[go: up one dir, main page]

JPH0626476A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH0626476A
JPH0626476A JP18364892A JP18364892A JPH0626476A JP H0626476 A JPH0626476 A JP H0626476A JP 18364892 A JP18364892 A JP 18364892A JP 18364892 A JP18364892 A JP 18364892A JP H0626476 A JPH0626476 A JP H0626476A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
scroll compressor
electronic expansion
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18364892A
Other languages
Japanese (ja)
Inventor
Shusaku Kuroda
修作 黒田
Masayoshi Hara
正良 原
Atsushi Osada
淳 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18364892A priority Critical patent/JPH0626476A/en
Publication of JPH0626476A publication Critical patent/JPH0626476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To obtain a refrigerating device which supplies a proper amount of cooling medium to a cooling medium injection port of a. fixed scroll even when an operation condition is changed, by using an electronic expansion valve as a flow rate variable means. CONSTITUTION:A scroll compressor 40, a condenser 41, an expansion valve 43, and a cooler 44 are connected to a device. An electronic expansion valve 45, a temperature sensor 46, and a controlling part 47 are provided as flow rate variable means in case that a part of cooling medium liquid is supplied from an outlet of a condenser liquid line to a cooling medium injection port 32 of a fixed scroll 1 of the scroll compressor 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷凍装置に使用さ
れ、冷媒を圧縮するスクロール圧縮機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scroll compressor used in a refrigeration system and for compressing a refrigerant.

【0002】[0002]

【従来の技術】図4は、特開平2−211395号公報
に示された従来のスクロール圧縮機の縦断面図である。
図4において、1は台板部2の下面に渦巻突起3が設け
られてなる固定スクロールで、中心部に吐出口4があけ
られている。5は台板部6の上面に渦巻突起7が設けら
れ、渦巻突起3に組み合わされた揺動スクロールで、中
心部の下部に揺動軸部8が設けられている。9は双方の
スクロール1,2間の外周に形成される吸入口、10は
双方の渦巻突起3、7により形成された圧縮室、11は
主軸で、上端の大径部12内に偏心穴13が設けられ、
揺動軸受14を介し揺動スクロール5を揺動運動させ
る。主軸11には偏心給油孔15が貫通して設けられて
いる。16は主軸11が回転すると、揺動スクロール5
が自転しない公転運動をするように規制するオルダム継
手、17は前記圧縮機構部と駆動機構部を収容する密閉
容器で、下部容器18と上部容器19とからなる。
2. Description of the Related Art FIG. 4 is a longitudinal sectional view of a conventional scroll compressor disclosed in Japanese Patent Laid-Open No. 2-212395.
In FIG. 4, reference numeral 1 denotes a fixed scroll in which a spiral protrusion 3 is provided on the lower surface of a base plate portion 2, and a discharge port 4 is opened in the center portion. Reference numeral 5 denotes a scroll protrusion 7 provided on the upper surface of the base plate portion 6, and an orbiting scroll combined with the spiral protrusion 3, and an oscillation shaft portion 8 is provided below the center portion. 9 is a suction port formed on the outer circumference between the scrolls 1 and 2, 10 is a compression chamber formed by the spiral protrusions 3 and 7, 11 is a main shaft, and an eccentric hole 13 is formed in a large diameter portion 12 at the upper end. Is provided,
The oscillating scroll 5 is oscillated through the oscillating bearing 14. An eccentric oil supply hole 15 is provided through the main shaft 11. When the main shaft 11 rotates, 16 is an orbiting scroll 5
Is an Oldham's joint that regulates so as to make a revolving motion that does not rotate, and 17 is a closed container that houses the compression mechanism part and the drive mechanism part, and is composed of a lower container 18 and an upper container 19.

【0003】前記従来のスクロール圧縮機において、軸
11が回転すると、揺動スクロール5はオルダム継手1
6を介し自転は阻止され公転する。これにより、吸入ガ
スを、吸入3を経て圧縮室10に取込み、次第に圧縮し
て吐出口4から吐出する。また、図4において、20は
固定スクロール1の台板部2に設けられた流体バイパス
孔(以下「バイパス孔」と称する)、21はこのバイパ
ス孔20の外側に同心に設けられた環状スリット、22
はバイパス孔20の周囲上端面に設けられた弁座で、上
方に弁座空間23が形成されている。24は台板部2に
設けられた排出孔で、環状スリット21から台板部2外
に通じる。25は円形板状のバイパス弁、26は台板部
2上に取付けられ弁座空間23をふさぐ弁座栓で、中央
に連通孔27があけられている。28はスリット21に
入れられたコイルばねで、弁座空間23が低圧になる
と、バイパス弁25を押上げ弁座栓26に密着させる。
29は三方電磁弁(図示しない)などの切換えによって
吸入圧、吐出圧を導く圧力配管で、下端が弁座栓26に
固着され連通孔27に連通しており、上部容器19の配
管孔30に通され、ろう付けなどにより固着されてい
る。
In the above conventional scroll compressor, when the shaft 11 rotates, the orbiting scroll 5 becomes the Oldham coupling 1.
Rotation is blocked through 6 and revolves. As a result, the suction gas is taken into the compression chamber 10 via the suction 3, is gradually compressed, and is discharged from the discharge port 4. Further, in FIG. 4, 20 is a fluid bypass hole (hereinafter referred to as “bypass hole”) provided in the base plate portion 2 of the fixed scroll 1, 21 is an annular slit provided concentrically outside the bypass hole 20, 22
Is a valve seat provided on the upper end surface around the bypass hole 20, and a valve seat space 23 is formed above. Reference numeral 24 is a discharge hole provided in the base plate portion 2 and communicates with the outside of the base plate portion 2 from the annular slit 21. Reference numeral 25 is a circular plate-shaped bypass valve, 26 is a valve seat plug that is mounted on the base plate portion 2 and covers the valve seat space 23, and has a communication hole 27 in the center. Reference numeral 28 denotes a coil spring inserted in the slit 21, which brings the bypass valve 25 into close contact with the push-up valve seat plug 26 when the valve seat space 23 becomes low in pressure.
Reference numeral 29 is a pressure pipe that guides suction pressure and discharge pressure by switching a three-way solenoid valve (not shown) or the like. It is passed through and fixed by brazing.

【0004】スクロール圧縮機では、固定スクロール1
と揺動スクロール5の双方の渦巻突起2、3が組合わさ
って対称な一対の圧縮室10が同時に複数形成されるの
で、バイパス孔20、排出孔24、バイパス弁25、圧
力配管29は少なくとも一対の圧縮室10に対応して対
称な位置に一対設けている。圧縮機を容量制御しないで
最大能力で運転する場合は、三方電磁弁(図示しない)
などの切換えにより圧力配管29の外端に吐出圧を導入
する。これにより、弁座空間23の圧力が吐出圧とな
り、この圧力によりバイパス弁25が押下げられ、弁坐
22を閉じ、バイパス孔20をふさぐ。こうして、圧縮
室10による圧力流体は、吐出口4から吐出管31を通
り圧送される。
In the scroll compressor, the fixed scroll 1
Since the spiral protrusions 2 and 3 of both the oscillating scroll 5 and the orbiting scroll 5 are combined to form a plurality of symmetrical compression chambers 10 at the same time, at least one pair of the bypass hole 20, the discharge hole 24, the bypass valve 25, and the pressure pipe 29 is provided. The pair of compression chambers 10 are provided at symmetrical positions. A three-way solenoid valve (not shown) when operating the compressor at maximum capacity without capacity control
The discharge pressure is introduced to the outer end of the pressure pipe 29 by switching the above. As a result, the pressure in the valve seat space 23 becomes the discharge pressure, and this pressure pushes down the bypass valve 25, closing the valve seat 22 and closing the bypass hole 20. Thus, the pressure fluid from the compression chamber 10 is pressure-fed from the discharge port 4 through the discharge pipe 31.

【0005】また、圧縮機を容量制御する場合、三方電
磁弁(図示しない)などの切換えにより圧力配管29の
外端に吸入圧を導入する。これにより、弁座空間23の
圧力が吸入圧となる。バイパス孔20は圧縮室10の圧
縮過程の途中に設けられているので、バイパス孔20の
ある圧縮室10の圧力は吸入圧力よりも高くなってい
る。この圧縮室10の圧力とコイルばね28のばね圧と
によりバイパス弁25が押上げられ弁座栓26に密着し
て受けられ、バイパス孔20が排出孔24に連通し、圧
縮室10内の流体の一部が固定スクロール1の外側へ排
出され、圧縮室10内の圧縮容量が制御される。32は
固定スクロール1の台板部2に設けられた冷媒噴射孔
(以下「噴射孔」と称する)で、バイパス孔20が開口
している圧縮室33より内側の隣りの圧縮室34に位置
している。35は冷媒噴射用配管で、台板部2に取付け
られたフランジ36に固着され、連通孔37、噴射孔3
2に連通しており、上部容器19の配管孔38に通さ
れ、ろう付けなどで固着されている。噴射用配管35は
凝縮機出口の液ラインから適当な絞り39を通して接続
されており、液冷媒を圧縮室34に供給する。なお、図
3において、40は上記構成のスクロール圧縮機、41
は凝縮器、42はその液ライン、43は膨張弁、44は
冷却器である。
When the capacity of the compressor is controlled, suction pressure is introduced into the outer end of the pressure pipe 29 by switching a three-way solenoid valve (not shown) or the like. As a result, the pressure in the valve seat space 23 becomes the suction pressure. Since the bypass hole 20 is provided in the middle of the compression process of the compression chamber 10, the pressure of the compression chamber 10 having the bypass hole 20 is higher than the suction pressure. By the pressure of the compression chamber 10 and the spring pressure of the coil spring 28, the bypass valve 25 is pushed up and closely received by the valve seat plug 26, the bypass hole 20 communicates with the discharge hole 24, and the fluid in the compression chamber 10 is communicated. Is discharged to the outside of the fixed scroll 1, and the compression capacity in the compression chamber 10 is controlled. Reference numeral 32 is a refrigerant injection hole (hereinafter referred to as “injection hole”) provided in the base plate portion 2 of the fixed scroll 1, and is located in the adjacent compression chamber 34 inside the compression chamber 33 in which the bypass hole 20 is opened. ing. Reference numeral 35 denotes a refrigerant injection pipe, which is fixed to a flange 36 attached to the base plate portion 2, and has a communication hole 37 and an injection hole 3
2 is communicated with the upper container 19 and is passed through the pipe hole 38 of the upper container 19 and fixed by brazing or the like. The injection pipe 35 is connected from the liquid line at the outlet of the condenser through a suitable throttle 39 to supply the liquid refrigerant to the compression chamber 34. In FIG. 3, reference numeral 40 denotes a scroll compressor having the above-mentioned configuration, 41
Is a condenser, 42 is its liquid line, 43 is an expansion valve, and 44 is a cooler.

【0006】図4に示すように、圧縮室10のうち、流
体バイパス孔20が開口している対称な一対の圧縮室3
3から内側の対称な一対の圧縮室34に、それぞれ噴射
孔32が開口している。バイパス孔20に対し、噴射孔
32は渦巻突起1aの1巻内側に位置している。したが
って、噴射孔32とバイパス孔20とは連通することが
なく、噴射孔32から供給された液冷媒は、圧縮途中に
バイパス孔20から低圧空間へ漏れることなく、蒸発し
ながら圧縮され、熱を奪って吐出口4から排出される。
これにより、容量制御を行っているときでも高圧縮運転
ができる。また、圧縮室34に供給された液冷媒は、バ
イパス孔20側から漏れることがない。
As shown in FIG. 4, of the compression chambers 10, a pair of symmetrical compression chambers 3 having fluid bypass holes 20 open therein.
The injection holes 32 are opened in a pair of symmetrical compression chambers 34 that are inward from 3 respectively. The injection hole 32 is located inside the spiral projection 1a by one turn with respect to the bypass hole 20. Therefore, the injection hole 32 and the bypass hole 20 do not communicate with each other, and the liquid refrigerant supplied from the injection hole 32 is compressed while evaporating without leaking from the bypass hole 20 to the low pressure space during the compression, and heat is removed. It is taken and discharged from the discharge port 4.
As a result, high compression operation can be performed even when capacity control is being performed. Further, the liquid refrigerant supplied to the compression chamber 34 does not leak from the bypass hole 20 side.

【0007】[0007]

【発明が解決しようとする課題】従来の冷凍装置では、
凝縮器出口の液ラインからの冷媒液の一部を冷媒噴射配
管を通してスクロール圧縮機の冷媒噴射孔へ供給する場
合の流量可変手段として、毛細管を使用した場合流動抵
抗はほぼ一定となり、流量制御範囲は狭い、また温度式
膨張弁では弁の開度に限界があるため、流量制御範囲は
狭い。そのため、低い蒸発温度域では冷媒噴射孔経供給
する冷媒流量が適正となっても、高い蒸発温度域では冷
媒流量が増加してしまい吐出ガス温度が低下し入力の増
加をまねいていた。
In the conventional refrigeration system,
When a capillary is used as the flow rate varying means when a part of the refrigerant liquid from the liquid line at the condenser outlet is supplied to the refrigerant injection hole of the scroll compressor through the refrigerant injection pipe, the flow resistance becomes almost constant and the flow control range Is narrow, and since the opening of the valve is limited in the thermal expansion valve, the flow control range is narrow. Therefore, even if the flow rate of the refrigerant supplied through the refrigerant injection holes is appropriate in the low evaporation temperature range, the refrigerant flow rate increases in the high evaporation temperature range, the discharge gas temperature decreases, and the input increases.

【0008】また、毛細管を二本並列に接続することに
より、冷媒噴射孔へ供給する冷媒流量が適正となり、蒸
発温度の上限、下限で吐出ガス温度が適正と設定するこ
とができるが、蒸発温度が下降し圧縮比が増加した場
合、必要な供給冷媒量が増加するため、毛細管の使用本
数を電磁弁のON,OFFにより、切り換えて供給冷媒
流量を増加させるが、毛細管の特性から流量抵抗はほぼ
一定となるため、切換え時には供給冷媒流量が増えすぎ
て吐出温度の低下、入力が増加してしまうという問題点
があった。切換え蒸発器温度付近の運転では、使用する
毛細管を頻繁に切り換えるため、乱調が起こり不安定な
運転となったり、電磁弁の信頼性が低下する問題点があ
った。さらに、毛細管本数を増やすと入力の増加幅は小
さくなるが、部品点数が増える問題点がある。
Further, by connecting two capillary tubes in parallel, the flow rate of the refrigerant supplied to the refrigerant injection holes becomes appropriate, and the discharge gas temperature can be set to be appropriate at the upper and lower limits of the evaporation temperature. Since the required supply amount of the refrigerant increases when the pressure decreases and the compression ratio increases, the supply refrigerant flow rate is increased by switching the number of used capillary tubes by turning on and off the solenoid valve. Since it becomes almost constant, there is a problem that the flow rate of the supplied refrigerant is excessively increased at the time of switching, the discharge temperature is lowered, and the input is increased. In the operation near the switching evaporator temperature, the capillaries to be used are frequently switched, so that there are problems that disorder occurs and unstable operation occurs, and the reliability of the solenoid valve decreases. Further, when the number of capillaries is increased, the increment of input is reduced, but there is a problem that the number of parts is increased.

【0009】本発明は、流量可変手段として電子式膨張
弁を使用することにより、吐出ガス温が上昇せず適正に
保たれるように制御し、信頼性が向上し、また適正な供
給冷媒量が得られる冷凍装置を得ることを目的とする。
According to the present invention, by using the electronic expansion valve as the flow rate varying means, the discharge gas temperature is controlled so that it does not rise and is properly maintained, the reliability is improved, and the proper supply refrigerant amount is provided. An object of the present invention is to obtain a refrigerating apparatus that can obtain

【0010】[0010]

【課題を解決するための手段】この発明の冷凍装置は、
スクロール圧縮機、凝縮器、膨張弁、及び冷却器が接続
されるとともに、前記凝縮器出口の液ラインからの冷媒
液の一部を、前記スクロール圧縮機の固定スクロールの
台板部に設けられた中心部に対し対称に配された複数の
冷媒噴射孔に、供給する電子式膨張弁を有する冷媒噴射
配管とが接続された冷凍サイクルと、前記スクロール圧
縮機の吐出冷媒ガス温度を検出する温度センサと、前記
温度センサにより検出されるスクロール圧縮機の吐出冷
媒ガス温度の変化に応じて前記冷媒噴射配管の電子式膨
張弁の弁開度を制御する制御部とを備えるという手段を
講じた。
The refrigeration system of the present invention comprises:
A scroll compressor, a condenser, an expansion valve, and a cooler were connected, and part of the refrigerant liquid from the liquid line at the condenser outlet was provided on the base plate part of the fixed scroll of the scroll compressor. A refrigeration cycle in which a refrigerant injection pipe having an electronic expansion valve for supply is connected to a plurality of refrigerant injection holes symmetrically arranged with respect to the center, and a temperature sensor for detecting the refrigerant gas temperature discharged from the scroll compressor. And a control unit that controls the valve opening degree of the electronic expansion valve of the refrigerant injection pipe according to the change in the refrigerant temperature of the refrigerant discharged from the scroll compressor detected by the temperature sensor.

【0011】[0011]

【作用】上記手段を講じた本発明の冷凍装置によれば、
凝縮器出口の液ラインから冷媒液の一部をスクロール圧
縮機の固定スクロールの冷媒噴射孔に供給する場合の流
量可変手段として電子式膨張弁と吐出ガス温度を検出す
る温度センサと電子式膨張弁の弁開度を増減する制御部
を備え、吐出冷媒ガス温を一定に保つことにより、適正
な冷媒流量が固定スクロールの冷媒噴射孔に供給される
ので、吐出ガス温が下がりすぎることによる入力の増加
が防止される。
According to the refrigerating apparatus of the present invention having the above means,
An electronic expansion valve as a flow rate varying means for supplying a part of the refrigerant liquid from the condenser outlet liquid line to the refrigerant injection hole of the fixed scroll of the scroll compressor, a temperature sensor for detecting the discharge gas temperature, and an electronic expansion valve A control unit for increasing / decreasing the valve opening degree of is provided, and by keeping the discharge refrigerant gas temperature constant, an appropriate refrigerant flow rate is supplied to the refrigerant injection hole of the fixed scroll, so that the input gas due to the discharge gas temperature dropping too much The increase is prevented.

【0012】[0012]

【実施例】【Example】

実施例1.以下に、この発明の一実施例を図1に基づい
て説明する。図1は本実施例に係る冷凍装置の構成図で
ある。
Example 1. An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a configuration diagram of a refrigerating apparatus according to this embodiment.

【0013】図1で、43は膨張弁、44は冷却器。凝
縮器41出口の液ライン42からの冷媒液の一部は冷媒
噴射配管35を通り、電子式膨張弁45によって絞ら
れ、スクロール圧縮機40の固定スクロール1の台板部
2に設けられた冷媒噴射孔32に供給される。電子式膨
張弁45の弁の開度は、吐出冷媒ガス温度を検出する温
度センサ46からの信号を制御部47により増減し、電
子式膨張弁45に内蔵の、例えばステッピングモータ、
パルスモータなどの駆動手段で弁の開度を増減する。
In FIG. 1, 43 is an expansion valve and 44 is a cooler. Part of the refrigerant liquid from the liquid line 42 at the outlet of the condenser 41 passes through the refrigerant injection pipe 35, is throttled by the electronic expansion valve 45, and is provided on the base plate portion 2 of the fixed scroll 1 of the scroll compressor 40. It is supplied to the injection hole 32. For the opening degree of the electronic expansion valve 45, a signal from a temperature sensor 46 for detecting the discharge refrigerant gas temperature is increased / decreased by the control unit 47, and the electronic expansion valve 45 has a built-in stepping motor, for example,
The opening degree of the valve is increased or decreased by a driving means such as a pulse motor.

【0014】電気式膨張弁45では、電気信号で弁を開
閉するとともに、熱容量の小さい温度センサ46を用い
ることによって、吐出冷媒ガス温を検出すれば応答性は
良くなる。また、さらに温度センサ46の熱容量による
応答遅れを補償して電子式膨張弁45を駆動すると、さ
らに良好な応答特性が得られる。
In the electric expansion valve 45, the responsiveness is improved by detecting the discharged refrigerant gas temperature by opening and closing the valve with an electric signal and using the temperature sensor 46 having a small heat capacity. Further, when the electronic expansion valve 45 is driven by compensating for the response delay due to the heat capacity of the temperature sensor 46, a better response characteristic can be obtained.

【0015】制御部47では、温度センサ46により検
出した吐出冷媒ガス温度の変化と、目標冷媒ガス温度
(以下目標温度と称す)との間に、偏差が生ずるが、こ
の偏差は不平衡信号として現れ、制御部47で増幅さ
れ、その出力信号が電子式膨張弁に与えられ、電子式膨
張弁の弁の開度が目標値に近づくように変化し、偏差が
無くなるまで弁の開度を変化させる。
In the control unit 47, a deviation occurs between the change in the discharge refrigerant gas temperature detected by the temperature sensor 46 and the target refrigerant gas temperature (hereinafter referred to as the target temperature). This deviation is an unbalanced signal. Appearing, amplified by the control unit 47, the output signal is given to the electronic expansion valve, the valve opening of the electronic expansion valve changes so as to approach the target value, and the valve opening changes until the deviation disappears. Let

【0016】すなわち、吐出冷媒ガスの変化に電子式膨
張弁45の弁の開度が直ちに追従するのである。また膨
張弁開度は、吐出冷媒ガス温度をパラメータとして増減
されるので、弁開度の誤差や、冷媒噴射配管35の入口
の冷媒状態や、サブクール温に影響されにくい。
That is, the opening degree of the electronic expansion valve 45 immediately follows the change of the discharged refrigerant gas. Further, since the expansion valve opening degree is increased or decreased using the discharged refrigerant gas temperature as a parameter, it is unlikely to be affected by the valve opening error, the refrigerant state at the inlet of the refrigerant injection pipe 35, or the subcool temperature.

【0017】実施例2.なお、前記固定スクロール1の
台板部2に設けられたバイパス孔20が開口している圧
縮室より、少なくとも一つ内側の圧縮室に冷媒噴射孔3
2を設け、バイパス孔20は吸入口9と連通しない位置
に、冷媒噴射孔32はバイパス孔20と連通しない位置
に設けてもよい。この場合には、冷媒噴射孔32は高圧
側へ移動することになるが、過負荷時に吐出温度が上昇
しても吐出温度の上昇に追従するよう電子式膨張弁45
の弁開度を増すので、冷媒噴射孔32には適正な流量が
得られ、吐出ガス温度は一定に保たれる。
Example 2. In addition, the refrigerant injection hole 3 is provided in at least one compression chamber inside the compression chamber in which the bypass hole 20 provided in the base plate portion 2 of the fixed scroll 1 is opened.
2, the bypass hole 20 may be provided at a position not communicating with the suction port 9, and the refrigerant injection hole 32 may be provided at a position not communicating with the bypass hole 20. In this case, the refrigerant injection hole 32 moves to the high pressure side. However, even if the discharge temperature rises during overload, the electronic expansion valve 45 should follow the rise in the discharge temperature.
Since the valve opening degree of is increased, a proper flow rate is obtained in the refrigerant injection hole 32, and the discharge gas temperature is kept constant.

【0018】実施例3.また、図2に示したように、電
子式膨張弁45と並列にバイパス用毛細管48を設ける
と、吐出ガス温度が下がり、電子式膨張弁45が全閉と
なってもバイパス用毛細管48から冷媒噴射孔32へ冷
媒が供給されるので、吐出ガス温度は適正に保たれる。
Example 3. Further, as shown in FIG. 2, when the bypass capillary tube 48 is provided in parallel with the electronic expansion valve 45, the discharge gas temperature decreases, and even if the electronic expansion valve 45 is fully closed, the refrigerant from the bypass capillary tube 48 is discharged. Since the refrigerant is supplied to the injection holes 32, the discharge gas temperature is kept proper.

【0019】[0019]

【発明の効果】本発明の冷凍装置によれば、冷媒液の一
部を冷媒噴射孔に供給する場合の流量可変手段として電
子式膨張弁、温度センサ、及び制御部を備え、吐出ガス
温を一定に保つようにしたので、適正な冷媒流量が固定
スクロールの冷媒噴射孔に供給されるため、入力が低い
とともに、性能が良く、運転範囲の広い冷凍装置を得る
ことができる。
According to the refrigerating apparatus of the present invention, an electronic expansion valve, a temperature sensor, and a control unit are provided as flow rate varying means when a part of the refrigerant liquid is supplied to the refrigerant injection hole, and the discharge gas temperature is controlled. Since it is kept constant, an appropriate refrigerant flow rate is supplied to the refrigerant injection holes of the fixed scroll, so that it is possible to obtain a refrigeration system having a low input, good performance, and a wide operating range.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1.実施例2による冷凍装置
を示す構成図である。
FIG. 1 is a first embodiment of the present invention. FIG. 6 is a configuration diagram showing a refrigeration apparatus according to a second embodiment.

【図2】この発明の実施例3による冷凍装置を示す構成
図である。
FIG. 2 is a configuration diagram showing a refrigerating apparatus according to Embodiment 3 of the present invention.

【図3】従来の冷凍装置を示す構成図である。FIG. 3 is a configuration diagram showing a conventional refrigeration system.

【図4】スクロール圧縮機の縦断面図である。FIG. 4 is a vertical sectional view of a scroll compressor.

【符号の説明】[Explanation of symbols]

1 固定スクロール 10 圧縮室 20 流体バイパス孔 24 排出孔 25 バイパス弁 32 冷媒噴射孔 35 冷媒噴射用配管 40 スクロール圧縮機 41 凝縮器 42 液ライン 43 膨張弁 44 冷却器 45 電子式膨張弁 46 温度センサ 47 制御部 48 バイパス用毛細管 DESCRIPTION OF SYMBOLS 1 Fixed scroll 10 Compression chamber 20 Fluid bypass hole 24 Discharge hole 25 Bypass valve 32 Refrigerant injection hole 35 Refrigerant injection pipe 40 Scroll compressor 41 Condenser 42 Liquid line 43 Expansion valve 44 Cooler 45 Electronic expansion valve 46 Temperature sensor 47 Control unit 48 Bypass capillary tube

フロントページの続き (72)発明者 長田 淳 和歌山市手平6丁目5番66号 三菱電機エ ンジニアリング株式会社伊丹事業所和歌山 支所内Continued Front Page (72) Inventor Jun Nagata 6-5-66 Tehira, Wakayama City Mitsubishi Electric Engineering Co., Ltd. Itami Works Wakayama Branch Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スクロール圧縮機、凝縮器、膨張弁、及
び冷却器が接続されるとともに、前記凝縮器出口の液ラ
インからの冷媒液の一部を、前記スクロール圧縮機の固
定スクロールの台板部に設けられた中心部に対し対称に
配された複数の冷媒噴射孔に、供給する電子式膨張弁を
有する冷媒噴射配管とが接続された冷凍サイクルと、前
記スクロール圧縮機の吐出冷媒ガス温度を検出する温度
センサと、前記温度センサにより検出されるスクロール
圧縮機の吐出冷媒ガス温度の変化に応じて前記冷媒噴射
配管の電子式膨張弁の弁開度を制御する制御部とを備え
たことを特徴とする冷凍装置。
1. A scroll compressor, a condenser, an expansion valve, and a cooler are connected, and a part of a refrigerant liquid from a liquid line at the outlet of the condenser is used as a base plate of a fixed scroll of the scroll compressor. To a plurality of refrigerant injection holes symmetrically arranged with respect to the central portion provided in the section, a refrigeration cycle in which a refrigerant injection pipe having an electronic expansion valve for supply is connected, and a refrigerant gas temperature discharged from the scroll compressor. And a control unit for controlling the valve opening degree of the electronic expansion valve of the refrigerant injection pipe according to the change in the refrigerant gas temperature discharged from the scroll compressor detected by the temperature sensor. Refrigerating device characterized by.
JP18364892A 1992-07-10 1992-07-10 Refrigerating device Pending JPH0626476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18364892A JPH0626476A (en) 1992-07-10 1992-07-10 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18364892A JPH0626476A (en) 1992-07-10 1992-07-10 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH0626476A true JPH0626476A (en) 1994-02-01

Family

ID=16139479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18364892A Pending JPH0626476A (en) 1992-07-10 1992-07-10 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH0626476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6948336B2 (en) 1994-09-20 2005-09-27 Hitachi, Ltd. Refrigerating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6948336B2 (en) 1994-09-20 2005-09-27 Hitachi, Ltd. Refrigerating apparatus
US7246498B2 (en) 1994-09-20 2007-07-24 Hitachi, Ltd. Refrigerating apparatus

Similar Documents

Publication Publication Date Title
KR100637011B1 (en) A scroll-type compressor
EP0579374B1 (en) Scroll compressor with liquid injection
JP2631649B2 (en) Scroll compressor
US4673340A (en) Variable capacity scroll type fluid compressor
EP1158167B1 (en) Air conditioner with scroll compressor
US4468178A (en) Scroll type compressor with displacement adjusting mechanism
US4642034A (en) Scroll type compressor with displacement adjusting mechanism
KR100557056B1 (en) Capacity adjustable scroll compressor
US4904164A (en) Scroll type compressor with variable displacement mechanism
US6276149B2 (en) Air conditioner
US5469716A (en) Scroll compressor with liquid injection
JPH02118362A (en) Capacity control air conditioner
JPH10213083A (en) Scroll compressor and operating method thereof
US4344297A (en) Refrigeration system
US5140828A (en) Refrigeration cycle apparatus
KR20050012633A (en) Scroll compressor with volume regulating capability
US4702088A (en) Compressor for reversible refrigeration cycle
JP3125824B2 (en) Scroll compressor with overheat prevention device
JP2012172581A (en) Scroll compressor and heat pump device
JPH0626476A (en) Refrigerating device
JP2622960B2 (en) Liquid refrigerant injection device for scroll compressor
EP0468238B1 (en) Scroll type compressor with variable displacement mechanism
AU2003252946B2 (en) Compressor pulse width modulation
JPH0765577B2 (en) Scroll compressor
JP2696791B2 (en) Scroll compressor