JPH0626207B2 - Light processing method - Google Patents
Light processing methodInfo
- Publication number
- JPH0626207B2 JPH0626207B2 JP59227499A JP22749984A JPH0626207B2 JP H0626207 B2 JPH0626207 B2 JP H0626207B2 JP 59227499 A JP59227499 A JP 59227499A JP 22749984 A JP22749984 A JP 22749984A JP H0626207 B2 JPH0626207 B2 JP H0626207B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- light
- metal conductive
- processing method
- combination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003672 processing method Methods 0.000 title claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 239000002184 metal Substances 0.000 claims description 43
- 230000003287 optical effect Effects 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32131—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by physical means only
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/027—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by irradiation, e.g. by photons, alpha or beta particles
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Lasers (AREA)
- Liquid Crystal (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Drying Of Semiconductors (AREA)
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池等に用いられる金属導電膜、または
透光性導電膜と金属導電膜とを組み合わせたものを光に
よって選択的に加工する光加工方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention selectively processes a metal conductive film used in a solar cell or the like, or a combination of a translucent conductive film and a metal conductive film by light. The present invention relates to a light processing method.
金属導電膜、または透光性導電膜と金属導電膜とを組み
合わせたものを光によって選択的に加工する光加工方法
に関しては、レーザ加工技術があり、たとえばYAG レー
ザ光(波長1.05μm)が主として用いられている。There is a laser processing technique as an optical processing method for selectively processing a metal conductive film or a combination of a translucent conductive film and a metal conductive film by light, and for example, YAG laser light (wavelength 1.05 μm) is mainly used. It is used.
このYAG レーザ光を用いた光加工方法は、スポット状の
レーザビームを被加工物に照射すると共に、このスポッ
ト状のレーザビームを加工方向に走査する。スポット状
のレーザビームは、順次移動することで、点の連続した
鎖状の開溝が形成される。そのため、このスポット状の
レーザビームの走査スピードと、加工に必要なエネルギ
ー密度とは、被加工物の熱伝導度、昇華性に加えて、き
わめて微妙に相互作用を行なう。The optical processing method using this YAG laser light irradiates a workpiece with a spot-shaped laser beam and scans this spot-shaped laser beam in the processing direction. The spot-shaped laser beam sequentially moves to form a chain-shaped open groove having continuous points. Therefore, the scanning speed of this spot-shaped laser beam and the energy density required for processing interact very delicately in addition to the thermal conductivity and sublimability of the workpiece.
上記理由により、レーザビームを用いた光加工方法は、
工業化に際して生産性を向上させるが、最適品質を保証
するマージンが少ないという欠点を有する。For the above reason, the optical processing method using the laser beam is
Although it improves productivity in industrialization, it has a drawback that there is a small margin for guaranteeing optimum quality.
また、YAG レーザ光のQスイッチを用いるレーザ加工方
法は、平均0.5 W ないし1W(光径50μm、焦点距離40m
m、パルス周波数3KHz、パルス巾60n 秒の場合)の強い
光エネルギーを有するパルス光を走査スピードが30cm/
分ないし60cm/ 分で加えて加工しなければならない。そ
の結果、このレーザ光は、金属導電膜、または透光性導
電膜と金属導電膜とを組み合わせたものを加工すること
ができるが、この加工と同時に、金属導電膜、または透
光性導電膜と金属導電膜とを組み合わせたものが形成さ
れている基板、たとえばガラス基板等に対してマイクロ
クラックを発生させてしまった。In addition, the laser processing method using the Q switch of YAG laser light is 0.5 W to 1 W on average (light diameter 50 μm, focal length 40 m
m, pulse frequency 3KHz, pulse width 60nsec) pulsed light with strong light energy, scanning speed 30cm /
Min to 60 cm / min must be added and processed. As a result, this laser light can process a metal conductive film or a combination of a light-transmitting conductive film and a metal conductive film. At the same time as this processing, the metal conductive film or the light-transmitting conductive film is processed. Microcracks were generated in a substrate, such as a glass substrate, on which a combination of the above and a metal conductive film was formed.
このYAG レーザ光を用いた光加工方法では、スポット状
のレーザビームの走査を順次少しずつずらしていくた
め、金属導電膜、または透光性導電膜と金属導電膜とを
組み合わせたものが形成されている下地基板に発生する
マイクロクラックが、レーザ光の円周と類似した「鱗」
状に形成される。In this optical processing method using YAG laser light, the scanning of the spot-shaped laser beam is sequentially shifted little by little, so that a metal conductive film or a combination of a light-transmitting conductive film and a metal conductive film is formed. Microscale cracks that occur on the underlying substrate are "scales" similar to the circumference of the laser beam.
Formed into a shape.
また、YAG レーザ光のQスイッチを用いた光加工方法
は、その尖頭値の出力が長期間の使用において、バラツ
キやすく、使用の度にモニターでのチェックが必要であ
った。In addition, the optical processing method using the Q switch of YAG laser light is likely to cause variations in peak value output during long-term use, and it was necessary to check with a monitor each time it was used.
さらに、YAG レーザ光を用いた光加工方法は、1μmな
いし5μm巾の微細パターンを多数同一平面に選択的に
形成させることがまったく不可能であった。さらに、レ
ーザビームを被加工面に照射して光加工を行なった後、
被加工部の金属導電膜、または透光性導電膜と金属導電
膜とを組み合わせたものの材料は、十分に微粉末化して
いないため、うすい酸溶液によりエッチングを行わなけ
ればならなかった。Further, the optical processing method using the YAG laser beam cannot completely form a large number of 1 μm to 5 μm wide fine patterns selectively on the same plane. Furthermore, after irradiating the surface to be processed with a laser beam to perform optical processing,
Since the material of the metal conductive film of the processed portion or the material of the combination of the light-transmissive conductive film and the metal conductive film is not sufficiently pulverized, it was necessary to perform etching with a dilute acid solution.
以上のような問題を解決するために、本発明は、基板に
マイクロクラックを発生させることなく、選択的に開溝
等の微細パターンを容易に得ることができると共に、光
加工後の残渣の処理を簡単にできる光加工方法を提供す
ることを目的とする。In order to solve the above problems, according to the present invention, it is possible to easily obtain a fine pattern such as a groove without selectively generating microcracks in a substrate and to treat a residue after optical processing. It is an object of the present invention to provide an optical processing method capable of simplifying.
本発明の光加工方法は、上記の問題を解決するものであ
り、金属導電膜、または透光性導電膜と金属導電膜とを
組み合わせたものに、400nm以下(エネルギー的には
3.1eV 以上)の波長のパルスレーザを照射し、20μmφ
ないし50μmφのビームスポットではなく、たとえば10
μmないし20μmの巾(特に、15μm)、長さ10cmない
し50cm、特に30cmのスリット状に一つのパルスにて同時
に瞬間的に開溝を加工する。それによって、金属導電
膜、または透光性導電膜と金属導電膜とを組み合わせた
ものでの光エネルギーの吸収効率を、たとえばYAG レー
ザ光(1.06 μm)の100 倍以上に高めたものである。The optical processing method of the present invention solves the above-mentioned problems, and is 400 nm or less (in terms of energy, in a metal conductive film or a combination of a light-transmitting conductive film and a metal conductive film).
20 μmφ by irradiating a pulsed laser with a wavelength of 3.1 eV or more)
To a beam spot of 50 μmφ instead of 10
An open groove is simultaneously processed with a single pulse in a slit shape having a width of 10 μm to 20 μm and a length of 10 cm to 50 cm, especially 30 cm. As a result, the absorption efficiency of light energy in the metal conductive film or the combination of the light-transmitting conductive film and the metal conductive film is increased to 100 times or more that of YAG laser light (1.06 μm).
さらに、本発明の光加工方法は、初期にYAG レーザ光の
ように円状で、かつガウス分布の光強度を有さずに、初
期の光の照射面が矩形を有し、またその強さも照射面内
で概略均一である、エキシマレーザ光を用いる。このた
め、ビームエキスパンダで矩形の大面積化または長面積
化し、またその一方のXまたはY方向にそってシリンド
リカルレンズにて一つまたは複数のスリット状にレーザ
光を集光する。Furthermore, the optical processing method of the present invention is initially circular like YAG laser light, and does not have a Gaussian distribution light intensity, and the irradiation surface of the initial light has a rectangle, and its intensity is also Excimer laser light, which is substantially uniform in the irradiation surface, is used. Therefore, the beam expander increases the area of the rectangle or the area of the rectangle, and the cylindrical lens converges the laser light into one or more slits along one of the X and Y directions.
その結果、一つまたは複数のスリット、たとえば2本な
いし20本、特に4本を同時に1回のパルス光にて照射
し、強光を被加工物に対し照射して開溝を作ることがで
きる。As a result, one or a plurality of slits, for example, two to 20 slits, especially 4 slits, can be simultaneously irradiated with a single pulsed light, and intense light can be irradiated to the workpiece to form an open groove. .
開溝は、一つのパルスレーザ光を線状、たとえば、10cm
ないし50cm、特に30cmの長さにわたって照射すること
で、加工される。また、Qスイッチ方式ではなく、400
nm以下の波長のパルスレーザ光を用いるため、尖端値
の強さを精密に制御し得る。The open groove allows one pulsed laser beam to be linear, for example, 10 cm.
It is processed by irradiating it over a length of 50 cm, especially 30 cm. Also, instead of the Q switch method, 400
Since the pulsed laser light having a wavelength of nm or less is used, the strength of the peak value can be precisely controlled.
この結果として、下地基板に対し何等の損傷を与えるこ
となくして金属導電膜、または透光性導電膜と金属導電
膜とを組み合わせたもののみにスリット状開溝を選択的
に得ることが可能となる。As a result, it is possible to selectively obtain the slit-shaped open groove only in the metal conductive film or the combination of the light-transmitting conductive film and the metal conductive film without giving any damage to the base substrate. Become.
さらに、減圧下にて400nm以下の波長のパルスレーザ
光を金属導電膜、または透光性導電膜と金属導電膜とを
組み合わせたものに照射するならば、レーザ光源より被
加工物の間での水分等による紫外光の吸収損失を少なく
し得る。Furthermore, if a metal conductive film or a combination of a light-transmitting conductive film and a metal conductive film is irradiated with pulsed laser light having a wavelength of 400 nm or less under a reduced pressure, the laser light source causes a difference between workpieces. The absorption loss of ultraviolet light due to moisture or the like can be reduced.
また、開溝を形成した後の被加工部に残る粉状の残渣物
は、アルコール、アセトン等の洗浄液による超音波洗浄
で十分除去が可能である。Further, the powdery residue left on the processed portion after forming the groove can be sufficiently removed by ultrasonic cleaning with a cleaning liquid such as alcohol or acetone.
したがって、本発明の光加工方法は、いわゆるフォトマ
スクプロセスに必要なマスク作り、レジストコート、被
加工物の蒸着によるエッチング、レジスト除去等の多く
の工程がまったく不要となり、かつ公害材料の使用も不
要となった。Therefore, the optical processing method of the present invention eliminates many steps required for a so-called photomask process, such as mask making, resist coating, etching by vapor deposition of a workpiece, resist removal, and the use of a pollution material. Became.
第1図は本発明の一実施例で、エキシマレーザを用いた
光加工方法を説明するための図である。FIG. 1 is a diagram for explaining an optical processing method using an excimer laser, which is an embodiment of the present invention.
第2図は本発明の一実施例で、エキシマレーザの光パタ
ーンを説明するための図である。FIG. 2 is a diagram for explaining the light pattern of the excimer laser in one embodiment of the present invention.
第1図および第2図において、光発生装置(1) は、エキ
シマレーザ(波長248 nm、Eg=5.0eV)を発生する。
初期のエキシマレーザビーム(20)は、第2図に示すよう
に、16mm×20mmの大きさを有し、効率3%であるため、35
0 mJを有する。In FIG. 1 and FIG. 2, the light generator (1) generates an excimer laser (wavelength 248 nm, Eg = 5.0 eV).
The initial excimer laser beam (20) has a size of 16 mm × 20 mm and an efficiency of 3%, as shown in Fig. 2.
It has 0 mJ.
さらに、このエキシマレーザビーム(20)は、ビームエキ
スパンダ(2) によって、拡大された後、反射鏡(3) で向
きを変えて、長面積化または大面積化される。すなわ
ち、第1図および第2図に示す符号(21)のように、エキ
シマレーザビーム(20)は、150mm ×300mm に拡大され
る。本実施例の光加工方法では、5.6 ×10-3mJ/mm2のエ
ネルギー密度が得られた。Further, the excimer laser beam (20) is expanded by the beam expander (2) and then turned by the reflecting mirror (3) to have a long area or a large area. That is, as indicated by reference numeral (21) in FIGS. 1 and 2, the excimer laser beam (20) is expanded to 150 mm × 300 mm. The optical processing method of this example provided an energy density of 5.6 × 10 -3 mJ / mm 2 .
さらに、エキシマレーザビーム(20)は、石英製のシリン
ドリカルレンズ(4-1) 、(4-2) 、(4-3) 、(4-4) によっ
て、開溝巾15μmで4本に分割するように、第1図図示
の符号(22)で示すように集光される。かくして、分割さ
れた長さ30cm、巾15μmのスリット状のエキシマレーザ
ビーム(20)は、基板(10)上の被加工物(11)に同時に照射
され、開溝(5) が形成される。Further, the excimer laser beam (20) is divided into four with a groove width of 15 μm by the quartz cylindrical lenses (4-1), (4-2), (4-3) and (4-4). Thus, the light is focused as indicated by the reference numeral (22) in FIG. Thus, the slit-shaped excimer laser beam (20) having a length of 30 cm and a width of 15 μm is simultaneously applied to the workpiece (11) on the substrate (10) to form the open groove (5).
被加工面として、ガラス状の基板上に形成された非単結
晶半導体層上にスパッタによりクロムを1500Å形成
したものを用いた。As the surface to be processed, there was used one in which chromium was formed on the non-single crystal semiconductor layer formed on the glass-like substrate by 1500 Å by sputtering.
また、エキシマレーザは、KrF を用い、その波長を248
nmとした。上記レーザパルス光は、その光学的エネル
ギーバンド巾が5.0eV であるため、非加工物(11)が十分
光を吸収し、開溝(5) の加工を容易にする。The excimer laser uses KrF and its wavelength is 248
nm. Since the optical energy band width of the laser pulse light is 5.0 eV, the non-processed object (11) absorbs the light sufficiently, and the groove (5) is easily processed.
上記レーザパルス光は、パルス巾20n 秒、繰り返し周波
数1Hzないし100Hz 、たとえば10Hz、平均出力1mJ/mm2
を使用した。The laser pulse light has a pulse width of 20 nsec, a repetition frequency of 1 Hz to 100 Hz, for example, 10 Hz, and an average output of 1 mJ / mm 2.
It was used.
この被膜に開溝(5) が形成される際に、1回のみの線状
のレーザパルス光の照射でこの部分が完全に昇華してし
まった。これをアセトン水溶液にての超音波洗浄(周波
数29KHz)を約1分ないし10分行い、被加工物を洗浄し
た。下地のガラスおよび金属導電膜、または透光性導電
膜と金属導電膜とを組み合わせたものは、全く損傷を受
けていなかった。When the groove (5) was formed in this film, this portion was completely sublimated by the irradiation of the linear laser pulse light only once. This was subjected to ultrasonic cleaning (frequency 29 KHz) with an aqueous acetone solution for about 1 to 10 minutes to clean the workpiece. The underlying glass and metal conductive film or the combination of the translucent conductive film and the metal conductive film was not damaged at all.
第3図は、基板上にスリット状の複数のレーザパルス光
を同時に照射した場合を説明するための図である。FIG. 3 is a diagram for explaining a case where a plurality of slit-shaped laser pulse lights are simultaneously irradiated on the substrate.
第3図において、スリット状の複数のレーザパルス光
は、第1回目が同時に照射されることにより、開溝(5-
1) 、(5-2) 、(5-3) 、(5-4) に形成される。次に、第
1図において符号(23)で示すXテーブルが、たとえば13
0 μm移動した後、第2回目のレーザパルス光を金属導
電膜、または透光性導電膜と金属導電膜とを組み合わせ
たものに照射することにより、開溝(6-1) 、(6-2) 、(6
-3) 、(6-4) が形成される。さらに、Xテーブル(23)が
130 μm移動した後、第3回目のレーザパルス光を金属
導電膜、または透光性導電膜と金属導電膜とを組み合わ
せたものに照射することにより、開溝(7-1) 、(7-2) 、
(7-3) 、(7-4) が形成される。In FIG. 3, a plurality of slit-shaped laser pulse lights are irradiated at the same time in the first time, so that the open groove (
1), (5-2), (5-3), and (5-4). Next, the X table indicated by reference numeral (23) in FIG.
After moving by 0 μm, the second laser pulse light is irradiated to the metal conductive film or the combination of the light-transmitting conductive film and the metal conductive film to open the grooves (6-1), (6- 2), (6
-3) and (6-4) are formed. Furthermore, the X table (23)
After moving by 130 μm, the third laser pulse light is irradiated to the metal conductive film or the combination of the light-transmitting conductive film and the metal conductive film to open the groove (7-1), (7- 2),
(7-3) and (7-4) are formed.
第n回目のレーザパルス光を金属導電膜、または透光性
導電膜と金属導電膜とを組み合わせたものに照射するこ
とにより、開溝(n-1) 、(n-2) 、(n-3、(n-4) が形成さ
る。By irradiating the n-th laser pulse light on a metal conductive film or a combination of a transparent conductive film and a metal conductive film, the open grooves (n-1), (n-2), (n- 3, (n-4) is formed.
このように、レーザパルス光を金属導電膜、または透光
性導電膜と金属導電膜とを組み合わせたものにn回照射
することにより、大面積を4n本の開溝に分割すること
ができる。In this way, by irradiating the laser pulsed light to the metal conductive film or the combination of the light-transmitting conductive film and the metal conductive film n times, a large area can be divided into 4n open grooves.
本実施例の光加工方法は、第3図に示される如く、1本
開溝を形成する場合の4倍の加工スピードにて4n本の開
溝を作ることができる。With the optical processing method of this embodiment, as shown in FIG. 3, 4n open grooves can be formed at a processing speed that is four times as fast as when forming one open groove.
しかし、かかる場合、たとえば開溝(n-1) と開溝(5-2)
との間隔、および開溝(5-1) と開溝(6-1) との間隔は、
テーブル(23)の移動精度により精度の高い等間隔にする
ことが困難である。However, in such a case, for example, open groove (n-1) and open groove (5-2)
And the distance between the groove (5-1) and the groove (6-1)
Due to the moving accuracy of the table (23), it is difficult to make the intervals even with high accuracy.
この場合、高い精度の開溝が要求されるならば、加工用
のレーザビームは、第1図において1本のみとすること
が有効である。かくすると、かかる隣あった群間の精度
を論ずる必要がなくなる。In this case, if a highly accurate groove is required, it is effective to use only one laser beam for processing in FIG. In this way, it is not necessary to discuss the accuracy between the adjacent groups.
次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.
水素または弗素が添加された非単結晶半導体(主成分珪
素)上には、ITO(酸化スズが5 重量%添加された酸化
インジューム)が1000Åの厚さに電子ビーム蒸着法によ
って形成される。さらに、その上面には、スパッタ法に
よりクロムが1500Åの厚さに形成され、これを被加工物
とした。On a non-single crystal semiconductor (main component silicon) to which hydrogen or fluorine is added, ITO (indium oxide containing 5% by weight of tin oxide) is formed to a thickness of 1000 Å by an electron beam evaporation method. Further, chromium was formed on the upper surface by a sputtering method to have a thickness of 1500 Å, which was used as a workpiece.
さらに、この被加工物は、減圧下(真空度10-5Torr以
下)に保持し、400nm以下の波長のパルス光が加えら
れた。この時のパルス光の波長は193nm(ArF)、パルス
巾10n 秒、平均出力2.3mJ/mm2とした。すると被加工面
のITO (酸化スズが5 重量%添加された酸化インジュー
ム)とクロムとは、昇華し、下地の半導体を損傷するこ
となく、この開溝により残った導電膜を絶縁化すること
ができた。Further, this workpiece was held under reduced pressure (vacuum degree of 10 −5 Torr or less), and pulsed light having a wavelength of 400 nm or less was applied. The wavelength of the pulsed light at this time was 193 nm (ArF), the pulse width was 10 nsec, and the average output was 2.3 mJ / mm 2 . Then, ITO (indium oxide containing 5% by weight of tin oxide) and chromium on the surface to be processed are sublimated, and the remaining conductive film is insulated by this groove without damaging the underlying semiconductor. I was able to.
本実施例において、金属としてクロムを用いたが、他の
金属、アルミニューム、ニッケル、マグネシューム、ス
テンレスでも同様である。Although chromium is used as the metal in this embodiment, the same applies to other metals, aluminum, nickel, magnesium, and stainless steel.
また、透光性導電膜も本実施例にのみ限定されることは
ない。なお、本実施例では、KrF(248nm)のエキシマレ
ーザを用いたが、他の400nm以下の波長の光でも有効
であった。Further, the translucent conductive film is not limited to this embodiment. In this example, the KrF (248 nm) excimer laser was used, but it was also effective with light having another wavelength of 400 nm or less.
本実施例によれば、多数のスリット状開溝を作製する、
たとえば130 μm間隔にて15μmの巾を1920本製造する
場合、この時間は4本分割とし、10Hz/ パルスとすると
0.8 分で可能となった。According to this embodiment, a large number of slit-shaped open grooves are produced,
For example, when manufacturing 1920 pieces of 15 μm width at 130 μm intervals, this time is divided into 4 pieces and 10 Hz / pulse is assumed.
It was possible in 0.8 minutes.
また、開溝の作製が1本のみであっても、3.2 分で加工
を行なうことが可能であった。その結果、従来のマスク
ライン方式でフォトマスクを用いてパターニーグを行う
場合に比べて、工程数が7工程より2工程(光照射、洗
浄)となった。また、開溝を形成するための作業時間
は、5分ないし10分とすることができ、多数の直線状開
溝を作る場合にきわめて低コスト、高生産性を図ること
ができるようになった。Even if only one groove was produced, it could be processed in 3.2 minutes. As a result, the number of steps was 2 instead of 7 (light irradiation and cleaning) as compared with the case of performing patterning using a photomask in the conventional mask line method. In addition, the working time for forming the open groove can be set to 5 minutes to 10 minutes, which makes it possible to achieve extremely low cost and high productivity when forming a large number of linear open grooves. .
本実施例において、開溝と開溝間の幅(加工せずに残す
面積)が開溝より幅が広い例を説明したが、光照射を隣
合わせて連結化することにより、この逆に残っている面
積を、たとえば20μm、除去する部分を400 μmとする
ことも可能である。In the present embodiment, an example in which the width between the open grooves (the area to be left without processing) is wider than that of the open groove has been described. It is also possible to set the area to be removed to 20 μm and the removed portion to 400 μm, for example.
この場合、集光スリットの巾を15μmより50μmないし
100 μmとすると生産性向上に有効である。In this case, the width of the condenser slit should be 50 μm or more than 15 μm.
100 μm is effective for improving productivity.
本発明によれば、400nm以下の波長のパルスレーザ光
を用いたため、金属導電膜、または透光性導電膜と金属
導電膜とを組み合わせたものに吸収し易く、金属導電
膜、または透光性導電膜と金属導電膜とを組み合わせた
ものが形成されている基板にマイクロクラックが形成さ
れない。According to the present invention, since pulsed laser light having a wavelength of 400 nm or less is used, it is easily absorbed by a metal conductive film or a combination of a light-transmitting conductive film and a metal conductive film. Microcracks are not formed on a substrate on which a combination of a conductive film and a metal conductive film is formed.
また、本発明によれば、400nm以下の波長のパルスレ
ーザ光が平行に配設されたシリンドリカルレンズによっ
て線状に集光されているため、光エネルギーのバラツキ
が少なく、金属導電膜、または透光性導電膜と金属導電
膜とを組み合わせたものの微細加工を可能とした。Further, according to the present invention, since the pulsed laser light having a wavelength of 400 nm or less is linearly condensed by the cylindrical lens arranged in parallel, the variation in light energy is small, and the metal conductive film or the transparent film is used. Microfabrication of a combination of a conductive conductive film and a metal conductive film has become possible.
さらに、本発明によれば、400nm以下の波長のパルス
レーザ光が金属導電膜、または透光性導電膜と金属導電
膜とを組み合わせたものを充分に昇華させることができ
るので、光加工によって出る残渣の清掃を簡単にすると
共に、導電体の絶縁化が行なわれる。Furthermore, according to the present invention, pulsed laser light having a wavelength of 400 nm or less can sufficiently sublime a metal conductive film or a combination of a light-transmitting conductive film and a metal conductive film. Cleaning of the residue is simplified and insulation of the electric conductor is performed.
第1図は本発明の一実施例で、エキシマレーザを用いた
光加工方法を説明するための図である。 第2図は本発明の一実施例で、エキシマレーザの光パタ
ーンを説明するための図である。 第3図は基板上にスリット状の複数のレーザパルス光を
同時に照射した場合を説明するための図である。 1……光発生装置 2……ビームエキスパンダ 3……反射鏡 4……シリンドリカルレンズ 5……開溝 10……基板 11……被加工物 20……エキシマレーザビーム 21……拡大されたエキシマレーザビーム 22……集光されたエキシマレーザビーム 23……XテーブルFIG. 1 is a diagram for explaining an optical processing method using an excimer laser, which is an embodiment of the present invention. FIG. 2 is a diagram for explaining the light pattern of the excimer laser in one embodiment of the present invention. FIG. 3 is a diagram for explaining a case where a plurality of slit-shaped laser pulse lights are simultaneously irradiated on the substrate. 1 ... Light generator 2 ... Beam expander 3 ... Reflecting mirror 4 ... Cylindrical lens 5 ... Open groove 10 ... Substrate 11 ... Workpiece 20 ... Excimer laser beam 21 ... Enlarged excimer Laser beam 22 ... Focused excimer laser beam 23 ... X table
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 H01S 3/00 B 8934−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 31/04 H01S 3/00 B 8934-4M
Claims (2)
ムエキスパンダにて大面積化または長面積化して、基板
上に形成された金属導電膜、または透光性導電膜と金属
導電膜とを組み合わせたものに照射することにより、前
記金属導電膜、または透光性導電膜と金属導電膜とを組
み合わせたものに、一つまたは複数の開溝を形成する光
加工方法であって、 前記パルスレーザ光は、平行に配設された一つまたは複
数のシリンドリカルレンズにより、一つまたは複数の線
状のパルス光に集光されることを特徴とする光加工方
法。1. A metal conductive film, or a light-transmitting conductive film and a metal conductive film formed on a substrate by increasing the area of a pulse laser beam having a wavelength of 400 nm or less with a beam expander or increasing the area of the pulse laser light. By irradiating a combination of the metal conductive film, or a combination of a light-transmitting conductive film and a metal conductive film, an optical processing method for forming one or a plurality of grooves. The optical processing method, wherein the pulsed laser light is condensed into one or a plurality of linear pulsed lights by one or a plurality of cylindrical lenses arranged in parallel.
エキシマレーザであることを特徴とする特許請求の範囲
第1項記載の光加工方法。2. A pulsed laser beam having a wavelength of 400 nm or less is
The optical processing method according to claim 1, which is an excimer laser.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59227499A JPH0626207B2 (en) | 1984-10-29 | 1984-10-29 | Light processing method |
CN85108626.8A CN1004245B (en) | 1984-10-29 | 1985-10-28 | Manufacturing method of electronic device |
US06/791,733 US4680855A (en) | 1984-10-29 | 1985-10-28 | Electronic device manufacturing methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59227499A JPH0626207B2 (en) | 1984-10-29 | 1984-10-29 | Light processing method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7127523A Division JP2807809B2 (en) | 1995-04-28 | 1995-04-28 | Light processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61105885A JPS61105885A (en) | 1986-05-23 |
JPH0626207B2 true JPH0626207B2 (en) | 1994-04-06 |
Family
ID=16861845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59227499A Expired - Lifetime JPH0626207B2 (en) | 1984-10-29 | 1984-10-29 | Light processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0626207B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH065778B2 (en) * | 1985-12-17 | 1994-01-19 | 株式会社富士電機総合研究所 | Method for manufacturing optical semiconductor device |
JP2791226B2 (en) * | 1991-03-08 | 1998-08-27 | キヤノン株式会社 | Method of manufacturing recording head and recording head |
JPH06102410A (en) * | 1992-09-21 | 1994-04-15 | Matsushita Electric Ind Co Ltd | Pattern formation method |
JPH10172762A (en) | 1996-12-11 | 1998-06-26 | Sanyo Electric Co Ltd | Method of manufacturing display device using electroluminescence element and display device |
JP2002261315A (en) * | 2001-03-05 | 2002-09-13 | Kanegafuchi Chem Ind Co Ltd | Method of manufacturing thin-film photoelectric conversion module |
CN101572215B (en) | 2008-04-28 | 2011-04-27 | 财团法人工业技术研究院 | Fabrication method of patterned metal layer and thin film transistor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5996783A (en) * | 1983-09-12 | 1984-06-04 | Semiconductor Energy Lab Co Ltd | Photoelectric conversion device |
JPS6189636A (en) * | 1984-10-08 | 1986-05-07 | Semiconductor Energy Lab Co Ltd | Optical processing method |
JPH0626207A (en) * | 1992-07-06 | 1994-02-01 | Itsuo Maeda | Free locking form |
-
1984
- 1984-10-29 JP JP59227499A patent/JPH0626207B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61105885A (en) | 1986-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0563274B2 (en) | ||
US4190759A (en) | Processing of photomask | |
JP3001816B2 (en) | Laser scribing on glass using Nd: YAG laser | |
JPH01245993A (en) | Thin film working device | |
JPS6240986A (en) | Laser processing method | |
JPS6189636A (en) | Optical processing method | |
Tseng et al. | Electrode patterning on PEDOT: PSS thin films by pulsed ultraviolet laser for touch panel screens | |
JPH10242489A (en) | Manufacturing method of thin film solar cell | |
CN107498183A (en) | It is a kind of that the method for preparing large area periodic structure is induced with linear light spot | |
KR100395598B1 (en) | Etching Method of Transparent Electrode on Touchscreen using Laser | |
JPH0626207B2 (en) | Light processing method | |
JP2807809B2 (en) | Light processing method | |
JP2616767B2 (en) | Light treatment method | |
JPS63215390A (en) | Light machining method | |
JPS63220991A (en) | Laser beam machining method | |
JPH0624198B2 (en) | Light processing method | |
JP2808220B2 (en) | Light irradiation device | |
JP2706716B2 (en) | Film processing apparatus and film processing method | |
EP4408602A2 (en) | Method of and apparatus for cutting a substrate or preparing a substrate for cleaving | |
JPH10125632A (en) | Method and apparatus for laser etching | |
JPH0356557B2 (en) | ||
JPH02317A (en) | Thin film working method | |
JPH0652727B2 (en) | Light processing method | |
JP3374889B2 (en) | Thin film processing method | |
JPS63212084A (en) | Laser processing equipment |