JPH0626362A - Co2 gas turbine cycle - Google Patents
Co2 gas turbine cycleInfo
- Publication number
- JPH0626362A JPH0626362A JP20608092A JP20608092A JPH0626362A JP H0626362 A JPH0626362 A JP H0626362A JP 20608092 A JP20608092 A JP 20608092A JP 20608092 A JP20608092 A JP 20608092A JP H0626362 A JPH0626362 A JP H0626362A
- Authority
- JP
- Japan
- Prior art keywords
- gas turbine
- compressor
- exhaust gas
- combustor
- turbine cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、CO2ガスタービンサ
イクル、更に詳細には、CO2ガスタービンサイクルの
系統から燃焼によって増加した余剰CO2を除去するシ
ステムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CO 2 gas turbine cycle, and more particularly to a system for removing surplus CO 2 increased by combustion from a CO 2 gas turbine cycle system.
【0002】[0002]
【従来の技術】従来のCO2ガスタービンサイクルとし
て、本出願人が特願平3−68070号として提案した
ものがあり、図3を参照してその概要を説明する。 2. Description of the Related Art As a conventional CO 2 gas turbine cycle, there is one proposed by the present applicant as Japanese Patent Application No. 3-68070, and its outline will be described with reference to FIG.
【0003】図3において、O2製造装置1で空気中の
N2が分離されたO2は、O2圧縮機2で加圧され、燃焼
器3へ供給されて、燃料を燃焼させる。セミクローズド
サイクルを形成するガスタービンは圧縮機4、ガスター
ビン5で構成され、CO2が循環する。すなわち、圧縮
機4で圧縮されたCO2は燃焼器3で加熱されて高温と
なり、ガスタービン5で膨脹する。ガスタービン5は、
圧縮機4と共に発電機6を駆動する。ガスタービン5を
出た排ガスは、それから、排熱回収ボイラ7で蒸気を発
生させ、前置冷却器として作用する排ガス凝縮器8で水
分が除去され、温度が下がったCO2は再び圧縮機4に
流入して、循環サイクルを営む。[0003] In FIG. 3, O 2 where N 2 is separated in the air by O 2 production apparatus 1 is pressurized in O 2 compressor 2 is supplied to the combustor 3, fuel is burned. A gas turbine forming a semi-closed cycle is composed of a compressor 4 and a gas turbine 5, and CO 2 circulates. That is, the CO 2 compressed by the compressor 4 is heated by the combustor 3 to reach a high temperature and expanded by the gas turbine 5. The gas turbine 5
The generator 6 is driven together with the compressor 4. The exhaust gas discharged from the gas turbine 5 is then steam-generated in the exhaust heat recovery boiler 7, moisture is removed in the exhaust gas condenser 8 acting as a precooler, and CO 2 whose temperature has dropped is again compressed by the compressor 4 Run into the circulation cycle.
【0004】そして、燃料の燃焼によって発生したCO
2は循環ガス量を増加させるため、液化分離装置9で余
剰分のCO2が外部へ抽出される。すなわち、圧縮機4
の出口からバイパスされたCO2は、液化分離装置9へ
導かれる。圧縮機4の出口でのCO2圧力は14ata
程度であり、この圧力での飽和温度は約−40℃であ
る。一方、大気圧下での飽和温度は−78.5℃で、こ
の温度はドライアイスの昇華温度に相当する。したがっ
て、加圧状態での気液分離は、気固分離方式に比べて容
易で、分離装置の動力費を節減することができる。CO generated by combustion of fuel
Since 2 increases the amount of circulating gas, excess CO 2 is extracted outside by the liquefaction separation device 9. That is, the compressor 4
The CO 2 bypassed from the outlet of is introduced into the liquefaction separation device 9. CO 2 pressure at the outlet of the compressor 4 is 14 ata
The saturation temperature at this pressure is about -40 ° C. On the other hand, the saturation temperature under atmospheric pressure is −78.5 ° C., which corresponds to the sublimation temperature of dry ice. Therefore, the gas-liquid separation under pressure is easier than the gas-solid separation method, and the power cost of the separation device can be reduced.
【0005】なお、CO2除去率(O2補充により余剰と
なったCO2増加率)は、通常20%程度である。ま
た、CO2を液化分離したのちの低温排ガスは、圧縮機
4の入口側へ戻され、圧縮機入口ガス温度を下げて、そ
の駆動動力を低減させる。Incidentally, the CO 2 removal rate (CO 2 increase rate which becomes an excess due to O 2 supplement) is usually about 20%. The low-temperature exhaust gas after liquefying and separating CO 2 is returned to the inlet side of the compressor 4 to lower the compressor inlet gas temperature and reduce its driving power.
【0006】[0006]
【発明が解決しようとする課題】ところで、このような
従来のCO2ガスタービンサイクルにあっては、次のよ
うな問題点があった。 (1)CO2を系統から抽出するための液化分離装置は
CO2を−40℃に冷却しなければならず、その運転費
が高い。 (2)液化分離装置の建設費が高い。 (3)抽出された液体CO2は、利用されることなく、
冷熱を有したままで廃棄され、プラント熱効率を低下さ
せている。The conventional CO 2 gas turbine cycle as described above has the following problems. (1) The liquefaction separation apparatus for extracting CO 2 from the system must cool CO 2 to −40 ° C., and its operating cost is high. (2) The construction cost of the liquefaction separation device is high. (3) The extracted liquid CO 2 is not used,
It is discarded while still having cold heat, reducing the thermal efficiency of the plant.
【0007】本発明は、このような従来技術の課題を解
決するためになされたもので、CO2液化分離装置を用
いることなく、安価な手段で余剰CO2を除去でき、か
つプラント熱効率を向上できるようにしたCO2ガスタ
ービンサイクルを提供することを目的とする。The present invention has been made in order to solve the problems of the prior art as described above, and it is possible to remove surplus CO 2 by an inexpensive means without using a CO 2 liquefaction separation device and to improve plant thermal efficiency. An object is to provide a CO 2 gas turbine cycle made possible.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、燃焼器で生成した高温ガスを順次ガス
タービン、排熱回収ボイラ、排ガス凝縮器及び圧縮機へ
と流して前記燃焼器へ戻し、CO2を循環させるCO2ガ
スタービンサイクルにおいて、前記ガスタービンから前
記排熱回収ボイラへ流れる排ガス又は前記排ガス凝縮器
から前記圧縮機へ流れる排ガスの一部を分岐させて、マ
グネタイトを触媒とする余剰CO2除去装置へ導くよう
にしたものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is characterized in that hot gas produced in a combustor is sequentially flown to a gas turbine, an exhaust heat recovery boiler, an exhaust gas condenser and a compressor. In a CO 2 gas turbine cycle in which CO 2 is circulated back to the combustor, a part of the exhaust gas flowing from the gas turbine to the exhaust heat recovery boiler or the exhaust gas flowing from the exhaust gas condenser to the compressor is branched to produce magnetite. It is designed to lead to a surplus CO 2 removal device using the catalyst as a catalyst.
【0009】[0009]
【作用】上記の手段によれば、余剰CO2はマグネタイ
トを触媒とするCO2除去装置でCO2+2H2O+熱→
CH4+2O2の化学反応を行い、除去される。そして、
この余剰CO2除去装置で発生したCH4はガスタービン
燃料として、またO2は燃焼用酸素としてそれぞれ回収
することができる。According to the above means, the surplus CO 2 is CO 2 + 2H 2 O + heat by the CO 2 removing device using magnetite as a catalyst.
CH 4 + 2O 2 undergoes a chemical reaction to be removed. And
CH 4 generated in this surplus CO 2 removal device can be recovered as gas turbine fuel, and O 2 can be recovered as combustion oxygen.
【0010】[0010]
【実施例】以下図1,図2を参照して本発明の実施例に
ついて詳細に説明する。図1は本発明の第1実施例を、
また図2は本発明の第2実施例をそれぞれ示すものであ
って、図3に示したものと同一の部分には同一の符号を
付して、重複する説明は省略する。Embodiments of the present invention will be described in detail below with reference to FIGS. FIG. 1 shows a first embodiment of the present invention,
FIG. 2 shows a second embodiment of the present invention, and the same parts as those shown in FIG. 3 are designated by the same reference numerals and their duplicated description will be omitted.
【0011】まず、図1において、本発明の第1実施例
によれば、排熱回収ボイラ7の前から、すなわちガスタ
ービン5から排熱回収ボイラ7へ流れる排ガスの一部が
余剰CO2除去装置10へ導かれる。このCO2除去装置
10へは触媒として活性マグネタイトが供給され、CO
2は水蒸気の存在の下でマグネタイトを触媒としてCO2
+2H2O+熱→CH4+2O2の化学反応を行い、除去
される。そして、この余剰CO2除去装置10で発生し
たCH4は冷却器11、圧縮機12を経て燃焼器3へ供
給され、またO2は冷却器13で冷却された後O2圧縮機
2の吸込側へ導かれる。First, referring to FIG. 1, according to the first embodiment of the present invention, a portion of the exhaust gas flowing from before the exhaust heat recovery boiler 7, that is, from the gas turbine 5 to the exhaust heat recovery boiler 7, removes excess CO 2. It is led to the device 10. Activated magnetite is supplied as a catalyst to the CO 2 removing device 10,
2 is CO 2 using magnetite as a catalyst in the presence of water vapor.
+ 2H 2 O + heat → CH 4 + 2O 2 undergoes a chemical reaction to be removed. Then, CH 4 generated in the surplus CO 2 removal device 10 is supplied to the combustor 3 via the cooler 11 and the compressor 12, and O 2 is cooled by the cooler 13 and then sucked in by the O 2 compressor 2. Be guided to the side.
【0012】次に、図2において、本発明の第2実施例
によれば、排ガス凝縮器8の後から、すなわち排ガス凝
縮器8から圧縮機4へ流れる排ガスの一部が余剰CO2
除去装置10へ導かれる。このCO2除去装置10へは
触媒として活性マグネタイトが供給され、CO2は水蒸
気の存在の下でマグネタイトを触媒としてCO2+2H2
O+熱→CH4+2O2の化学反応を行い、除去される。
そして、この余剰CO2除去装置10で発生したCH4は
冷却器11、圧縮機12を経て燃焼器3へ供給され、ま
たO2は冷却器13で冷却された後O2圧縮機2の吸込側
へ導かれる。Next, referring to FIG. 2, according to the second embodiment of the present invention, a part of the exhaust gas flowing after the exhaust gas condenser 8, that is, from the exhaust gas condenser 8 to the compressor 4 is a surplus of CO 2.
It is guided to the removing device 10. Activated magnetite is supplied as a catalyst to the CO 2 removal device 10, and CO 2 is CO 2 + 2H 2 using CO 2 as a catalyst in the presence of water vapor.
A chemical reaction of O + heat → CH 4 + 2O 2 is performed and removed.
CH 4 generated in the surplus CO 2 removal device 10 is supplied to the combustor 3 via the cooler 11 and the compressor 12, and O 2 is cooled by the cooler 13 and then sucked in by the O 2 compressor 2. Be guided to the side.
【0013】なお、CO2とマグネタイトとの化学反応
は特に300〜400℃の高温下で行われやすく、また
通常排熱回収前のガスタービン排ガスがこのような高い
温度を有しているので、図1に示した第1実施例の方が
図2に示した第2実施例よりも余剰CO2除去装置10
の運転費を安くできる利点がある。The chemical reaction between CO 2 and magnetite is particularly likely to occur at a high temperature of 300 to 400 ° C., and the gas turbine exhaust gas before exhaust heat recovery usually has such a high temperature. The excess CO 2 removal device 10 of the first embodiment shown in FIG. 1 is more than that of the second embodiment shown in FIG.
There is an advantage that operating costs can be reduced.
【0014】また、図1及び図2の各々に示すように、
好適には,O2製造装置1で空気中のO2から分離したN
2が、起動時に燃焼器3へ供給され、これにより起動時
に系内に存在する大量のO2が強制的にN2に置換され
て、活性マグネタイトの還元力低下が防止されるように
なっている。Further, as shown in each of FIG. 1 and FIG.
Preferably, N separated from O 2 in the air by the O 2 production apparatus 1 is used.
2 is supplied to the combustor 3 at the time of start-up, whereby a large amount of O 2 existing in the system at the time of start-up is forcibly replaced by N 2, and the reduction of the reducing power of active magnetite is prevented. There is.
【0015】すなわち、活性マグネタイトは、原子構造
的に不安定故に反応性に富み、例えば、化合結合が強固
なCO2においてもCO2→C+O2と分解し、Cを活性
マグネタイト表面に、O2を活性マグネタイト深層へ取
り込み、CO2を分解する作用をもっている。しかし、
この時、気相中のCO2にO2の混入があると、上記の反
応は、O2による活性マグネタイトの酸化反応により、
その作用が低下することとなる。そこで、起動時このO
2をN2に強制置換することにより、上記疎外反応による
活性マグネタイトの還元力低下を防止することができ
る。[0015] That is, the active magnetite atom structurally unstable because highly reactive, e.g., compound binding is also decomposes CO 2 → C + O 2 in solid CO 2, the active magnetite surface C, O 2 Is taken into the active magnetite deep layer to decompose CO 2 . But,
At this time, if O 2 is mixed with CO 2 in the gas phase, the above reaction is caused by the oxidation reaction of active magnetite by O 2 .
That action will be reduced. Therefore, when starting this O
By forcibly substituting 2 for N 2 , it is possible to prevent a reduction in the reducing power of active magnetite due to the above-mentioned alienation reaction.
【0016】[0016]
【発明の効果】以上述べたように、本発明は、燃焼器で
生成した高温ガスを順次ガスタービン、排熱回収ボイ
ラ、排ガス凝縮器及び圧縮機へと流して前記燃焼器へ戻
し、CO2を循環させるCO2ガスタービンサイクルにお
いて、前記ガスタービンから前記排熱回収ボイラへ流れ
る排ガス又は前記排ガス凝縮器から前記圧縮機へ流れる
排ガスの一部を分岐させて、マグネタイトを触媒とする
余剰CO2除去装置へ導き、余剰CO2を除去するように
したものであり、このようなマグネタイトを触媒とする
余剰CO2除去装置は従来のCO2液化分離装置に比べて
運転費及び建設費が安いものである。したがって、本発
明によれば、安価な手段で余剰O2を除去することがで
きる。As described above, according to the present invention, the present invention returns the hot gas produced in the combustor sequential gas turbine exhaust heat recovery boiler to the combustor by flowing into the exhaust gas condenser and the compressor, CO 2 In a CO 2 gas turbine cycle in which the exhaust gas flowing from the gas turbine to the exhaust heat recovery boiler or the exhaust gas flowing from the exhaust gas condenser to the compressor is branched to generate excess CO 2 using magnetite as a catalyst. It is designed to remove excess CO 2 by introducing it to a removal device. Such an excess CO 2 removal device that uses magnetite as a catalyst has lower operating costs and construction costs than conventional CO 2 liquefaction separation devices. Is. Therefore, according to the present invention, the surplus O 2 can be removed by an inexpensive means.
【0017】また、余剰CO2除去装置で発生したCH4
をガスタービン燃料として、またO2を燃焼用酸素とし
てそれぞれ回収するようにすれば、プラント熱効率を向
上させることができる。更に、02製造装置で空気中の
O2から分離したN2を起動時に燃焼器へ供給するように
すれば、起動時に系内に存在する大量のO2を強制的に
N2に置換して、マグネタイトの還元力低下を防止する
ことができる。Further, CH 4 generated in the surplus CO 2 removal device
Is recovered as a gas turbine fuel and O 2 is recovered as combustion oxygen, whereby the plant thermal efficiency can be improved. Furthermore, if N 2 separated from O 2 in the air is supplied to the combustor at the time of start-up in the O 2 manufacturing apparatus, a large amount of O 2 existing in the system at the time of start-up is forcibly replaced with N 2. Thus, it is possible to prevent a reduction in the reducing power of magnetite.
【図1】本発明によるCO2ガスタービンサイクルの一
例を示す系統図である。FIG. 1 is a system diagram showing an example of a CO 2 gas turbine cycle according to the present invention.
【図2】本発明によるCO2ガスタービンサイクルの他
の例を示す系統図である。FIG. 2 is a system diagram showing another example of a CO 2 gas turbine cycle according to the present invention.
【図3】従来のCO2ガスタービンサイクルを示す系統
図である。FIG. 3 is a system diagram showing a conventional CO 2 gas turbine cycle.
1 O2製造装置 2 O2圧縮機 3 燃焼器 4 圧縮機 5 ガスタービン 6 発電機 7 排熱回収ボイラ 8 排ガス凝縮器 10 余剰CO2除去装置 11 冷却器 12 圧縮機 13 冷却器1 O 2 Manufacturing Equipment 2 O 2 Compressor 3 Combustor 4 Compressor 5 Gas Turbine 6 Generator 7 Exhaust Heat Recovery Boiler 8 Exhaust Gas Condenser 10 Excess CO 2 Removal Device 11 Cooler 12 Compressor 13 Cooler
Claims (4)
ビン、排熱回収ボイラ、排ガス凝縮器及び圧縮機へと流
して前記燃焼器へ戻し、CO2を循環させるCO2ガスタ
ービンサイクルにおいて、前記ガスタービンから前記排
熱回収ボイラへ流れる排ガスの一部を分岐させて、マグ
ネタイトを触媒とする余剰CO2除去装置へ導くように
したことを特徴とするCO2ガスタービンサイクル。1. A sequential gas turbine the generated hot gas in the combustor, a heat recovery steam, flowing into the exhaust gas condenser and the compressor back to the combustor, the CO 2 gas turbine cycle for circulating CO 2, A CO 2 gas turbine cycle, characterized in that a part of the exhaust gas flowing from the gas turbine to the exhaust heat recovery boiler is branched so as to be guided to a surplus CO 2 removal device using magnetite as a catalyst.
ビン、排熱回収ボイラ、排ガス凝縮器及び圧縮機へと流
して前記燃焼器へ戻し、CO2を循環させるCO2ガスタ
ービンサイクルにおいて、前記排ガス凝縮器から前記圧
縮機へ流れる排ガスの一部を分岐させて、マグネタイト
を触媒とする余剰CO2除去装置へ導くようにしたこと
を特徴とするCO2ガスタービンサイクル。2. A sequential gas turbine the generated hot gas in the combustor, a heat recovery steam, flowing into the exhaust gas condenser and the compressor back to the combustor, the CO 2 gas turbine cycle for circulating CO 2, A CO 2 gas turbine cycle, characterized in that a part of the exhaust gas flowing from the exhaust gas condenser to the compressor is branched and guided to a surplus CO 2 removal device using magnetite as a catalyst.
サイクルにおいて、空気中からN2を分離してO2を製造
するO2製造装置と、このO2製造装置からのO2を圧縮
して前記燃焼器へ供給するO2圧縮機とを備え、前記余
剰CO2除去装置で発生したCH4を前記燃焼器へ、また
O2を前記O2圧縮機の吸込側へそれぞれ供給するように
したことを特徴とするCO2ガスタービンサイクル。3. A CO 2 gas turbine cycle according to claim 1 or 2, and O 2 production apparatus for producing the O 2 by separating the N 2 from air, the O 2 from the O 2 production apparatus compressed And supplying O 2 compressor to the combustor, CH 4 generated in the surplus CO 2 removal device is supplied to the combustor, and O 2 is supplied to the suction side of the O 2 compressor. A CO 2 gas turbine cycle characterized by:
ルにおいて、前記O2製造装置で空気中のO2から分離し
たN2を起動時に前記燃焼器へ供給するようにしたこと
を特徴とするCO2ガスタービンサイクル。4. The CO 2 gas turbine cycle according to claim 3, wherein N 2 separated from O 2 in the air by the O 2 production apparatus is supplied to the combustor at the time of start-up. CO 2 gas turbine cycle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20608092A JPH0626362A (en) | 1992-07-09 | 1992-07-09 | Co2 gas turbine cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20608092A JPH0626362A (en) | 1992-07-09 | 1992-07-09 | Co2 gas turbine cycle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0626362A true JPH0626362A (en) | 1994-02-01 |
Family
ID=16517497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20608092A Withdrawn JPH0626362A (en) | 1992-07-09 | 1992-07-09 | Co2 gas turbine cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0626362A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006506568A (en) * | 2002-06-21 | 2006-02-23 | サーガス・エーエス | Low exhaust thermal power generator |
US10103737B2 (en) | 2014-11-12 | 2018-10-16 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
US10533461B2 (en) | 2015-06-15 | 2020-01-14 | 8 Rivers Capital, Llc | System and method for startup of a power production plant |
US10731571B2 (en) | 2016-02-26 | 2020-08-04 | 8 Rivers Capital, Llc | Systems and methods for controlling a power plant |
US10794274B2 (en) | 2013-08-27 | 2020-10-06 | 8 Rivers Capital, Llc | Gas turbine facility with supercritical fluid “CO2” recirculation |
JP2020200812A (en) * | 2019-06-13 | 2020-12-17 | 三菱パワー株式会社 | Combined plant |
US10961920B2 (en) | 2018-10-02 | 2021-03-30 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
US11549433B2 (en) | 2019-10-22 | 2023-01-10 | 8 Rivers Capital, Llc | Control schemes for thermal management of power production systems and methods |
US11686258B2 (en) | 2014-11-12 | 2023-06-27 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
-
1992
- 1992-07-09 JP JP20608092A patent/JPH0626362A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006506568A (en) * | 2002-06-21 | 2006-02-23 | サーガス・エーエス | Low exhaust thermal power generator |
US10794274B2 (en) | 2013-08-27 | 2020-10-06 | 8 Rivers Capital, Llc | Gas turbine facility with supercritical fluid “CO2” recirculation |
US11686258B2 (en) | 2014-11-12 | 2023-06-27 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
US10103737B2 (en) | 2014-11-12 | 2018-10-16 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
US12012904B2 (en) | 2014-11-12 | 2024-06-18 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
US11473509B2 (en) | 2014-11-12 | 2022-10-18 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
US10533461B2 (en) | 2015-06-15 | 2020-01-14 | 8 Rivers Capital, Llc | System and method for startup of a power production plant |
US10731571B2 (en) | 2016-02-26 | 2020-08-04 | 8 Rivers Capital, Llc | Systems and methods for controlling a power plant |
US11466627B2 (en) | 2016-02-26 | 2022-10-11 | 8 Rivers Capital, Llc | Systems and methods for controlling a power plant |
US10961920B2 (en) | 2018-10-02 | 2021-03-30 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
JP2020200812A (en) * | 2019-06-13 | 2020-12-17 | 三菱パワー株式会社 | Combined plant |
US11549433B2 (en) | 2019-10-22 | 2023-01-10 | 8 Rivers Capital, Llc | Control schemes for thermal management of power production systems and methods |
US12110822B2 (en) | 2019-10-22 | 2024-10-08 | 8 Rivers Capital, Llc | Control schemes for thermal management of power production systems and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970011311B1 (en) | Removal Method of Carbon Dioxide in Combustion Exhaust Gas | |
KR101378195B1 (en) | Power plants that utilize gas turbines for power generation and processes for lowering co2 emissions | |
JP4727949B2 (en) | Method for generating energy in an energy generation facility having a gas turbine and energy generation facility for implementing the method | |
CA2670395C (en) | Improved absorbent regeneration | |
US7892324B2 (en) | Systems and methods for carbon dioxide capture | |
EP1827656B1 (en) | Method for removing and recovering co2 from an exhaust gas | |
AU2009270451B2 (en) | Method and device for separating carbon dioxide from a waste gas of a fossil fuel-operated power plant | |
JPS63502822A (en) | nitrogen injection | |
US20080010967A1 (en) | Method for Generating Energy in an Energy Generating Installation Having a Gas Turbine, and Energy Generating Installation Useful for Carrying Out the Method | |
EP0150990B1 (en) | Process for producing power | |
JPH08232684A (en) | Generating method of mechanical power | |
US4797141A (en) | Method for obtaining CO2 and N2 from internal combustion engine or turbine generated gases | |
JPS6040733A (en) | Closed-cycle chemical treating device | |
JP2002201959A (en) | Gas turbine and method for operating the gas turbine | |
AU2007322454A1 (en) | Absorbent regeneration with compressed overhead stream to provide heat | |
JPS62186018A (en) | Method of operating gas turbine device using low btu gas fuel | |
CN101720381A (en) | Arrangement with a steam turbine and a condenser | |
JPH0626362A (en) | Co2 gas turbine cycle | |
JP2001132472A (en) | Cryogenic power generation system | |
JPS6329091B2 (en) | ||
JPH04279729A (en) | Carbon dioxide (co2) collecting gas turbine plant | |
Rao et al. | Mitigation of greenhouse gases from gas turbine power plants | |
JPH0131013B2 (en) | ||
JP2004150356A (en) | Power generation plant | |
JPH04225777A (en) | Recovering method for carbon dioxide gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991005 |