[go: up one dir, main page]

JPH0626169B2 - Method and apparatus for forming rare earth magnet in magnetic field - Google Patents

Method and apparatus for forming rare earth magnet in magnetic field

Info

Publication number
JPH0626169B2
JPH0626169B2 JP59273835A JP27383584A JPH0626169B2 JP H0626169 B2 JPH0626169 B2 JP H0626169B2 JP 59273835 A JP59273835 A JP 59273835A JP 27383584 A JP27383584 A JP 27383584A JP H0626169 B2 JPH0626169 B2 JP H0626169B2
Authority
JP
Japan
Prior art keywords
magnetic field
powder
die
aggregate
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59273835A
Other languages
Japanese (ja)
Other versions
JPS61154118A (en
Inventor
哲人 米山
保次 瀬古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59273835A priority Critical patent/JPH0626169B2/en
Publication of JPS61154118A publication Critical patent/JPS61154118A/en
Publication of JPH0626169B2 publication Critical patent/JPH0626169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高性能の磁気特性を有する希土類磁石の磁場中
成型方法および装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and apparatus for forming a rare earth magnet having high performance magnetic properties in a magnetic field.

SmCo5,Cu添加Sm2Co17,Nd−Fe−B系のような磁石は従来
のフェライト、アルニコ磁石と比較して高い性能を有す
るため広い分野で使われるようになってきている。この
希土類磁石の各種用途への応用に際して、磁石の異方性
化の方向が単一の方向のものばかりでなく特殊な分布を
もった磁石の要求も多い。希土類磁石の高性能を磁石特
性を各種用途で発揮させるためにそのような特殊配向要
請に答える必要がある。例えば、特殊な磁化分布のう
ち、異方性化の方面がいわゆるラジアル(放射状)分布
となっているリング状磁石は、ステッピングモータ、リ
ニアアクチュエータ、磁気カップリング等への応用に際
し優れた性能を示すと期待されている。
Magnets such as SmCo 5 , Cu-added Sm 2 Co 17 , and Nd-Fe-B systems have been used in a wide range of fields because they have higher performance than conventional ferrite and alnico magnets. In applying the rare earth magnets to various uses, there are many demands not only for magnets having a single anisotropy direction but also for magnets having a special distribution. It is necessary to meet such special orientation demands in order to exert the high performance of rare earth magnets in various applications. For example, of the special magnetization distribution, a ring-shaped magnet whose anisotropy direction is a so-called radial distribution exhibits excellent performance when applied to stepping motors, linear actuators, magnetic couplings, etc. Is expected.

(従来の技術) しかしながら、ラジアル分布等の特殊な磁化分布を有す
る磁石は、製造方法上困難な点があり、実用化に制限が
あった。
(Prior Art) However, a magnet having a special magnetization distribution such as a radial distribution is difficult in terms of a manufacturing method, and its practical use is limited.

従来、このような点を改良するために、希土類磁石の材
料粉末を任意の方向の着磁磁界で着磁した後、配向磁界
を印加した状態で成型すれば、低い配向磁界で高配向度
が得られるとの考案に基づいた磁場中成型方法が提案さ
れている(特開昭56-30706号)。この方法で具体的に磁
場中成型されているラジアル方向配向のリング状希土類
磁石の製造方法は、上下パンチ、リング状磁石の中心孔
を画成する中棒、およびリング状磁石の外面を画成する
臼より構成される成型装置に、1個の着磁用空心コイル
および配向コイルを附設し、着磁コイルにより5KOe 以
上の磁場を発生させ上下一方向に流れる磁束により着磁
した後に、ラジアル方向に弱い配向磁場を加えた状態で
上下パンチ間で材料粉末を圧縮する機能を有するもので
ある。
Conventionally, in order to improve such a point, if a rare earth magnet material powder is magnetized with a magnetizing magnetic field in an arbitrary direction and then molded with an orientation magnetic field applied, a high orientation degree is obtained with a low orientation magnetic field. A molding method in a magnetic field based on the idea that it can be obtained has been proposed (JP-A-56-30706). The method of manufacturing a ring-shaped rare earth magnet oriented in the radial direction, which is specifically molded in a magnetic field by this method, defines the upper and lower punches, the center rod that defines the center hole of the ring magnet, and the outer surface of the ring magnet. A magnetizing air core coil and an orientation coil are attached to the molding machine, and a magnetic field of 5 KOe or more is generated by the magnetizing coil and magnetized by the magnetic flux flowing in one direction up and down, and then in the radial direction. It has a function of compressing the material powder between the upper and lower punches while applying a weak orientation magnetic field.

(発明が解決しようとする問題点) しかしながら、上述の装置では特に高保磁力を有する粉
末、例えばプラスチック磁石用として非ニュークリエシ
ヨン型のCu添加2−17系希土類コバルト系磁石のような
時効後保磁力(IHc)が通常の焼結磁石における磁場配
向時の5倍以上となるような状態で使用される粉末の場
合、極めて不十分な結果しか得られない。
(Problems to be Solved by the Invention) However, in the above-mentioned device, a powder having a particularly high coercive force, for example, a non-nuclear type Cu-added 2-17 series rare earth cobalt series magnet for a plastic magnet is used after the aging protection. In the case of the powder used in a state where the magnetic force ( I Hc) is 5 times or more that in the magnetic field orientation in a normal sintered magnet, extremely insufficient results are obtained.

本発明者らは、このような高IHcを有する磁石粉末のラ
ジアル配向について鋭意検討した結果、着磁磁束がリン
グ状粉体内を円筒軸線方向に流れるような着磁方法では
材料のIHcに対して着磁による磁化強度が十分でなくひ
いては配向成が不十分になることを見出した。
The inventors of the present invention have diligently studied the radial orientation of the magnet powder having such a high I Hc, and as a result, the magnetizing magnetic flux is applied to the I Hc of the material in the magnetizing method such that the magnetizing magnetic flux flows in the cylindrical powder axial direction. On the other hand, it was found that the magnetization intensity due to the magnetization was not sufficient, which resulted in insufficient orientation.

(問題点を解決するための手段) 本発明者等は上述の問題点を解決すべく着磁磁界印加法
について研究した結果、同極対向の着磁磁界印加用磁場
発生コイルにパルス状放射状反撥磁場を発生させた場合
のみ十分な着磁磁場ひいては配向度が得られることがわ
かり本発明に至ったものである。
(Means for Solving Problems) As a result of research on a magnetizing magnetic field applying method for solving the above-mentioned problems, the present inventors have found that pulse-like radial repulsion is applied to the magnetizing magnetic field applying magnetic field generating coils facing the same pole. It was found that a sufficient magnetizing magnetic field and thus the degree of orientation can be obtained only when a magnetic field is generated, which led to the present invention.

即ち、同極対向の着磁磁化印加用パルス磁場発生コイル
を、臼の上下に配置することで高保磁力の粉末の集合体
を着磁することができる。したがって、本発明の着磁磁
化印加用パルス磁場発生コイルの配置は、従来技術の着
磁コイルが臼の回りを取り巻く配置と全く異なってい
る。
That is, by arranging magnetizing and magnetizing applying pulse magnetic field generating coils facing each other at the same pole above and below the die, it is possible to magnetize a powder aggregate having a high coercive force. Therefore, the arrangement of the pulsed magnetic field generating coil for applying magnetization according to the present invention is completely different from the arrangement in which the conventional magnetizing coil surrounds the die.

この知見を具体化した本発明方法では、成型、配向、熱
処理、ボンディング等の適当な処理を施こされて希土類
磁石の材料となる粉末を適当なまとまりを有する集合体
としての形状を保持し、例えば環状または円盤形状を有
するかかる集合体に対して同極対向の着磁磁界印加用パ
ルス磁場発生コイルより発生する磁場を加えると、該磁
場が集合体内で反撥して集合体外に洩れる際に、集合体
には極めて大きな着磁磁場が生じることになる。このよ
うな同極対向磁化コイルを集合体の円筒軸線上に配置す
ると同極対向による反撥磁場は該集合体に対して放射方
向に流れるようになる。
In the method of the present invention embodying this finding, molding, orientation, heat treatment, the powder as a material of the rare earth magnet is subjected to an appropriate treatment such as bonding, to maintain the shape as an aggregate having an appropriate unit, For example, when a magnetic field generated by a magnetizing magnetic field applying pulse magnetic field generating coil of the same polarity is applied to such an aggregate having an annular or disc shape, when the magnetic field repels inside the aggregate and leaks out of the aggregate, An extremely large magnetic field is generated in the aggregate. When such a homopolar facing magnetizing coil is arranged on the cylindrical axis of the assembly, the repulsive magnetic field due to the homopolar facing flows in the radial direction with respect to the assembly.

本発明方法では上記放射方向の同極対向の反撥磁場を印
加しながら成型を行うと放射状配向磁石が着磁工程で得
られる。このため、この方法では着磁のために大出力磁
化コイル必要になるが、特に配向工程を着磁と別工程で
行う必要はなくなる。
In the method of the present invention, when the molding is carried out while applying the repulsive magnetic field of the same polarity opposite to each other in the radial direction, the radially oriented magnet is obtained in the magnetizing step. For this reason, this method requires a high-power magnetizing coil for magnetization, but it is not necessary to perform the alignment step separately from the magnetization.

また、本発明方法では着磁後、集合体を配向磁場中で成
型すると弱い配向磁場中で放射状配向磁石を製造するこ
とができる。この方法では集合体を容器または型から取
り出した後に成型してもよく、あるいは該型内で集合体
で成型を続けて行ってもよい。
In addition, according to the method of the present invention, if the assembly is molded in an orientation magnetic field after being magnetized, a radial orientation magnet can be manufactured in a weak orientation magnetic field. In this method, the aggregate may be molded after being taken out from the container or the mold, or the aggregate may be continuously molded in the mold.

本発明に係る装置は、型を用いて上記粉末をリング形状
の集合体として保持し、そして着磁磁界印加用コイルと
配向用コイルを用いて放射方向異方性希土類磁石を製造
する装置であって、その要旨とするところは、貫通穴を
有する臼とその貫通穴に嵌入可能な上パンチおよび下パ
ンチと臼の上下に着磁磁界印加用パルス磁場発生コイル
と、中棒と配向コイルの磁界と磁気的につながったヨー
ク上の位置又は着磁磁界印加用コイルと同方向の位置に
配置された配向磁界印加用磁場コイルとを備えたことを
特徴とすることにある。
The apparatus according to the present invention is an apparatus for holding the above-mentioned powder as a ring-shaped aggregate by using a mold, and manufacturing a radial anisotropic rare earth magnet using a magnetizing magnetic field applying coil and an orienting coil. The gist of this is that the mill having a through hole, the upper punch and the lower punch that can be fitted into the through hole, the pulse magnetic field generating coil for applying a magnetizing magnetic field above and below the mill, and the magnetic field of the center rod and the orientation coil. It is characterized in that it is provided with a magnetic field coil for applying an orienting magnetic field which is arranged at a position on the yoke which is magnetically connected to the magnetic field or a coil for applying a magnetic field.

(作 用) 特にリング状配向磁石製造用型内で着磁を行う場合は、
上記した粉末の集合体の周囲に存在する強磁性の型部材
が該粉末より透磁率が高いことが多いために、着磁の磁
束は型部材を流れ易い。ところが本発明の方法による
と、同極対向の磁場が反撥し合うために、強磁性の型部
材が存在していても、反撥による転向された磁束は粉末
を強力に着磁するのである。勿論強磁性の型部材が粉末
の集合体の周りに存在していなくとも本発明方法は有用
であり、反撥磁場は粉末を一層強力に着磁するものであ
る。よって、近年益々高性能化する磁石材料を有効に着
磁しひいては配向度を高めるために本発明方法は有用性
が高いと言える。
(Working) Especially when magnetizing in a ring-shaped oriented magnet manufacturing mold,
Since the ferromagnetic mold member existing around the above-mentioned powder aggregate is often higher in magnetic permeability than the powder, the magnetic flux of magnetization easily flows through the mold member. However, according to the method of the present invention, since magnetic fields of the same polarity are repelled by each other, even if there is a ferromagnetic mold member, the magnetic flux deflected by the repulsion strongly magnetizes the powder. Of course, the method of the present invention is useful even if the ferromagnetic mold member does not exist around the powder aggregate, and the repulsive magnetic field magnetizes the powder more strongly. Therefore, it can be said that the method of the present invention is highly useful in order to effectively magnetize a magnet material which has been improved in performance in recent years and thus to enhance the degree of orientation.

(実施例) 以下、本発明の実施例を図面に従って説明する。(Example) Hereinafter, the Example of this invention is described according to drawing.

第1図および第2図は希土類コバルト磁石の磁場中成型
装置の概略構成を示す。この図において、臼1の中心部
には円柱状の貫通穴2が形成されており、この貫通穴2
に上方より嵌合するように上パンチ3が上下移動自在に
配置され、前記貫通穴2に下方より嵌合するように下パ
ンチ4が上下移動自在に配置される。前記上パンチ3の
中心には中棒5が挿入され、下パンチ4の中心には中棒
6が上下移動自在に設けられる。ここで、上パンチ3及
び下パンチ4は非磁性材であり、臼1、中棒5、中棒6
及び外部ヨーク10は飽和磁束密度Bs≧10KGの磁性材で構
成される。前記臼1の近傍には、外部ヨーク10を通して
同極対向の配向磁界印加用磁場発生コイル7A,7Bが
同極で相対するように配設され、前記上パンチ3及び下
パンチ4の近傍でなおかつ臼1の上下面近傍には同極対
向の着磁磁界印加用パルス磁場発生コイル8A,8Bが
配設される。
FIG. 1 and FIG. 2 show a schematic configuration of a device for molding a rare earth cobalt magnet in a magnetic field. In this figure, a cylindrical through hole 2 is formed in the center of the die 1, and the through hole 2
The upper punch 3 is arranged so as to be vertically movable so as to be fitted into the through hole 2, and the lower punch 4 is arranged so as to be vertically moved so as to be fitted into the through hole 2 from below. A center rod 5 is inserted in the center of the upper punch 3 and a center rod 6 is provided in the center of the lower punch 4 so as to be vertically movable. Here, the upper punch 3 and the lower punch 4 are non-magnetic materials, and are the die 1, the center rod 5, and the center rod 6.
The outer yoke 10 is composed of a magnetic material having a saturation magnetic flux density Bs ≧ 10 KG. In the vicinity of the die 1, magnetic field generating coils 7A and 7B having the same poles and facing each other and having the same poles are arranged so as to face each other with the same poles through an outer yoke 10, and in the vicinity of the upper punch 3 and the lower punch 4 as well. In the vicinity of the upper and lower surfaces of the die 1, magnetizing magnetic field applying pulse magnetic field generating coils 8A and 8B facing each other are arranged.

配向磁界印加用コイル7A,7Bによる磁界は第2図に
矢印で示すように臼1内に充填される材料粉末9に対し
てラジアル方向に加わるものであり、臼1、中棒5、中
棒6及び外部ヨーク10を磁性材で構成したのでラジアル
方向の磁界を効率よく発生できるようになっている。し
かしながら通常得られる配向磁場の絶対値は低い。
The magnetic field generated by the orientation magnetic field applying coils 7A and 7B is applied in the radial direction to the material powder 9 filled in the die 1 as shown by the arrow in FIG. Since 6 and the outer yoke 10 are made of a magnetic material, it is possible to efficiently generate a magnetic field in the radial direction. However, the absolute value of the orientation magnetic field that is usually obtained is low.

以上の構成において、本発明のラジアル配向希土類磁石
の磁場中成型は次のようにして行う。まず、臼1内に下
パンチ4を嵌合させかつ中棒6を突出させた状態で材料
粉末9を臼1の貫通穴2に入れる。
In the above structure, the radial orientation rare earth magnet of the present invention is molded in a magnetic field as follows. First, the material powder 9 is put into the through hole 2 of the die 1 with the lower punch 4 fitted in the die 1 and the center rod 6 protruding.

次いで、上パンチを臼1の上面附近に移動させ、同極対
向の着磁磁界印加用コイル8A,8Bにパルス電流を通
電する。得られるパルス放射状磁場を利用し、少なくと
も粉対の1Hc以上の強力な着磁磁界を印加し、材料粉末
9を予め着磁する。この場合、空心コイルで8A,8B
を異極とする1方向発生磁場発生手段とする大磁場の発
生が容易である。しかし、この場合、臼1および磁性体
5および中棒6が存在すると、磁束の大半が強磁性体中
を流れるため貫通穴2には2〜3KOe の極めて弱い着磁
磁界しか発生しない。しかしながら同極空心コイル8
A,8Bは、小さな磁場しか発生しないが、反発放射状
磁場を発生させるので臼1、中棒5、中棒6が瞬間的に
放射状方向に磁化され、中棒6と臼の間のキャビティー
に、大きな着磁磁場が発生する。
Then, the upper punch is moved to the vicinity of the upper surface of the die 1, and a pulse current is applied to the magnetizing magnetic field applying coils 8A and 8B facing each other of the same pole. Using the obtained pulsed radial magnetic field, a strong magnetizing magnetic field of at least 1 Hc of the powder pair is applied to pre-magnetize the material powder 9. In this case, air core coil 8A, 8B
It is easy to generate a large magnetic field using the one-way generated magnetic field generating means having a different polarity. However, in this case, when the die 1, the magnetic body 5 and the center rod 6 are present, most of the magnetic flux flows in the ferromagnetic body, so that only a very weak magnetizing magnetic field of 2 to 3 KOe is generated in the through hole 2. However, homopolar air core coil 8
Although A and 8B generate only a small magnetic field, they generate a repulsive radial magnetic field, so that the mortar 1, the center rod 5, and the center rod 6 are instantaneously magnetized in the radial direction, and the cavities between the center rod 6 and the mortar are generated. , A large magnetizing magnetic field is generated.

材料粉末9を着磁後、着磁磁界印加用コイル8A,8B
への通電を停止し、配向磁界印加用コイル7A,7Bに
夫々通電して材料の1Hc以下の比較的弱いラジアル方向
の配向磁界を印加した状態で上パンチ3を下降させ材料
粉末9を圧縮成型する。この結果、異方性化の方向がラ
ジアル方向となったリング状の成型体が得られる。
After magnetizing the material powder 9, the magnetizing magnetic field applying coils 8A, 8B
To the orientation magnetic field applying coils 7A and 7B by applying a relatively weak radial orientation magnetic field of 1 Hc or less of the material and lowering the upper punch 3 to compress the material powder 9 Mold. As a result, a ring-shaped molded body is obtained in which the direction of anisotropy is the radial direction.

第3図は、材料粉末9(第1図)としてSm25.5%、Cu8
%、Fe15%、Zr 1.5%、Co50%の組成および1Hc=7KOe
の保磁力を有するものを使用し、外径27mm、内径23m
m、高さ12mmのラジアル配向リングを成型した場合の配
向磁界強度と配向度、残留磁化(Br)および最大エネル
ギー積((BH)m) との関係を示すグラフである。この図に
おいて、曲線Aは着磁磁界を印加しないでラジアル配向
した場合、曲線Bは磁場中成型前に異極を対向させた着
磁コイルの1方向パルス磁界にて、Cは反発放射状パル
ス磁場にて材料粉末9を着磁後磁場中成型した場合の特
性を示す。ただし、図中の配向度は1方向配向による配
向磁界強度12KOe の配向を1として表わしてある。この
場合、A,Bでは50〜60%程度の配向度しか得られな
い。しかしながら本発明によるCの放射状着磁磁場を用
いた場合、配向度約90%と極めて顕著な効果を示してい
る。
Fig. 3 shows Sm25.5%, Cu8 as material powder 9 (Fig. 1).
%, Fe15%, Zr 1.5%, Co50% composition and 1 Hc = 7KOe
With a coercive force of, outer diameter 27 mm, inner diameter 23 m
6 is a graph showing the relationship between the orientation magnetic field strength, orientation degree, residual magnetization (Br), and maximum energy product ((BH) m ) when a radial orientation ring with m and a height of 12 mm is molded. In this figure, when curve A is radially oriented without applying a magnetizing magnetic field, curve B is a one-way pulse magnetic field of a magnetizing coil with opposite poles facing each other before molding in a magnetic field, and C is a repulsive radial pulse magnetic field. Shows the characteristics when the material powder 9 is magnetized and then molded in a magnetic field. However, the degree of orientation in the figure is represented by the orientation of 1 directional orientation magnetic field strength of 12 KOe. In this case, in A and B, only a degree of orientation of about 50 to 60% can be obtained. However, when the radial magnetizing magnetic field of C according to the present invention is used, the degree of orientation is about 90%, which is a very remarkable effect.

(発明の効果) 従来高配向が困難であった保磁力の高い材料粉末に本発
明方法を適用するラジアル配向のマグネットが得られ
る。
(Effects of the Invention) A radially oriented magnet can be obtained in which the method of the present invention is applied to a material powder having a high coercive force, which has been difficult to achieve high orientation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を実施するための装置の一実施例を
示す部分断面図、 第2図は第1図のII−II線平面図に配向磁界の方向を書
入れた図面、 第3図は配向磁界と(BH)max ,Br、配向度との関係を
示すグラフである。 1……臼、2……貫通孔、 3,4……パンチ、5,6……中棒、 7A,7B……同極対向で放射方向の配向磁界印加用磁
場発生コイル、 8A,8B……同極対向の着磁磁界印加用パルス磁場発
生コイル、 9……粉末の集合体、10……外部ヨーク。
FIG. 1 is a partial sectional view showing an embodiment of an apparatus for carrying out the method of the present invention, FIG. 2 is a plan view of the II-II line of FIG. The figure is a graph showing the relationship between the orientation magnetic field, (BH) max , Br, and the degree of orientation. 1 ... Mortar, 2 ... Through hole, 3, 4 ... Punch, 5, 6 ... Middle rod, 7A, 7B ... Magnetic field generating coil for applying an orienting magnetic field in the radial direction with the same pole facing each other, 8A, 8B ... ... Pulse magnetic field generating coil for magnetizing magnetic field application facing the same pole, 9 ... Powder aggregate, 10 ... External yoke.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】希土類磁石の磁場中成型方法において、 臼(1)の上下に配置する同極対向の着磁磁化印加用パ
ルス発生コイル(8a、8b)によって前記希土類磁石
の原料となる粉末の集合体(9)に対して放射方向に印
加されるパルス磁場を印加し、 前記粉末の集合体を配向方向と同方向の磁場で着磁し、 着磁と同時に前記臼と中棒をつなぐヨーク上に配置する
同極対向の放射方向配向磁界印加用磁場発生コイル(7
a、7b)によって前記粉末の集合体に対して放射状配
向磁場を印加し、且つ、 放射状磁場を印加した状態で前記粉末の集合体を成型す
ることを特徴とする希土類磁石の磁場中成型方法。
1. A method of molding a rare earth magnet in a magnetic field, wherein a powder as a raw material of the rare earth magnet is produced by magnetizing magnetization applying pulse generating coils (8a, 8b) arranged on the upper and lower sides of a die (1) and facing each other with the same polarity. A pulse magnetic field applied in a radial direction is applied to the aggregate (9) to magnetize the powder aggregate with a magnetic field in the same direction as the orientation direction, and at the same time as the magnetization, a yoke that connects the die and the intermediate rod. A magnetic field generating coil (7) for applying a radially oriented magnetic field facing each other of the same pole
a, 7b) a radial orientation magnetic field is applied to the powder aggregate, and the powder aggregate is molded in a state in which the radial magnetic field is applied.
【請求項2】希土類磁石の磁場中成型方法において、 臼(1)の上下に配置する同極対向の着磁磁化印加用パ
ルス発生コイル(8a、8b)によって前記希土類磁石
の原料となる粉末の集合体(9)に対して放射方向に印
加されるパルス磁場を印加し、 前記粉末の集合体を配向方向と同方向の磁場で着磁し、 前記臼と中棒をつなぐヨーク上に配置する同極対向の放
射方向配向磁界印加用磁場発生コイル(7a、7b)に
よって着磁後に前記粉末の集合体に対して放射状配向磁
場を印加し、且つ、 放射状磁場を印加した状態で前記粉末の集合体を成型す
ることを特徴とする希土類磁石の磁場中成型方法。
2. A method for molding a rare earth magnet in a magnetic field, wherein a powder for use as a raw material for the rare earth magnet is produced by magnetizing and magnetization applying pulse generating coils (8a, 8b) arranged on the upper and lower sides of a die (1) and facing each other. A pulsed magnetic field applied in a radial direction is applied to the aggregate (9), the powder aggregate is magnetized with a magnetic field in the same direction as the orientation direction, and the powder is placed on a yoke connecting the die and the intermediate rod. After the magnetic field generating coils (7a, 7b) for applying the radial orientation magnetic field of the same pole are magnetized, a radial orientation magnetic field is applied to the powder aggregate after the magnetization, and the powder aggregate is applied with the radial magnetic field applied. A method for molding a rare earth magnet in a magnetic field, which comprises molding a body.
【請求項3】希土類磁石の磁場中成型装置において、 貫通穴(2)を有する中空円筒状の臼(1)、前記臼の
貫通穴に嵌入可能で上下移動自在に配置された中空円筒
状の上パンチ(3)、前記臼の貫通穴に嵌入可能で上下
移動自在に配置された中空円筒状の下パンチ(4)、前
記上パンチの円筒部の下端まで貫通する中棒(5)、前
記下パンチの円筒部を貫通して前記臼上端部まで達する
中棒(6)、前記臼と前記中棒が組み込まれた前記下パ
ンチとで形成された中空部に装填される粉末の集合体
(9)、前記臼の上下に位置する同極対向の着磁磁界印
加用パルス磁場発生コイル(8a、8b)、前記臼と中
棒をつなぐヨーク(10)、及び前記ヨーク上に配置す
る同極対向で放射方向の配向磁界印加用磁場発生コイル
(7a、7b)とを備えたことを特徴とする希土類磁石
の磁場中成型装置。
3. A device for molding a rare earth magnet in a magnetic field, comprising a hollow cylindrical die (1) having a through hole (2), and a hollow cylindrical die which can be fitted in the through hole of the die and is vertically movable. An upper punch (3), a hollow cylindrical lower punch (4) that can be fitted in a through hole of the die and is arranged to be movable up and down, a middle rod (5) that penetrates to the lower end of the cylindrical portion of the upper punch, An aggregate (6) of a powder that penetrates the cylindrical portion of the lower punch and reaches the upper end of the die, and an aggregate of powder loaded in a hollow portion formed by the die and the lower punch in which the intermediate rod is incorporated ( 9), magnetizing magnetic field applying pulse magnetic field generating coils (8a, 8b) located above and below the mortar, facing each other with the same pole, a yoke (10) connecting the mortar and the intermediate rod, and a homopole arranged on the yoke. Equipped with magnetic field generating coils (7a, 7b) for applying an orienting magnetic field in the radiation direction facing each other A device for molding rare earth magnets in a magnetic field.
JP59273835A 1984-12-27 1984-12-27 Method and apparatus for forming rare earth magnet in magnetic field Expired - Fee Related JPH0626169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59273835A JPH0626169B2 (en) 1984-12-27 1984-12-27 Method and apparatus for forming rare earth magnet in magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273835A JPH0626169B2 (en) 1984-12-27 1984-12-27 Method and apparatus for forming rare earth magnet in magnetic field

Publications (2)

Publication Number Publication Date
JPS61154118A JPS61154118A (en) 1986-07-12
JPH0626169B2 true JPH0626169B2 (en) 1994-04-06

Family

ID=17533206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273835A Expired - Fee Related JPH0626169B2 (en) 1984-12-27 1984-12-27 Method and apparatus for forming rare earth magnet in magnetic field

Country Status (1)

Country Link
JP (1) JPH0626169B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252119A (en) * 1986-04-24 1987-11-02 Seiko Epson Corp Manufacture of radial anisotropic magnet
CA1301602C (en) * 1987-11-18 1992-05-26 Vijay K. Chandhok Method and assembly for producing extruded permanent magnet articles
TWI298892B (en) * 2002-08-29 2008-07-11 Shinetsu Chemical Co Radial anisotropic ring magnet and method of manufacturing the ring magnet
DE60328506D1 (en) 2002-09-19 2009-09-03 Nec Tokin Corp METHOD FOR PRODUCING A BONDED MAGNET AND METHOD FOR PRODUCING A MAGNETIC DEVICE WITH BONDED MAGNET

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4980595A (en) * 1972-12-12 1974-08-03
JPS589805B2 (en) * 1975-07-14 1983-02-23 富士通株式会社 KIDOLI COBALTO
JPS5630706A (en) * 1979-08-23 1981-03-27 Tdk Corp Method and device for formation of eare earth cobalt magnet in magnetic field

Also Published As

Publication number Publication date
JPS61154118A (en) 1986-07-12

Similar Documents

Publication Publication Date Title
JPS6359243B2 (en)
JPS6427208A (en) Cylindrical permanent magnet, motor using same and manufacture thereof
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
CN101118807B (en) Magnetic aligning device of aeolotropism adhesive bonding or sintered multipolar annular magnetic body
JP2940048B2 (en) Permanent magnet magnetization method
JPS6134249B2 (en)
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
CN201069705Y (en) Magnetic field direction device for anisotropical adhesion or agglomeration multi-pole ring magnetic body
CN100369166C (en) Convergent oscillation type demagnetization device
JPS63110605A (en) Method and apparatus for manufacturing magnet
JP2001167963A (en) Method of manufacturing magnet and mold for molding magnet
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JP2007035786A (en) Radial orientation magnetic field forming apparatus
JPS60211908A (en) Manufacturing method of cylindrical permanent magnet
KR101745151B1 (en) Permanent magnet forming device
JPH0559572B2 (en)
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JP3051906B2 (en) Rare earth magnet
JP4508019B2 (en) Anisotropic bond sheet magnet and manufacturing apparatus thereof
JP3182979B2 (en) Anisotropic magnet, manufacturing method and manufacturing apparatus
JP3024288B2 (en) Permanent magnet magnetization method
GB2069766A (en) Improvements in or relating to methods of producing anisotropic permanent magnets and magnets produced by such methods
JP2822169B2 (en) Ring magnet forming apparatus and method
JPS63310356A (en) cylindrical permanent magnet
JPH06330103A (en) Die for compacting magnetic powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees