more types For each of the steel sheets, the measured crystal grain size, the average value of the coercive force equivalent value by the average value measuring means of the coercive force equivalent value, the magnitude of the magnetic anisotropy by the magnetic anisotropy measuring means, and the Given the magnetic permeability measured by a magnetic permeability measurement device, multivariate analysis using these data shows the reciprocal of the crystal grain size as the objective variable, the mean value of coercive force equivalent values, the magnitude of magnetic anisotropy, and the magnetic permeability. Data processing means for obtaining a regression coefficient of each explanatory variable in a regression equation having a magnetic susceptibility as an explanatory variable,
(F) For a steel sheet whose crystal grain size is to be indirectly measured, the average value of the coercive force equivalent values measured by the average value of the coercive force equivalent values, the magnitude of the magnetic anisotropy measured by the magnetic anisotropy measuring means, And a magnetic permeability measured by the magnetic permeability measuring device, by substituting into the regression equation in which the regression coefficient is determined by the data processing means, a calculation means for determining the crystal grain size thereof, To do.
【0024】[0024]
【作用】前記図9に示されるように、冷延鋼板において
その保磁力相当値の平均値と実測結晶粒径の逆数との関
係が線形な関係からはずれるものがあることについての
原因としては、次のことが考えられる。冷延鋼板は、そ
の集合組織が熱延鋼板に比較して強い。冷延鋼板のよう
な集合組織が強いものでは、隣接する結晶の方位が揃っ
ているために結晶粒界での磁気異方性エネルギ差が低く
なり、結晶方位がランダムな鋼板よりもそれと結晶粒径
が同じであっても保磁力が小さくなる。また、透磁率が
大きな鋼板では、励磁磁束が増加して保磁力検出用セン
サの励磁コイルのインピーダンスが増加して励磁電流が
小さくなり、保磁力相当値が小さく測定される。As shown in FIG. 9, the cause of the fact that the relationship between the average value of the coercive force equivalent values and the reciprocal of the actually measured grain size in the cold rolled steel sheet deviates from a linear relationship is as follows. The following can be considered. The texture of the cold rolled steel sheet is stronger than that of the hot rolled steel sheet. In the case of a cold rolled steel sheet with a strong texture, the magnetic anisotropy energy difference at the crystal grain boundaries is low because the adjacent crystals have the same orientation, and the crystal orientation is smaller than that of a steel sheet with random crystal orientation. The coercive force is small even if the diameter is the same. In a steel sheet having a high magnetic permeability, the exciting magnetic flux increases, the impedance of the exciting coil of the coercive force detecting sensor increases, the exciting current decreases, and the coercive force equivalent value is measured small.
【0025】そこで、この発明による結晶粒径の測定装
置においては、鋼板の結晶粒径を、非破壊・非接触式に
て測定したその鋼板の保磁力相当値の平均値、磁気異方
性の大きさ、及び透磁率とを用いて求める構成とするこ
とにより、熱延鋼板のみならずこれと集合組織の異なる
冷延鋼板についての結晶粒径をも大きな誤差を生じるこ
となく求めることができる。Therefore, in the crystal grain size measuring apparatus according to the present invention, the crystal grain size of the steel sheet is measured by a non-destructive non-contact method, and the average value of the coercive force equivalent values of the steel sheet and the magnetic anisotropy By adopting the configuration obtained by using the size and the magnetic permeability, not only the hot-rolled steel sheet but also the cold-rolled steel sheet having a texture different from that of the hot-rolled steel sheet can be obtained without causing a large error.
【0026】[0026]
【実施例】以下、この発明の実施例について説明する。
図1はこの発明による鋼板の結晶粒径の測定装置の一実
施例の全体構成を示す図である。Embodiments of the present invention will be described below.
FIG. 1 is a diagram showing the overall configuration of an embodiment of the apparatus for measuring the grain size of a steel sheet according to the present invention.
【0027】図1において、10は測定対象鋼板について
その保磁力相当値の平均値と磁気異方性の大きさとを測
定するための磁気特性検出用センサである。磁気特性検
出用センサ10は、同図に示すように、測定対象鋼板中に
磁束を通すための交流の励磁電流が流される励磁コイル
13a,13bと磁化状態検出用の検出コイル12Aとが施さ
れた一方のU字型コア11Aと、他の検出コイル12Bのみ
が施された他方のU字型コア11Bとを有し、これら二つ
のU字型コア11A,11Bを、互いにコア中央部にて立体
的に直交するように交差させて、その四つの磁極が同一
平面上における正方形の各頂点に位置する状態にて測定
対象鋼板に対して所定の間隔(例えば1mm程度)を有し
て平行に回転可能なように、円柱状をなす樹脂モールド
14を施すことで、一体に固定してなるものである。測定
対象鋼板中に磁束を通すために、交流励磁電流発生器2
0、シャント抵抗よりなる励磁電流検出器21及び励磁コ
イル13a,13bが直列に接続されている。In FIG. 1, reference numeral 10 is a magnetic characteristic detecting sensor for measuring the average value of the coercive force equivalent values and the magnitude of magnetic anisotropy of the steel sheet to be measured. As shown in the figure, the magnetic characteristic detecting sensor 10 is an exciting coil in which an alternating exciting current for passing a magnetic flux through a steel plate to be measured is passed.
It has one U-shaped core 11A provided with 13a and 13b and a detection coil 12A for detecting the magnetization state, and the other U-shaped core 11B provided only with the other detection coil 12B. The two U-shaped cores 11A and 11B are crossed so as to be three-dimensionally orthogonal to each other in the central part of the core, and the four magnetic poles are positioned on the respective vertices of a square on the same plane. On the other hand, a cylindrical resin mold that can rotate in parallel with a predetermined interval (for example, about 1 mm)
By applying 14, it is integrally fixed. AC excitation current generator 2 to pass magnetic flux through the steel plate to be measured
An exciting current detector 21 including 0 and a shunt resistor and exciting coils 13a and 13b are connected in series.
【0028】30は磁気特性検出用センサ10を回転させる
ためのセンサ回転用パルスモータである。この実施例で
は磁気特性検出用センサ10を角度6°ピッチにて1回転
させ、しかる後、測定を行うことなく逆方向に1回転さ
せることで、電気配線がねじれて切断されることなく測
定が行えるようになっている。また、モータ駆動制御器
31は、センサ回転用パルスモータ30を駆動制御する一
方、センサ10を回転させる際に、0,6,……, 354,
360°というセンサ回転角度が6°ピッチごとに保磁力
相当値検出指令信号を、保磁力相当値の平均値測定手段
としての後述する保磁力平均値測定部40に与えるもので
ある。さらに、モータ駆動制御器31は、磁気特性検出用
センサ10が半回転(0〜 180°、 180〜 360°)してい
る期間を示す磁気異方性検出指令信号を、磁気異方性測
定手段としての後述する磁気異方性測定部50に与えるも
のである。センサ回転用パルスモータ30及びモータ駆動
制御器31によってセンサ回転機構が構成されている。Reference numeral 30 is a sensor rotation pulse motor for rotating the magnetic characteristic detection sensor 10. In this embodiment, the magnetic characteristic detecting sensor 10 is rotated once at an angle of 6 ° and then rotated once in the opposite direction without performing the measurement, so that the electric wiring can be measured without being twisted and cut. It can be done. Also, the motor drive controller
The reference numeral 31 drives and controls the sensor rotation pulse motor 30, while 0, 6, ..., 354, 354, when rotating the sensor 10.
The sensor rotation angle of 360 ° gives a coercive force equivalent value detection command signal to an after-mentioned coercive force average value measuring section 40 as an average value measuring means of coercive force equivalent values at every 6 ° pitch. Further, the motor drive controller 31 sends a magnetic anisotropy detection command signal indicating a period during which the magnetic characteristic detecting sensor 10 is half a rotation (0 to 180 °, 180 to 360 °), to the magnetic anisotropy measuring means. To the magnetic anisotropy measuring unit 50 described later. The sensor rotation mechanism is configured by the sensor rotation pulse motor 30 and the motor drive controller 31.
【0029】保磁力平均値測定部40は、励磁電流が流さ
れた磁気特性検出用センサ10を1回転させたときに、モ
ータ駆動制御器31から前記保磁力相当値検出指令信号が
与えられるごとに、従来と同様にして、前記一方のU字
型コア11Aの検出コイル12Aに発生する誘起電圧が1周
期における正と負の尖頭値をとった各時点の励磁電流
(図7の(e)にIH 及び−IH として表されるもの)
の平均値を保磁力相当値として検出し、磁気特性検出用
センサ10をこの実施例では1回転させる間に検出した前
記保磁力相当値を算術平均して、その測定対象鋼板の保
磁力相当値の平均値を求めるものである。得られた保磁
力相当値の平均値は、データ処理手段及び計算手段とし
てのコンピュータ70に入力されるようになっている。保
磁力平均値測定部40は、例えば、前記図6に示す信号処
理装置500 の演算回路505 に保磁力相当値を算術平均す
る機能を付加することにより構成できるものである。The coercive force average value measuring unit 40 receives the coercive force equivalent value detection command signal from the motor drive controller 31 when the magnetic characteristic detecting sensor 10 to which the exciting current is supplied is rotated once. In the same manner as in the conventional art, the exciting current at each time when the induced voltage generated in the detection coil 12A of the one U-shaped core 11A has positive and negative peak values in one cycle ((e in FIG. 7) ) Represented by I H and -I H )
Is detected as the coercive force equivalent value, and the coercive force equivalent value detected during one rotation of the magnetic characteristic detecting sensor 10 in this embodiment is arithmetically averaged to obtain the coercive force equivalent value of the steel plate to be measured. The average value of is calculated. The average value of the obtained coercive force equivalent values is input to the computer 70 as data processing means and calculation means. The coercive force average value measuring unit 40 can be configured by, for example, adding a function of arithmetically averaging coercive force equivalent values to the arithmetic circuit 505 of the signal processing device 500 shown in FIG.
【0030】磁気異方性測定部50は、励磁電流が流され
た磁気特性検出用センサ10を1回転させたときに、モー
タ駆動制御器31からの前記磁気異方性検出指令信号を受
けて、センサ10が半回転される期間におけるU字型コア
11Bに巻かれた検出コイル12Bの出力の振幅値(ピーク
値とバレイ値との和)を、測定対象鋼板の磁気異方性の
大きさとして検出するものである。図2は、磁気特性検
出用センサ10を回転させたときの、磁気異方性の大きさ
の度合いを表す検出コイル12Bの出力の変化の様子の例
を示すものである。この実施例では、測定対象鋼板の磁
気異方性の大きさは、0〜 180°までの出力変化の1周
期に対応する半回転の間の振幅値と、 180〜 360°まで
の次の半回転の間の振幅値とを算術平均したものとして
いる。得られた磁気異方性の大きさは、コンピュータ70
に入力されるようになっている。なお、磁気特性検出用
センサ10のU字型コア11Bに巻かれた検出コイル12Bに
は、「磁気異方性センサによるレール鋼の非接触応力測
定」という文献(岸本ほか:日本応用磁気学会誌,Vol.
13,No.2,1989,435 〜436 頁)からも理解されるよう
に、各測定対象鋼板の磁気異方性の大きさに比例した電
圧が誘起されるようになっている。The magnetic anisotropy measuring section 50 receives the magnetic anisotropy detection command signal from the motor drive controller 31 when the magnetic characteristic detecting sensor 10 to which an exciting current is supplied is rotated once. , U-shaped core in the period when the sensor 10 is half rotated
The amplitude value (sum of peak value and valley value) of the output of the detection coil 12B wound around 11B is detected as the magnitude of magnetic anisotropy of the steel plate to be measured. FIG. 2 shows an example of how the output of the detection coil 12B changes indicating the degree of magnetic anisotropy when the magnetic characteristic detecting sensor 10 is rotated. In this example, the magnitude of the magnetic anisotropy of the steel sheet to be measured is the amplitude value during a half rotation corresponding to one cycle of the output change from 0 to 180 ° and the next half of the rotation from 180 to 360 °. Amplitude values during rotation are arithmetically averaged. The magnitude of the obtained magnetic anisotropy is calculated by the computer 70.
It is designed to be input to. For the detection coil 12B wound around the U-shaped core 11B of the magnetic characteristic detection sensor 10, there is a document "Non-contact stress measurement of rail steel by magnetic anisotropy sensor" (Kishimoto et al .: Journal of the Japan Society for Applied Magnetics). , Vol.
13, No. 2, 1989, pp. 435-436), a voltage proportional to the magnitude of magnetic anisotropy of each steel sheet to be measured is induced.
【0031】60は、測定対象鋼板の透磁率を非接触にて
測定する透磁率測定装置である。この透磁率測定装置60
は、例えば特開平4 −19584 号公報に記載されているよ
うに、図示しない磁束検出コイル及び磁界検出コイルを
備えたものであって、その測定された透磁率はコンピュ
ータ70に入力される。コンピュータ70は、入力されたデ
ータを用いた多変量解析によって結晶粒径についての後
述する回帰係数が求められた回帰式を作成しておくため
の演算処理を行ったり、その回帰式を用いて間接測定す
べき鋼板の結晶粒径を求めるための演算処理を行ったり
するためのものである。Reference numeral 60 is a magnetic permeability measuring device for measuring the magnetic permeability of the steel sheet to be measured in a non-contact manner. This permeability measuring device 60
Is provided with a magnetic flux detecting coil and a magnetic field detecting coil, which are not shown, as described in, for example, Japanese Patent Laid-Open No. 19584/1992, and the measured magnetic permeability is input to the computer 70. The computer 70 performs an arithmetic process for creating a regression equation in which a regression coefficient for the crystal grain size, which will be described later, is obtained by a multivariate analysis using the input data, or indirectly using the regression equation. This is for performing arithmetic processing for obtaining the crystal grain size of the steel sheet to be measured.
【0032】前記装置による結晶粒径の間接測定の手順
を説明する。まず、少なくとも3種類以上の鋼板S
i (i=1〜n)の各々について、結晶粒径di (i=
1〜n)を実測する一方、前記装置を用いて、保磁力相
当値の平均値Hi (i=1〜n)、磁気異方性の大きさ
Ki (i=1〜n)、及び、透磁率μi (i=1〜n)
を測定し、これらのデータをコンピュータ70に入力す
る。そして、コンピュータ70により、これらのデータを
用いた多変量解析により、結晶粒径dの逆数を目的変
数、保磁力相当値の平均値H、磁気異方性の大きさK、
及び透磁率μを説明変数とする下記式で表される回帰
式における定数α0 、回帰係数α1 〜α3 を求める。つ
まり、前記データから、定数α0 、回帰係数α1〜α3
を、最小二乗法により推定して求める。 (1/d)=α0 +α1 H+α2 K+α3 μ …The procedure of indirect measurement of the crystal grain size by the above apparatus will be described. First, at least three types of steel plates S
For each i (i = 1 to n), the crystal grain size d i (i =
1 to n), the average value H i (i = 1 to n) of coercive force equivalent values, the magnitude K i of magnetic anisotropy (i = 1 to n), and , Permeability μ i (i = 1 to n)
Is measured and these data are input to the computer 70. Then, the computer 70 performs multivariate analysis using these data to determine the reciprocal of the crystal grain size d as an objective variable, an average value H of coercive force equivalent values, and a magnitude K of magnetic anisotropy.
And a constant α 0 and regression coefficients α 1 to α 3 in the regression equation represented by the following equation with the permeability μ as an explanatory variable. That is, from the above data, a constant α 0 and regression coefficients α 1 to α 3
Is estimated by the least squares method. (1 / d) = α 0 + α 1 H + α 2 K + α 3 μ ...
【0033】次に、結晶粒径を間接測定すべき鋼板につ
いて測定された、保磁力相当値の平均値、磁気異方性の
大きさ、及び透磁率が、測定データとしてコンピュータ
70に入力される。そしてコンピュータ70により、前記定
数α0 、回帰係数α1 〜α3が具体的に定められた回帰
式に前記データが代入されて、その鋼板の結晶粒径が
演算によって求められる。Next, the average value of the coercive force equivalent values, the magnitude of magnetic anisotropy, and the magnetic permeability measured on the steel sheet for which the crystal grain size is to be indirectly measured are computer data as measurement data.
Entered in 70. Then, the computer 70 substitutes the data into a regression equation in which the constant α 0 and the regression coefficients α 1 to α 3 are specifically determined, and the grain size of the steel sheet is calculated.
【0034】図3は、この発明に係るものであって、熱
延鋼板及び冷延鋼板の保磁力相当値の平均値と、実測結
晶粒径の逆数との関係を示す図である。図3のグラフ
は、図9と同じサンプル用鋼板(熱延鋼板14種類と冷延
鋼板3種類)についてのものであり、図の保磁力相当値
の平均値は、磁気異方性の大きさ及び透磁率のデータを
保磁力相当値の平均値に換算することにより補正したも
のである。この図3から理解されるように、この発明に
よれば、熱延鋼板のみならずこれと集合組織の異なる冷
延鋼板についての結晶粒径をも大きな誤差を生じること
なく非破壊・非接触式の間接測定によって求めることが
できる。FIG. 3 relates to the present invention and is a diagram showing the relationship between the average value of coercive force equivalent values of hot-rolled steel sheets and cold-rolled steel sheets and the reciprocal of the actually measured grain size. The graph in FIG. 3 is for the same sample steel plates as in FIG. 9 (14 types of hot-rolled steel plates and 3 types of cold-rolled steel plates), and the average value of the coercive force equivalent values in the figure is the magnitude of magnetic anisotropy. And the magnetic permeability data are corrected by converting them into an average value of coercive force equivalent values. As can be seen from FIG. 3, according to the present invention, not only the hot-rolled steel sheet but also the cold-rolled steel sheet having a different texture from that of the cold-rolled steel sheet can be used in the non-destructive non-contact type without causing a large error. Can be obtained by indirect measurement of.
【0035】[0035]
【発明の効果】以上の説明より理解されるように、この
発明による鋼板の結晶粒径の測定装置によると、鋼板の
結晶粒径を、非破壊・非接触式にて測定したその鋼板の
保磁力相当値の平均値、磁気異方性の大きさ、及び透磁
率とを用いて求めるように構成したものであるから、熱
延鋼板のみならずこれと集合組織の異なる冷延鋼板につ
いての結晶粒径をも大きな誤差を生じることなく非破壊
・非接触式にて求めることができる。As can be understood from the above description, according to the apparatus for measuring the grain size of a steel sheet according to the present invention, the crystal grain size of the steel sheet is measured by a non-destructive non-contact method. Since it is configured to be obtained by using the average value of the magnetic force equivalent value, the magnitude of magnetic anisotropy, and the magnetic permeability, crystals of not only the hot rolled steel sheet but also the cold rolled steel sheet having a different texture from this The particle size can also be determined by a non-destructive non-contact method without causing a large error.
【図1】この発明による鋼板の結晶粒径の測定装置の一
実施例の全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of an embodiment of an apparatus for measuring the grain size of a steel sheet according to the present invention.
【図2】この発明に係る磁気特性検出用センサを回転さ
せたときの、磁気異方性の大きさの度合いを表す検出コ
イルの出力の変化の様子の例を示す図である。FIG. 2 is a diagram showing an example of how the output of a detection coil indicates the degree of magnetic anisotropy when the magnetic characteristic detection sensor according to the present invention is rotated.
【図3】この発明に係るものであって、熱延鋼板及び冷
延鋼板の保磁力相当値の平均値と、実測結晶粒径の逆数
との関係を示す図である。FIG. 3 is a diagram relating to the present invention and showing the relationship between the average value of coercive force equivalent values of hot-rolled steel sheets and cold-rolled steel sheets and the reciprocal of the actually measured grain size.
【図4】鋼板の保磁力相当値の方向依存性を示す図であ
る。FIG. 4 is a diagram showing direction dependence of a coercive force equivalent value of a steel sheet.
【図5】従来の結晶粒径測定方法の実施に用いられる結
晶粒径測定装置の一実施例の全体構成を示す図である。FIG. 5 is a diagram showing an overall configuration of an example of a crystal grain size measuring apparatus used for carrying out a conventional crystal grain size measuring method.
【図6】図5に示す鋼板保磁力測定装置の構成説明図で
ある。FIG. 6 is a structural explanatory view of the steel plate coercive force measuring device shown in FIG.
【図7】図6に示す鋼板保磁力測定装置の動作を説明す
るためのタイミングチャート図である。7 is a timing chart for explaining the operation of the steel plate coercive force measuring device shown in FIG.
【図8】従来技術に係るものであって、熱延鋼板の保磁
力相当値の平均値と、実測結晶粒径の逆数との関係を示
す図である。FIG. 8 relates to a conventional technique and is a diagram showing a relationship between an average value of coercive force equivalent values of a hot-rolled steel sheet and a reciprocal of an actually measured crystal grain size.
【図9】従来技術に係るものであって、熱延鋼板及び冷
延鋼板の保磁力相当値の平均値と、実測結晶粒径の逆数
との関係を示す図である。FIG. 9 is a diagram relating to a conventional technique and showing a relationship between an average value of coercive force equivalent values of a hot-rolled steel sheet and a cold-rolled steel sheet and a reciprocal of an actually measured crystal grain size.
10…磁気特性検出用センサ 11A,11B…U字型コア
12A,12B…検出コイル 13a,13b…励磁コイル 14
…樹脂モールド 20…交流励磁電流発生器 21…励磁電
流検出器 30…センサ回転用パルスモータ 31…モータ
駆動制御器 40…保磁力平均値測定部 50…磁気異方性
測定部 60…透磁率測定装置 70…コンピュータ E1,
E1′…鋼板保磁力測定装置 100 , 100′…保磁力検出
用センサ 101 …コア 102 …検出コイル 103a,103b…励磁コイ
ル 200 , 200′…保磁力測定装置本体 300 …交流励
磁電流発生器 400 …励磁電流検出器 500 …信号処理
装置 600 …コンピュータ S…測定対象鋼板10 ... Magnetic characteristic detection sensor 11A, 11B ... U-shaped core
12A, 12B ... Detection coil 13a, 13b ... Excitation coil 14
… Resin mold 20… AC excitation current generator 21… Excitation current detector 30… Sensor rotation pulse motor 31… Motor drive controller 40… Coercive force average value measurement unit 50… Magnetic anisotropy measurement unit 60… Permeability measurement Device 70 ... Computer E1,
E1 '... Steel plate coercive force measuring device 100, 100' ... Coercive force detecting sensor 101 ... Core 102 ... Detection coil 103a, 103b ... Excitation coil 200, 200 '... Coercive force measuring device main body 300 ... AC exciting current generator 400 ... Excitation current detector 500 ... Signal processing device 600 ... Computer S ... Steel to be measured
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 岳夫 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 赤松 勝 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 森本 勉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Takeo Ogawa Inventor Takeo Ogawa 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Inside Kobe Research Institute of Kobe Steel, Ltd. (72) Masaru Akamatsu Takatsuka, Nishi-ku, Kobe-shi, Hyogo 1-5-5 Taiwan Kobe Works, Kobe Steel Co., Ltd. (72) Inventor Tsutomu Morimoto 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Works, Kobe Steel Co., Ltd.
Claims (1)
めの交流の励磁電流が流される励磁コイルと検出コイル
とが施された一方のU字型コアと、他の検出コイルのみ
が施された他方のU字型コアとを有し、これら二つのU
字型コアを、互いにコア中央部にて直交するように交差
させて、その四つの磁極が同一平面上における正方形の
各頂点に位置する状態にて測定対象鋼板に対して所定の
間隔を有して平行に回転可能なように、一体に固定して
なる磁気特性検出用センサと、 (b) 前記磁気特性検出用センサに交流の励磁電流が
流されたときに、前記励磁コイルが施された前記一方の
U字型コアの検出コイルに発生する誘起電圧が尖頭値を
とった時点の励磁電流値を、その測定対象鋼板の保磁力
に相当する値として検出し、交流の励磁電流が流された
前記磁気特性検出用センサを少なくとも半回転させる間
における前記保磁力相当値の平均値を求める保磁力相当
値の平均値測定手段と、 (c) 交流の励磁電流が流された前記磁気特性検出用
センサを少なくとも半回転させる間における、磁気特性
検出用センサの前記他方のU字型コアの検出コイルの出
力に基づいて、測定対象鋼板の磁気異方性の大きさを測
定する磁気異方性測定手段と、 (d) 測定対象鋼板の透磁率を非接触にて測定する透
磁率測定装置と、 (e) 3種類以上の鋼板の各々についての、実測によ
る結晶粒径、前記保磁力相当値の平均値測定手段による
保磁力相当値の平均値、前記磁気異方性測定手段による
磁気異方性の大きさ、及び前記透磁率測定装置による透
磁率とが与えられ、これらのデータを用いた多変量解析
により、結晶粒径の逆数を目的変数、保磁力相当値の平
均値、磁気異方性の大きさ、及び透磁率を説明変数とす
る回帰式における各説明変数の回帰係数を求めるデータ
処理手段と、 (f) 結晶粒径を間接測定すべき鋼板についての、前
記保磁力相当値の平均値測定手段による保磁力相当値の
平均値、前記磁気異方性測定手段による磁気異方性の大
きさ、及び前記透磁率測定装置による透磁率を、前記デ
ータ処理手段にて前記回帰係数が定められた前記回帰式
に代入することにより、その結晶粒径を求める計算手段
と、を備えたことを特徴とする鋼板の結晶粒径の測定装
置。(A) One U-shaped core provided with an excitation coil and a detection coil through which an alternating excitation current for passing a magnetic flux through a steel sheet to be measured is provided, and another detection coil is provided. And the other U-shaped core
The V-shaped cores are crossed so as to be orthogonal to each other in the central portion of the core, and the four magnetic poles are located at respective apexes of a square on the same plane and have a predetermined distance from the steel plate to be measured. A magnetic characteristic detecting sensor that is integrally fixed so that it can rotate in parallel with each other; and (b) the exciting coil is provided when an alternating exciting current is applied to the magnetic characteristic detecting sensor. The exciting current value at the time when the induced voltage generated in the detection coil of the one U-shaped core takes a peak value is detected as a value corresponding to the coercive force of the steel plate to be measured, and an alternating exciting current flows. An average value of coercive force equivalent values for obtaining an average value of the coercive force equivalent values during at least half rotation of the magnetic characteristic detecting sensor, and (c) the magnetic characteristic to which an alternating excitation current is applied. At least a detection sensor Magnetic anisotropy measuring means for measuring the magnitude of magnetic anisotropy of the steel sheet to be measured based on the output of the detection coil of the other U-shaped core of the magnetic characteristic detection sensor during half rotation. (D) A magnetic permeability measuring device for measuring the magnetic permeability of the steel sheet to be measured in a non-contact manner, and (e) an actual measurement of the crystal grain size and an average value of the coercive force equivalent values for each of three or more types of steel sheets. The average value of coercive force equivalent values by means, the magnitude of magnetic anisotropy by the magnetic anisotropy measuring means, and the magnetic permeability by the magnetic permeability measuring device are given, and by multivariate analysis using these data. , A data processing means for obtaining a regression coefficient of each explanatory variable in a regression equation in which the reciprocal of the crystal grain size is an objective variable, the average value of coercive force equivalent values, the magnitude of magnetic anisotropy, and magnetic permeability are explanatory variables. (F) Indirect measurement of crystal grain size For a steel plate, an average value of coercive force equivalent values by the average value measuring means of the coercive force equivalent value, a magnitude of magnetic anisotropy by the magnetic anisotropy measuring means, and a magnetic permeability by the magnetic permeability measuring device, A device for measuring a crystal grain size of a steel sheet, comprising: a calculation unit that obtains the crystal grain size by substituting the regression coefficient into the regression equation determined by the data processing unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5385793A JPH06265525A (en) | 1993-03-15 | 1993-03-15 | Apparatus for measuring particle size of crystal of steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5385793A JPH06265525A (en) | 1993-03-15 | 1993-03-15 | Apparatus for measuring particle size of crystal of steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06265525A true JPH06265525A (en) | 1994-09-22 |
Family
ID=12954450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5385793A Withdrawn JPH06265525A (en) | 1993-03-15 | 1993-03-15 | Apparatus for measuring particle size of crystal of steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06265525A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008058242A (en) * | 2006-09-01 | 2008-03-13 | Tdk Corp | Permeability measuring device and permeability measuring method using the same |
JP2009236896A (en) * | 2008-03-03 | 2009-10-15 | Nippon Steel Corp | Magnetic characteristic measuring device and magnetic characteristic measuring method |
JP2013185902A (en) * | 2012-03-07 | 2013-09-19 | Jfe Steel Corp | Method and device for measuring crystal orientation |
CN105182260A (en) * | 2015-07-01 | 2015-12-23 | 电子科技大学 | Permeability eddy current detection device and detection method and detection system based on same |
EP2320224A4 (en) * | 2008-08-27 | 2016-05-04 | Jfe Steel Corp | Magnetic measuring method and device |
JP2017198572A (en) * | 2016-04-28 | 2017-11-02 | 株式会社東芝 | Magnetic characteristic measurement probe, magnetic characteristic measurement system, magnetic characteristic measurement method and degradation evaluation method |
WO2020218192A1 (en) * | 2019-04-22 | 2020-10-29 | Jfeスチール株式会社 | Rolled steel sheet metal structure evaluation device, rolled steel sheet metal structure evaluation method, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method |
RU2784421C1 (en) * | 2019-04-22 | 2022-11-24 | ДжФЕ СТИЛ КОРПОРЕЙШН | Apparatus for assessing the structure of metal of rolled steel sheets, method for assessing the structure of metal of a rolled steel sheet, production equipment for manufacturing a steel article, method for manufacturing a steel article, and method for controlling the quality of a steel article |
-
1993
- 1993-03-15 JP JP5385793A patent/JPH06265525A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008058242A (en) * | 2006-09-01 | 2008-03-13 | Tdk Corp | Permeability measuring device and permeability measuring method using the same |
JP4631831B2 (en) * | 2006-09-01 | 2011-02-16 | Tdk株式会社 | Permeability measuring device and permeability measuring method using the same |
JP2009236896A (en) * | 2008-03-03 | 2009-10-15 | Nippon Steel Corp | Magnetic characteristic measuring device and magnetic characteristic measuring method |
EP2320224A4 (en) * | 2008-08-27 | 2016-05-04 | Jfe Steel Corp | Magnetic measuring method and device |
JP2013185902A (en) * | 2012-03-07 | 2013-09-19 | Jfe Steel Corp | Method and device for measuring crystal orientation |
CN105182260A (en) * | 2015-07-01 | 2015-12-23 | 电子科技大学 | Permeability eddy current detection device and detection method and detection system based on same |
JP2017198572A (en) * | 2016-04-28 | 2017-11-02 | 株式会社東芝 | Magnetic characteristic measurement probe, magnetic characteristic measurement system, magnetic characteristic measurement method and degradation evaluation method |
WO2020218192A1 (en) * | 2019-04-22 | 2020-10-29 | Jfeスチール株式会社 | Rolled steel sheet metal structure evaluation device, rolled steel sheet metal structure evaluation method, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method |
JPWO2020218192A1 (en) * | 2019-04-22 | 2021-05-06 | Jfeスチール株式会社 | Metal structure evaluation device for rolled steel sheet, metal structure evaluation method for rolled steel sheet, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method |
CN113711027A (en) * | 2019-04-22 | 2021-11-26 | 杰富意钢铁株式会社 | Device for evaluating microstructure of rolled steel sheet, method for evaluating microstructure of rolled steel sheet, steel product manufacturing facility, steel product manufacturing method, and steel product quality management method |
EP3943928A4 (en) * | 2019-04-22 | 2022-05-11 | JFE Steel Corporation | Rolled steel sheet metal structure evaluation device, rolled steel sheet metal structure evaluation method, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method |
RU2784421C1 (en) * | 2019-04-22 | 2022-11-24 | ДжФЕ СТИЛ КОРПОРЕЙШН | Apparatus for assessing the structure of metal of rolled steel sheets, method for assessing the structure of metal of a rolled steel sheet, production equipment for manufacturing a steel article, method for manufacturing a steel article, and method for controlling the quality of a steel article |
US11933762B2 (en) | 2019-04-22 | 2024-03-19 | Jfe Steel Corporation | Metal structure evaluator for rolled steel sheets, method for evaluating metal structure of rolled steel sheet, production facility of steel product, method for manufacturing steel product, and method of quality management of steel product |
CN113711027B (en) * | 2019-04-22 | 2024-09-10 | 杰富意钢铁株式会社 | Apparatus for evaluating microstructure of rolled steel sheet, method for evaluating microstructure of rolled steel sheet, apparatus for producing steel material, method for producing steel material, and method for managing quality of steel material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7696747B2 (en) | Electromagnetic induction type inspection device and method | |
EP3203224B1 (en) | System and method for monitoring a microstructure of a metal target | |
JP5892341B2 (en) | Hardening depth measuring method and quenching depth measuring device | |
Ge et al. | Analysis of signals for inclined crack detection through alternating current field measurement with a U-shaped probe | |
US4079312A (en) | Continuous testing method and apparatus for determining the magnetic characteristics of a strip of moving material, including flux inducing and pick-up device therefor | |
JPH06265525A (en) | Apparatus for measuring particle size of crystal of steel plate | |
US8316726B2 (en) | Biaxial stress management | |
JPH07128295A (en) | Method for measuring crystal grain size of steel plate | |
JPH06213872A (en) | Method for measuring crystal grain diameter of steel plate | |
JPH04221757A (en) | Defect detecting device | |
JPS59188508A (en) | On-line detector for amount of transformation and flatness of steel material | |
Buttle et al. | Determination of residual stresses by magnetic methods. | |
JPH05142204A (en) | Electromagnetic-induction type inspecting apparatus | |
JPH01297546A (en) | Method of diagnosing deterioration of conductive material | |
JPH01269049A (en) | Method of inspecting deterioration of metallic material | |
JP4603216B2 (en) | Fatigue damage degree diagnosis method and fatigue damage degree diagnosis system for steel materials constituting steel structure | |
JPS59112257A (en) | Method and device for nondestructive inspection of ferromagnetic material | |
JP3863801B2 (en) | Method and system for measuring voltage pulse width of Barkhausen noise | |
JP2011252787A (en) | Hardening quality inspection device | |
JP2003014697A (en) | Ferromagnetic material diagnostic method and system for measuring voltage pulse width of Barkhausen noise | |
JPS62174651A (en) | Method and device for deciding hardness of magnetic body | |
Moudache et al. | Fast and direct assessing defect dimensions in conductive materials using a double GMR-based eddy current sensor | |
JPH05264704A (en) | Method and apparatus for measuring coercive force of steel plate | |
Ren et al. | Experimental study of alternating current stress measurement under a uniaxial stress | |
JPH06308092A (en) | Material deterioration inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000530 |