JPH06263448A - Method for producing rare earth iron garnet polyhedral particles - Google Patents
Method for producing rare earth iron garnet polyhedral particlesInfo
- Publication number
- JPH06263448A JPH06263448A JP5077437A JP7743793A JPH06263448A JP H06263448 A JPH06263448 A JP H06263448A JP 5077437 A JP5077437 A JP 5077437A JP 7743793 A JP7743793 A JP 7743793A JP H06263448 A JPH06263448 A JP H06263448A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- optical
- garnet
- iron garnet
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
- H01F1/346—[(TO4) 3] with T= Si, Al, Fe, Ga
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compounds Of Iron (AREA)
- Soft Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
Abstract
(57)【要約】
【目的】 本発明は、耐蝕性に優れ、磁気光学効果が大
きく、光透過性にも優れ、光アイソレ−タ、光サ−キュ
レ−タ、光スイッチ、光導波路、光メモリ等の用途に好
適な希土類鉄ガーネット多面体粒子の新規な製造方法を
提供する。
【構成】 一般式(BiaR3-a)xFe5-bMbOc(ただし、
Rは希土類元素を示し、MはAl、Ga、Cr、Mn、Sc、In、
Ru、Rh、Co、Fe(II)、Cu、Ni、Zn、Li、Si、Ge、Zr、T
i、Hf、Sn、Pb、Mo、V及びNbから選ばれる一種以上の
元素を示し、a=0〜2.5、b=0〜2、x=1.0
2〜2、cは他の元素の原子価を満足する酸素の原子数
である。)で表される希土類鉄ガーネットに対応する割
合で各元素を含む共沈物に、融剤を200wt%以上混合
し、これを融剤の融点以上でかつガーネット相からBiと
希土類元素を主成分とする固溶系酸化物が相分離する温
度以上で焼成することを特徴とする。
(57) [Summary] [Object] The present invention is excellent in corrosion resistance, has a large magneto-optical effect, and is also excellent in light transmission, and has an optical isolator, an optical circulator, an optical switch, an optical waveguide, and an optical memory. Provided is a novel method for producing rare earth iron garnet polyhedral particles suitable for applications such as [Configuration] formula (Bi a R 3-a) x Fe 5-b M b O c ( where
R is a rare earth element, M is Al, Ga, Cr, Mn, Sc, In,
Ru, Rh, Co, Fe (II), Cu, Ni, Zn, Li, Si, Ge, Zr, T
Indicates one or more elements selected from i, Hf, Sn, Pb, Mo, V and Nb, and a = 0 to 2.5, b = 0 to 2, x = 1.0
2 to 2 and c are the number of oxygen atoms satisfying the valences of other elements. ) Is mixed with a coprecipitate containing each element in a proportion corresponding to the rare earth iron garnet, and 200 wt% or more of the flux is mixed, and this is the melting point of the flux or more, and Bi and the rare earth element from the garnet phase are main components. It is characterized in that the solid solution oxide is fired at a temperature not lower than the phase separation of the solid solution oxide.
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気光学特性に優れ、
光アイソレ−タ、光サ−キュレ−タ、光スイッチ、光導
波路、光メモリ等の用途に好適な希土類鉄ガーネット多
面体粒子の製造方法に関する。The present invention has excellent magneto-optical characteristics,
The present invention relates to a method for producing rare earth iron garnet polyhedral particles suitable for applications such as an optical isolator, an optical circulator, an optical switch, an optical waveguide and an optical memory.
【0002】[0002]
【従来の技術およびその問題点】従来、光磁気記録に用
いられる磁性体としては、希土類金属と遷移金属との非
晶質合金からなるものが知られている。しかし、このよ
うな非晶質合金の磁性体は、酸化腐食を受けやすく、磁
気光学特性が劣化するという欠点があった。また、非晶
質合金は光透過性が低いので、表面での反射による光磁
気効果(カ−効果)を利用するが、非晶質合金は一般に
カ−回転角が小さいため、感度が低いという問題があっ
た。これに対し、特公昭56−15125号公報には、
ガ−ネットの多結晶酸化物薄膜を用いた磁気光学材料が
提案されている。この酸化物を用いた磁性体は、耐蝕性
に優れており、また磁性膜の透過光による磁気光学効果
(ファラデ−効果)を利用して再生を行うため、感度が
高いという利点がある。しかしながら、多結晶であるた
めに、結晶粒界での光散乱、複屈折や磁壁移動によって
雑音が大きくなるという欠点がある。2. Description of the Related Art Conventionally, as a magnetic material used for magneto-optical recording, there is known one made of an amorphous alloy of a rare earth metal and a transition metal. However, such a magnetic material of an amorphous alloy is susceptible to oxidative corrosion and has a drawback that the magneto-optical characteristics are deteriorated. Further, since the amorphous alloy has low light transmittance, the magneto-optical effect (curring effect) due to reflection on the surface is used, but the amorphous alloy generally has a small curl rotation angle and thus has low sensitivity. There was a problem. On the other hand, Japanese Patent Publication No. 56-15125 discloses that
A magneto-optical material using a Garnet's polycrystalline oxide thin film has been proposed. The magnetic material using this oxide has excellent corrosion resistance and has the advantage of high sensitivity because reproduction is performed by utilizing the magneto-optical effect (Faraday effect) due to the transmitted light of the magnetic film. However, since it is a polycrystal, it has a drawback that noise increases due to light scattering at the grain boundaries, birefringence and domain wall motion.
【0003】また、前記した磁性薄膜を基板上に作製す
る場合には、作製温度が500℃以上と高いために、耐
熱性のある基板しか使用できないという問題があった。
一方、特開昭62−119758号公報には、イットリ
ウム鉄ガ−ネット粒子を用いた塗布型光磁気記録材料が
開示されている。このような塗布型媒体では、前記多結
晶酸化物薄膜のような結晶粒界の悪影響はないが、該公
報に記載されているガ−ネット粒子は、粒子径が1.5
μmと大きく、このような粒子を用いた場合には、光の
散乱が起こるため、サブミクロン波長の光を利用する高
密度記録には適していない。Further, when the above-mentioned magnetic thin film is formed on a substrate, there is a problem that only a substrate having heat resistance can be used because the production temperature is as high as 500 ° C. or higher.
On the other hand, Japanese Patent Application Laid-Open No. 62-119758 discloses a coating type magneto-optical recording material using yttrium iron garnet particles. In such a coating type medium, the grain boundaries of the polycrystalline oxide thin film are not adversely affected, but the garnet particles described in this publication have a particle size of 1.5.
The particle size is as large as μm, and when such particles are used, light scattering occurs, which is not suitable for high-density recording using light of submicron wavelength.
【0004】[0004]
【発明の目的】本発明は、前記問題点を解決し、耐蝕性
に優れ、磁気光学効果が大きく、光透過性にも優れ、光
アイソレ−タ、光サ−キュレ−タ、光スイッチ、光導波
路、光メモリ等の用途に好適な希土類鉄ガーネット多面
体粒子の製造方法を提供することにある。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, is excellent in corrosion resistance, has a large magneto-optical effect, and is excellent in light transmission, and has an optical isolator, an optical circulator, an optical switch, an optical switch. It is an object of the present invention to provide a method for producing rare earth iron garnet polyhedral particles suitable for applications such as waveguides and optical memories.
【0005】[0005]
【問題点を解決するための手段】本発明は、一般式(Bi
aR3-a)xFe5-bMbOcで表される希土類鉄ガーネットに
対応する割合で各元素を含む共沈物に、融剤を200wt
%以上混合し、これを融剤の融点以上でかつガーネット
相からBiと希土類元素を主成分とする固溶系酸化物が相
分離する温度以上で焼成することを特徴とする希土類鉄
ガーネット多面体粒子の製造方法に関する。前記一般式
におけるRは、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、
Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選ばれる
一種以上の希土類元素を示す。Mは鉄と置換可能な元素
であり、Al、Ga、Cr、Mn、Sc、In、Ru、Rh、Co、Fe(I
I)、Cu、Ni、Zn、Li、Si、Ge、Zr、Ti、Hf、Sn、Pb、M
o、V及びNbからなる群より選ばれる一種以上の元素を
示す。また、a=0〜2.5、b=0〜2、x=1.0
2〜2、cは他の元素の原子価を満足する酸素の原子数
である。The present invention is based on the general formula (Bi
200 wt of flux is added to the coprecipitate containing each element in a ratio corresponding to the rare earth iron garnet represented by a R 3-a ) x Fe 5-b M b O c.
% Or more, and firing at a temperature above the melting point of the flux and above the temperature at which the solid solution oxide containing Bi and the rare earth element as the main component is phase separated from the garnet phase. It relates to a manufacturing method. R in the general formula is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd,
It represents one or more rare earth elements selected from the group consisting of Tb, Dy, Ho, Er, Tm, Yb and Lu. M is an element capable of substituting for iron, and Al, Ga, Cr, Mn, Sc, In, Ru, Rh, Co, Fe (I
I), Cu, Ni, Zn, Li, Si, Ge, Zr, Ti, Hf, Sn, Pb, M
Indicates one or more elements selected from the group consisting of o, V and Nb. Also, a = 0 to 2.5, b = 0 to 2, x = 1.0
2 to 2 and c are the number of oxygen atoms satisfying the valences of other elements.
【0006】本発明により得られる希土類鉄ガーネット
粒子の組成は、R3Fe5O12 で表されるガーネットの希
土類元素の一部がBiで置換されたもの、及び/又はFeの
一部がMで置換されたものである。ガーネットの希土類
元素の一部を好ましくは0.2〜2.5のBiで置換する
ことにより、ファラデー回転角を大きくすることができ
る。また、Feの一部を好ましくは0.3〜2のMで置換
することにより、キュリー温度を下げ、飽和磁化を小さ
くすることができる。The composition of the rare earth iron garnet particles obtained according to the present invention has a composition in which a part of the rare earth element of garnet represented by R 3 Fe 5 O 12 is replaced with Bi, and / or a part of Fe is M. It has been replaced with. The Faraday rotation angle can be increased by substituting a part of the rare earth element of garnet with Bi of preferably 0.2 to 2.5. By substituting a part of Fe with M of preferably 0.3 to 2, the Curie temperature can be lowered and the saturation magnetization can be reduced.
【0007】本発明においては、焼成過程で過剰のBiと
希土類元素を主成分とする固溶系酸化物がガーネット相
から相分離することにより、仕込組成よりも相分離した
元素の量だけ少ない組成となっている点に特長がある。
即ち、一般式(BiaR3-a)xFe5-bMbOcにおけるxが
1.02〜2と化学量論組成からはずれた組成で共沈物
を製造する。これにより、焼成過程で過剰のBiと希土類
元素を主成分とする固溶系酸化物がガーネット相から相
分離し、焼成温度における最適の組成のガーネットが生
成する。その結果、得られるガーネット粒子は、応力誘
導磁気異方性が増大し、これに応力を印加したときに大
きな保磁力と高い角形比を得ることができる。xが1.
02よりも小さい場合には、焼成過程でBiと希土類元素
を主成分とする固溶系酸化物の相分離が起こらず、焼成
温度における最適組成のガーネット粒子にならないた
め、応力誘導磁気異方性の増大がみられず、応力を印加
したときの保磁力の上がりが小さくなる。本発明におけ
る希土類鉄ガーネット粒子の平均粒子径は30〜100
0Åであることが好ましい。平均粒子径が30Åよりも
小さくなると熱擾乱のために超常磁性となってしまう。
また、1000Åよりも大きくなると光の散乱が起こ
り、ノイズの原因となるので好ましくない。In the present invention, the excess Bi and the solid solution oxide mainly composed of a rare earth element are phase-separated from the garnet phase during the firing process, so that the amount of the phase-separated elements is smaller than the charge composition. The feature is that
In other words, the general formula (Bi a R 3-a) x Fe 5-b M b O x in c to produce a coprecipitate with a composition deviated from 1.02 to 2 and the stoichiometric composition. As a result, excessive Bi and solid solution oxides containing rare earth elements as main components are phase-separated from the garnet phase during the firing process, and garnet having an optimum composition at the firing temperature is produced. As a result, the obtained garnet particles have an increased stress-induced magnetic anisotropy, and when a stress is applied thereto, a large coercive force and a high squareness ratio can be obtained. x is 1.
If it is less than 02, phase separation between Bi and the solid solution oxide containing a rare earth element as a main component does not occur in the firing process, and garnet particles having the optimum composition at the firing temperature are not obtained. No increase is observed, and the increase in coercive force when stress is applied is small. The average particle size of the rare earth iron garnet particles in the present invention is 30 to 100.
It is preferably 0Å. If the average particle size is smaller than 30Å, it becomes superparamagnetic due to thermal agitation.
Further, if it is larger than 1000Å, light scattering occurs, which causes noise, which is not preferable.
【0008】前記希土類鉄ガーネット粒子の製造方法と
しては、前述の特性を有する粒子が得られれば特に制限
はなく、共沈法、アルコキシド法等のいずれを用いても
よい。以下に、共沈法により希土類鉄ガーネット粒子を
製造する方法を述べる。前記一般式で表される希土類鉄
ガーネットに対応する割合で選ばれた各元素イオンを含
む溶液と、水酸化アルカリとを、混合後の水酸化アルカ
リ濃度が0.1〜8モル/lとなるように混合して沈澱
物を生成させる。前記各元素イオンを含む溶液は、各元
素の化合物、例えば、硝酸塩、硫酸塩、塩化物等を溶媒
に溶解して得られる。溶媒としては、前記各元素の化合
物が溶解するものであればよく、通常、水、アルコ−ル
類、エ−テル類やそれらの混合溶媒が用いられる。前記
各元素イオンを含む溶液は、沈澱生成後のスラリ−中に
含まれる全イオン濃度が0.01〜2.0モル/lとな
るように調製することが望ましい。全イオン濃度が0.
01モル/lよりも少ないと、ガ−ネットの生成量が少
なく、また2.0モル/lよりも多いと粒子が大きくな
ったり、異相が生成するので好ましくない。アルカリと
しては、水酸化ナトリウム、水酸化カリウム、アンモニ
ア水等が用いられる。アルカリの使用量はアルカリ濃度
が0.01〜8モル/lとなる量が必要である。アルカ
リの量が少なすぎると粒子が大きくなったり、未反応物
が残ったりする。また、アルカリを過度に多くするのは
経済的でない。前記各元素イオンを含む溶液とアルカリ
を混合する方法としては、例えば、各元素イオンを含む
溶液をアルカリ水溶液に添加する方法、両者を連続的に
混合する方法がある。また、沈澱生成は一度に行っても
よく、多段に行ってもよい。The method for producing the rare earth iron garnet particles is not particularly limited as long as the particles having the above-mentioned characteristics can be obtained, and any of the coprecipitation method, the alkoxide method and the like may be used. The method for producing rare earth iron garnet particles by the coprecipitation method will be described below. The alkali hydroxide concentration after mixing a solution containing each element ion selected in a ratio corresponding to the rare earth iron garnet represented by the general formula with alkali hydroxide is 0.1 to 8 mol / l. To form a precipitate. The solution containing each element ion can be obtained by dissolving a compound of each element, for example, a nitrate, a sulfate or a chloride in a solvent. Any solvent can be used as long as it can dissolve the compounds of the above-mentioned elements, and water, alcohols, ethers, or a mixed solvent thereof is usually used. The solution containing each elemental ion is preferably prepared so that the total concentration of ions contained in the slurry after the precipitation is 0.01 to 2.0 mol / l. The total ion concentration is 0.
If it is less than 01 mol / l, the amount of garnet produced is small, and if it is more than 2.0 mol / l, the particles become large and a hetero phase is produced, which is not preferable. As the alkali, sodium hydroxide, potassium hydroxide, aqueous ammonia or the like is used. The amount of alkali used is required to be such that the alkali concentration is 0.01 to 8 mol / l. If the amount of alkali is too small, the particles become large and unreacted substances remain. In addition, it is not economical to use too much alkali. Examples of the method of mixing the solution containing each element ion with the alkali include a method of adding a solution containing each element ion to an alkaline aqueous solution, and a method of continuously mixing both. The precipitation may be performed at once or in multiple stages.
【0009】次いで、得られた沈澱物を水洗して、遊離
のアルカリ分を除去した後、これに融剤を200wt%以
上混合し、これを融剤の融点以上でかつガーネット相か
らBiと希土類元素を主成分とする固溶系酸化物が相分離
する温度以上で焼成する。焼成時間は10分〜30時間
程度が適当である。焼成雰囲気は特に制限されないが、
一般に空気雰囲気が便利である。融剤としては、Na、
K、あるいはLiの塩化物、臭化物、ヨウ化物、フッ化
物、硫酸塩もしくは硝酸塩から選ばれた一種以上が挙げ
られる。融剤の混合割合は、200wt%以上、好ましく
は200〜1000wt%である。融剤を200wt%以上
混合することにより、得られる希土類鉄ガーネットは、
粒子表面が結晶面で構成された多面体粒子、いわゆる自
形粒子となる。自形粒子になると、組成のバラツキが少
なくなるので、粒子の特性が向上し、また、分散性も向
上する。Next, the obtained precipitate is washed with water to remove free alkali content, and then 200 wt% or more of a fluxing agent is mixed therein, which is above the melting point of the fluxing agent and from the garnet phase Bi and rare earths. Firing is performed at a temperature at which the solid solution oxide containing an element as a main component undergoes phase separation or higher. A firing time of about 10 minutes to 30 hours is suitable. The firing atmosphere is not particularly limited,
Generally, an air atmosphere is convenient. As a flux, Na,
One or more selected from K, Li chloride, bromide, iodide, fluoride, sulfate or nitrate. The mixing ratio of the flux is 200 wt% or more, preferably 200 to 1000 wt%. The rare earth iron garnet obtained by mixing the flux with 200 wt% or more is
The surface of the particles is a polyhedral particle having crystal faces, that is, a so-called self-shaped particle. Since the self-shaped particles have less variation in composition, the characteristics of the particles are improved and the dispersibility is also improved.
【0010】さらに、本発明の希土類鉄ガーネット粒子
を、非晶質の無機酸化物等の無機バインダーからなる保
持体に分散させることにより透光性磁性体を得ることが
できる。透光性磁性体は、希土類鉄ガーネット粒子及び
無機バインダーを水又は有機溶媒中に分散又は溶解さ
せ、基板上に塗布した後、加熱処理等によりバインダー
を硬化させることにより得られる。この際、適当なバイ
ンダーを選択することにより、希土類鉄ガーネット粒子
にバインダーの硬化による応力がかかり、基板に対して
垂直方向に磁化を揃えることができる。この透光性磁性
体は、磁気異方性が大きく、耐蝕性に優れ、磁気光学効
果が大きく、光透過性にも優れており、光アイソレー
タ、光サーキュレータ、光スイッチ、光導波路、光メモ
リ等の用途に好適に用いられる。Further, a transparent magnetic material can be obtained by dispersing the rare earth iron garnet particles of the present invention in a support made of an inorganic binder such as an amorphous inorganic oxide. The translucent magnetic material is obtained by dispersing or dissolving rare earth iron garnet particles and an inorganic binder in water or an organic solvent, applying the solution on a substrate, and then curing the binder by heat treatment or the like. At this time, by selecting an appropriate binder, the rare earth iron garnet particles are stressed by the curing of the binder, and the magnetization can be aligned in the direction perpendicular to the substrate. This translucent magnetic material has a large magnetic anisotropy, excellent corrosion resistance, a large magneto-optical effect, and excellent light transmittance, and can be used in optical isolators, optical circulators, optical switches, optical waveguides, optical memories, etc. Suitable for use.
【0011】例えば、基板上に、透光性磁性体からなる
磁性層を設けることにより光磁気記録媒体が得られる。
磁性層の厚みは、0.05〜2.0μm、特に0.2〜
1.0μmの範囲が記録ビットの安定性の上で好まし
い。基板としては、特に制限はなく、単結晶基板、多結
晶基板、ガラス等の非晶質基板、その他複合基板等の無
機材料基板、またはアクリル樹脂、ポリカーボネート樹
脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹
脂等の有機材料基板を用いることができる。又、基板と
磁性層の間又は磁性層の上に光反射層を設けることもで
きる。光反射層としては、Cu,Cr,Al,Ag,Au,TiN等が用い
られる。この光反射層は、塗布法、めっき法、蒸着法等
により基板上又は磁性層上に形成される。For example, a magneto-optical recording medium can be obtained by providing a magnetic layer made of a translucent magnetic material on a substrate.
The magnetic layer has a thickness of 0.05 to 2.0 μm, particularly 0.2 to
The range of 1.0 μm is preferable in terms of stability of recorded bits. The substrate is not particularly limited, single crystal substrate, polycrystalline substrate, amorphous substrate such as glass, other inorganic substrate such as composite substrate, or acrylic resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, etc. The organic material substrate can be used. A light reflection layer may be provided between the substrate and the magnetic layer or on the magnetic layer. Cu, Cr, Al, Ag, Au, TiN or the like is used for the light reflecting layer. The light reflecting layer is formed on the substrate or the magnetic layer by a coating method, a plating method, a vapor deposition method or the like.
【0012】[0012]
【実施例】以下、実施例により本発明を詳述する。 実施例1 アンモニア3.605molを水700mlに溶解し、
別に、硝酸ビスマス0.0864mol、硝酸ジスプロ
シウム0.0432mol、硝酸鉄0.184mol、
硝酸アルミニウム0.016molを5N−硝酸溶液7
00mlに溶解した。次いで、アンモニア溶液を攪はん
しながら、硝酸溶液を徐々に滴下して中和を行い、沈澱
物を生成させた。この時の仕込組成は(Bi2Dy1)1.08Fe
4.6Al0.4であった。得られた沈澱物を水洗した後、モル
比で51.8:48.2のKBrとKIを全重量で40
0wt%混在させ、600℃で焼成し、融剤を水洗して
Biと希土類元素を主成分とする固溶系酸化物が相分離
したガ−ネット微粒子を得た。得られたガ−ネット微粒
子は、図1に示すように粒子表面が結晶面で構成された
立方体粒子であった。次いで、このガ−ネット微粒子粉
末15g及びメチルシリコーンワニス(YR3187;
東芝シリコーン(株)製)51.55gを混合有機溶媒
(トルエン15g、メチルエチルケトン15g及びシク
ロヘキサノン15g)に加え、ペイントコンディショナ
ー分散機で60分間分散処理して磁性塗料を調製した。
得られた磁性塗料を、直径3インチ、厚さ1mmのガラス
基板上に塗布した。次いで、200℃に保ったホットプ
レート上に置き、30分間乾燥処理した後、ホットプレ
ートの温度を350℃に昇温し、10分間熱処理を施し
て、バインダーを硬化させて塗布膜を得た。次いで、こ
の塗布膜の上にアルミニウムの反射膜を蒸着法により形
成させて光磁気記録媒体を得た。得られた媒体の膜面に
垂直な方向の633nmの光に対するファラデー回転角
を偏光面変調法により測定したところ1.68deg.
であった。また、この媒体の保磁力は1100Oeで角
形比は100%であった。EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Dissolve 3.605 mol of ammonia in 700 ml of water,
Separately, bismuth nitrate 0.0864 mol, dysprosium nitrate 0.0432 mol, iron nitrate 0.184 mol,
Aluminum nitrate 0.016 mol was added to 5N-nitric acid solution 7
It was dissolved in 00 ml. Then, while stirring the ammonia solution, a nitric acid solution was gradually added dropwise for neutralization to form a precipitate. The composition at this time was (Bi 2 Dy 1 ) 1.08 Fe
It was 4.6 Al 0.4 . After washing the obtained precipitate with water, KBr and KI in a molar ratio of 51.8: 48.2 were 40% by total weight.
0 wt% was mixed and baked at 600 ° C., and the flux was washed with water to obtain garnet particles in which Bi and a solid solution oxide containing a rare earth element as a main component were phase-separated. The obtained garnet fine particles were cubic particles whose surface was composed of crystal planes as shown in FIG. Next, 15 g of this garnet fine particle powder and methyl silicone varnish (YR3187;
51.55 g of Toshiba Silicone Co., Ltd. was added to a mixed organic solvent (15 g of toluene, 15 g of methyl ethyl ketone and 15 g of cyclohexanone), and the mixture was dispersed for 60 minutes with a paint conditioner disperser to prepare a magnetic paint.
The magnetic coating material obtained was applied onto a glass substrate having a diameter of 3 inches and a thickness of 1 mm. Then, after placing on a hot plate kept at 200 ° C. and drying treatment for 30 minutes, the temperature of the hot plate was raised to 350 ° C. and heat treatment was performed for 10 minutes to cure the binder to obtain a coating film. Then, a reflective film of aluminum was formed on this coating film by a vapor deposition method to obtain a magneto-optical recording medium. The Faraday rotation angle for light of 633 nm in the direction perpendicular to the film surface of the obtained medium was measured by the polarization plane modulation method to be 1.68 deg.
Met. The coercive force of this medium was 1100 Oe and the squareness ratio was 100%.
【0013】比較例1 アンモニア3.605molを水700mlに溶解し、
別に、硝酸ビスマス0.080mol、硝酸ジスプロシ
ウム0.040mol、硝酸鉄0.184mol、硝酸
アルミニウム0.016molを5N−硝酸溶液700
mlに溶解した。次いで、アンモニア溶液を攪はんしな
がら、硝酸溶液を徐々に滴下して中和を行い、沈澱物を
生成させた。この時の仕込組成は(Bi2Dy1)1Fe4.6Al
0.4であった。得られた沈澱物を水洗した後、モル比で
51.8:48.2のKBrとKIを全重量で400w
t%混在させ、600℃で焼成し、融剤を水洗してガ−
ネット微粒子を得た。得られたガ−ネット微粒子は、図
2に示すように不定形粒子であった。次いで、このガ−
ネット微粒子粉末を用いて実施例1と同様にして光磁気
記録媒体を得た。得られた媒体の膜面に垂直な方向の6
33nmの光に対するファラデー回転角を偏光面変調法
により測定したところ1.18deg.であった。ま
た、この媒体の保磁力は500Oeで角形比は90%で
あった。Comparative Example 1 3.605 mol of ammonia was dissolved in 700 ml of water,
Separately, 0.080 mol of bismuth nitrate, 0.040 mol of dysprosium nitrate, 0.184 mol of iron nitrate and 0.016 mol of aluminum nitrate were added to a 5N-nitric acid solution 700.
Dissolved in ml. Then, while stirring the ammonia solution, a nitric acid solution was gradually added dropwise for neutralization to form a precipitate. The composition at this time was (Bi 2 Dy 1 ) 1 Fe 4.6 Al
It was 0.4 . After washing the obtained precipitate with water, a total weight of 400 wt of KBr and KI in a molar ratio of 51.8: 48.2 was obtained.
t% mixed, fired at 600 ° C, washed the flux with water, and
Net fine particles were obtained. The obtained garnet fine particles were amorphous particles as shown in FIG. Then this Gar
A magneto-optical recording medium was obtained in the same manner as in Example 1 using the net fine particle powder. 6 in the direction perpendicular to the film surface of the obtained medium
The Faraday rotation angle with respect to the light of 33 nm was measured by the polarization plane modulation method and found to be 1.18 deg. Met. The coercive force of this medium was 500 Oe and the squareness ratio was 90%.
【0014】実施例2 アンモニア3.605molを水700mlに溶解し、
別に、硝酸ビスマス0.0636mol、硝酸ジスプロ
シウム0.0636mol、硝酸鉄0.184mol、
硝酸アルミニウム0.016molを5N−硝酸溶液7
00mlに溶解した。次いで、アンモニア溶液を攪はん
しながら、硝酸溶液を徐々に滴下して中和を行い、沈澱
物を生成させた。この時の仕込組成は(Bi1.5Dy1.5)
1.06Fe4.6Al0.4であった。得られた沈澱物を水洗した
後、モル比で51.8:48.2のKBrとKIを全重
量で500wt%混在させ、600℃で焼成し、融剤を
水洗してBiと希土類元素を主成分とする固溶系酸化物
が相分離したガ−ネット微粒子を得た。得られたガ−ネ
ット微粒子は、粒子表面が結晶面で構成された立方体粒
子であった。次いで、このガ−ネット微粒子粉末を用い
て実施例1と同様にして光磁気記録媒体を得た。得られ
た媒体の膜面に垂直な方向の633nmの光に対するフ
ァラデー回転角を偏光面変調法により測定したところ
1.26deg.であった。また、この媒体の保磁力は
1500Oeで角形比は100%であった。Example 2 3.605 mol of ammonia was dissolved in 700 ml of water,
Separately, bismuth nitrate 0.0636 mol, dysprosium nitrate 0.0636 mol, iron nitrate 0.184 mol,
Aluminum nitrate 0.016 mol was added to 5N-nitric acid solution 7
It was dissolved in 00 ml. Then, while stirring the ammonia solution, a nitric acid solution was gradually added dropwise for neutralization to form a precipitate. The composition at this time is (Bi 1.5 Dy 1.5 )
It was 1.06 Fe 4.6 Al 0.4 . After washing the obtained precipitate with water, KBr and KI with a molar ratio of 51.8: 48.2 were mixed in a total weight of 500 wt% and baked at 600 ° C., and the flux was washed with water to remove Bi and rare earth elements. Garnet fine particles in which the solid solution oxide as the main component was phase separated were obtained. The obtained garnet fine particles were cubic particles whose surface was composed of crystal planes. Then, using this garnet fine particle powder, a magneto-optical recording medium was obtained in the same manner as in Example 1. The Faraday rotation angle for light of 633 nm in the direction perpendicular to the film surface of the obtained medium was measured by the polarization plane modulation method to be 1.26 deg. Met. The coercive force of this medium was 1500 Oe and the squareness ratio was 100%.
【0015】比較例2 アンモニア3.605molを水700mlに溶解し、
別に、硝酸ビスマス0.060mol、硝酸ジスプロシ
ウム0.060mol、硝酸鉄0.184mol、硝酸
アルミニウム0.016molを5N−硝酸溶液700
mlに溶解した。次いで、アンモニア溶液を攪はんしな
がら、硝酸溶液を徐々に滴下して中和を行い、沈澱物を
生成させた。この時の仕込組成は(Bi1.5Dy1.5)1Fe4.6
Al0.4であった。得られた沈澱物を水洗した後、モル比
で51.8:48.2のKBrとKIを全重量で500
wt%混在させ、600℃で焼成し、融剤を水洗してガ
−ネット微粒子を得た。得られたガ−ネット微粒子は、
不定形粒子であった。次いで、このガ−ネット微粒子粉
末を用いて実施例1と同様にして光磁気記録媒体を得
た。得られた媒体の膜面に垂直な方向の633nmの光
に対するファラデー回転角を偏光面変調法により測定し
たところ0.88deg.であった。また、この媒体の
保磁力は900Oeで角形比は90%であった。Comparative Example 2 3.605 mol of ammonia was dissolved in 700 ml of water,
Separately, bismuth nitrate 0.060 mol, dysprosium nitrate 0.060 mol, iron nitrate 0.184 mol, and aluminum nitrate 0.016 mol were added to a 5N-nitric acid solution 700.
Dissolved in ml. Then, while stirring the ammonia solution, a nitric acid solution was gradually added dropwise for neutralization to form a precipitate. The composition at this time was (Bi 1.5 Dy 1.5 ) 1 Fe 4.6
It was Al 0.4 . After the obtained precipitate was washed with water, the total weight of KBr and KI was 51.8: 48.2 (500).
wt% was mixed and baked at 600 ° C., and the flux was washed with water to obtain garnet fine particles. The obtained garnet particles are
It was an amorphous particle. Then, using this garnet fine particle powder, a magneto-optical recording medium was obtained in the same manner as in Example 1. The Faraday rotation angle for light of 633 nm in the direction perpendicular to the film surface of the obtained medium was measured by the polarization plane modulation method to be 0.88 deg. Met. The coercive force of this medium was 900 Oe and the squareness ratio was 90%.
【0016】[0016]
【発明の効果】本発明によれば、耐蝕性に優れ、磁気光
学効果が大きく、光透過性にも優れ、光アイソレ−タ、
光サ−キュレ−タ、光スイッチ、光導波路、光メモリ等
の用途に好適な希土類鉄ガーネット多面体粒子を製造す
ることができる。According to the present invention, the optical isolator, which is excellent in corrosion resistance, has a large magneto-optical effect, and has excellent optical transparency,
Rare earth iron garnet polyhedral particles suitable for applications such as optical circulators, optical switches, optical waveguides, and optical memories can be produced.
【図1】図1は、本発明の実施例1で得られた希土類鉄
ガーネット粒子の粒子構造を表す図面に代える透過型電
子顕微鏡写真である。FIG. 1 is a transmission electron micrograph as a substitute for a drawing, which shows the particle structure of rare earth iron garnet particles obtained in Example 1 of the present invention.
【図2】図2は、本発明の比較例1で得られた希土類鉄
ガーネット粒子の粒子構造を表す図面に代える透過型電
子顕微鏡写真である。FIG. 2 is a transmission electron micrograph as a substitute for a drawing, which shows the particle structure of the rare earth iron garnet particles obtained in Comparative Example 1 of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01F 41/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area // H01F 41/22
Claims (1)
し、RはY及びランタン系列元素からなる群より選ばれ
る一種以上の希土類元素を示し、MはAl、Ga、Cr、Mn、
Sc、In、Ru、Rh、Co、Fe(II)、Cu、Ni、Zn、Li、Si、G
e、Zr、Ti、Hf、Sn、Pb、Mo、V及びNbからなる群より
選ばれる一種以上の元素を示し、a=0〜2.5、b=
0〜2、x=1.02〜2、cは他の元素の原子価を満
足する酸素の原子数である。)で表される希土類鉄ガー
ネットに対応する割合で各元素を含む共沈物に、融剤を
200wt%以上混合し、これを融剤の融点以上でかつガ
ーネット相からBiと希土類元素を主成分とする固溶系酸
化物が相分離する温度以上で焼成することを特徴とする
希土類鉄ガーネット多面体粒子の製造方法。1. A general formula (Bi a R 3-a) x Fe 5-b M b O c ( wherein, R represents one or more rare earth elements selected from the group consisting of Y and lanthanides, M is Al, Ga, Cr, Mn,
Sc, In, Ru, Rh, Co, Fe (II), Cu, Ni, Zn, Li, Si, G
represents one or more elements selected from the group consisting of e, Zr, Ti, Hf, Sn, Pb, Mo, V and Nb, and a = 0 to 2.5, b =
0 to 2, x = 1.02 to 2, and c is the number of oxygen atoms satisfying the valences of other elements. ) Is mixed with a coprecipitate containing each element in a proportion corresponding to the rare earth iron garnet, and 200 wt% or more of the flux is mixed, and this is the melting point of the flux or more, and Bi and the rare earth element from the garnet phase are main components. A method for producing rare earth iron garnet polyhedral particles, which comprises calcination at a temperature at which the solid solution oxide is phase separated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5077437A JPH06263448A (en) | 1993-03-12 | 1993-03-12 | Method for producing rare earth iron garnet polyhedral particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5077437A JPH06263448A (en) | 1993-03-12 | 1993-03-12 | Method for producing rare earth iron garnet polyhedral particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06263448A true JPH06263448A (en) | 1994-09-20 |
Family
ID=13634003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5077437A Pending JPH06263448A (en) | 1993-03-12 | 1993-03-12 | Method for producing rare earth iron garnet polyhedral particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06263448A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1128399A1 (en) * | 2000-02-22 | 2001-08-29 | TDK Corporation | Magnetic garnet material and magnetooptical device using the same |
-
1993
- 1993-03-12 JP JP5077437A patent/JPH06263448A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1128399A1 (en) * | 2000-02-22 | 2001-08-29 | TDK Corporation | Magnetic garnet material and magnetooptical device using the same |
US6527973B2 (en) | 2000-02-22 | 2003-03-04 | Tdk Corporation | Magnetic garnet material and magnetooptical device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0346123B1 (en) | Plate-like composite ferrite particles for magnetic recording and process for producing the same | |
JPH06263448A (en) | Method for producing rare earth iron garnet polyhedral particles | |
JPS5856232A (en) | Magnetic recording medium | |
EP0428155A2 (en) | Rare earth-iron-garnet fine particles and magneto-optical material using the same | |
JP2935385B2 (en) | Composite oxide magnetic powder and magneto-optical recording medium using the same | |
JPH0757695B2 (en) | Method for producing garnet fine particle powder | |
JP3231989B2 (en) | Hexagonal ferrite magnetic powder | |
JP4051767B2 (en) | Rare earth iron garnet particles and magneto-optical recording medium | |
JP2687185B2 (en) | Magneto-optical material and magneto-optical recording medium | |
JP2611844B2 (en) | Method for producing garnet fine particle powder | |
JP2611843B2 (en) | Method for producing garnet fine particle powder | |
JPH06104574B2 (en) | Coating film type magnetic powder for magnetic recording | |
JPH0791067B2 (en) | Method for producing garnet fine particle powder | |
JP2611845B2 (en) | Method for producing garnet fine particle powder | |
JPH0757694B2 (en) | Garnet fine powder | |
JPH09213513A (en) | Magnetic powder of hexagonal system ferrite | |
JP2526129B2 (en) | Magneto-optical recording medium | |
JPS6015575B2 (en) | Method for producing magnetic powder for magnetic recording | |
JP2696726B2 (en) | Garnet fine particle powder | |
JP2572676B2 (en) | Method for manufacturing magneto-optical recording medium | |
JP2817278B2 (en) | Method for producing garnet fine particle powder | |
JP2687124B2 (en) | Powder for magnetic shield and magnetic shield material | |
JPH0474722A (en) | Manufacturing method of garnet fine particle powder | |
JP2780759B2 (en) | Optical non-reciprocal element | |
JPH082927A (en) | Bismuth rare earth iron garnet precursor composition and method for producing the same |