JPH0626093A - Rain water pump operation supporting system - Google Patents
Rain water pump operation supporting systemInfo
- Publication number
- JPH0626093A JPH0626093A JP18196192A JP18196192A JPH0626093A JP H0626093 A JPH0626093 A JP H0626093A JP 18196192 A JP18196192 A JP 18196192A JP 18196192 A JP18196192 A JP 18196192A JP H0626093 A JPH0626093 A JP H0626093A
- Authority
- JP
- Japan
- Prior art keywords
- rainwater
- water level
- pump
- data
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 7
- 235000020681 well water Nutrition 0.000 claims abstract description 5
- 239000002349 well water Substances 0.000 claims abstract description 5
- 239000003657 drainage water Substances 0.000 claims description 2
- 238000004088 simulation Methods 0.000 abstract description 8
- 238000005086 pumping Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000011017 operating method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
Landscapes
- Sewage (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ポンプ場や下水処理場
など雨水排水施設への雨水の流入量を予測し把握して雨
水ポンプの運転を支援するシステムに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for supporting the operation of a rainwater pump by predicting and grasping the amount of rainwater flowing into a rainwater drainage facility such as a pumping station or a sewage treatment plant.
【0002】[0002]
【従来の技術】下水道事業の主目的の一つに雨水の速や
かな排除による洪水対策がある。この雨水を排水するポ
ンプの運転は、ポンプ井の水位によってポンプ運転台数
を制御するのが主流であって、ポンプの起動停止などの
判断は、操作員のカンと経験に頼つているのが現状であ
る。2. Description of the Related Art One of the main purposes of sewerage business is to prevent floods by promptly removing rainwater. The main operation of pumps for draining rainwater is to control the number of pumps operating according to the water level of the pump well, and the current situation is that decisions such as starting and stopping pumps depend on the operator's experience and experience. Is.
【0003】しかし、近年都市化の進行により不浸透路
面の増加による雨水排水施設への流入量の増加が起って
おり、このため降雨時から雨水排水施設へ流入するまで
の時間が短く、しかも単位時間当たりの流入量が多くな
り、万一、浸水などした場合の被害は以前とは比較にな
らないほど大きいものとなる。However, in recent years, the amount of inflow to the rainwater drainage facility has increased due to the increase in the impervious road surface due to the progress of urbanization, and therefore the time from rain to the inflow to the rainwater drainage facility is short, and moreover, The inflow volume per unit time increases, and in the unlikely event of flooding, the damage will be greater than before.
【0004】したがって、その対策として、雨水集水区
域内の降雨量を複数の地点で計測したり、雨水幹線の水
位を計測したりして、雨水排水施設への流入量を予測し
把握して、最適な雨水ポンプの運転方法を提供するシス
テムの必要性が高まってきている。Therefore, as a countermeasure, the rainfall in the rainwater catchment area is measured at a plurality of points and the water level of the rainwater trunk line is measured to predict and grasp the inflow to the rainwater drainage facility. The need for systems that provide optimal rainwater pump operating methods is increasing.
【0005】[0005]
【発明が解決しようとする課題】一般に、下水道施設の
計画は、施設が稼動する数年前に計画されるものである
から、実際に稼動を開始した時点では、雨水排水施設へ
の流入量が計画時より多くなっている場合がある。この
ような場合は、操作員のカンと経験によって最適な運転
方法を考慮して雨水ポンプを的確に運転制御する必要が
生じる。[Problems to be Solved by the Invention] Generally, a sewerage facility is planned several years before the facility starts operation. Therefore, when the facility actually starts operation, the amount of inflow to the rainwater drainage facility is It may be more than planned. In such a case, it is necessary to appropriately control the operation of the rainwater pump in consideration of the optimum operation method according to the operator's perception and experience.
【0006】本発明は、雨水排水施設への雨水流入量を
的確に予測し把握して、操作員のカンや経験に頼ること
なく雨水ポンプを運転制御することにより、豪雨時にお
いても浸水などの被害を起こすことがない雨水ポンプの
運転を支援する制御システムを提供するものである。The present invention accurately predicts and grasps the amount of inflow of rainwater into a rainwater drainage facility, and controls the operation of the rainwater pump without relying on the operator's cans and experience, so that inundation can be prevented even during heavy rain. It provides a control system that supports the operation of rainwater pumps without causing damage.
【0007】[0007]
【課題を解決するための手段、作用】雨水集水区域内の
管渠内に設置した水位計による水位データをもとに雨水
排水施設への流入量を予測し把握して該流入量への対応
を示す雨水ポンプの操作ガイダンスを表示するオンライ
ンシステムと、過去の降雨データ、雨水ポンプ運転実績
データをもとに雨水ポンプ運転のシミュレーションを行
なえることができるオフラインシステムからなる。[Means and actions for solving the problem] Based on the water level data obtained by the water level gauge installed in the pipe in the rainwater catchment area, the inflow amount to the rainwater drainage facility is predicted and grasped, and It consists of an online system that displays operational guidance for rainwater pumps that indicate the correspondence, and an offline system that can perform rainwater pump operation simulations based on past rainfall data and rainwater pump operation record data.
【0008】[0008]
【実施例】図1は、本発明の雨水ポンプ運転支援システ
ムを適用する雨水集水区域の例を示すものであり、集水
域から雨水幹線管渠を介し、また集水域からは管渠
及び雨水幹線管渠を介して、雨水が雨水排水施設である
ポンプ場に流入す状態を示すものである。FIG. 1 shows an example of a rainwater catchment area to which the rainwater pump operation support system of the present invention is applied. From the catchment area to the rainwater trunk conduit, and from the catchment area to the catchment and rainwater. The figure shows a state in which rainwater flows into a pump station, which is a rainwater drainage facility, through a trunk pipe.
【0009】図2は、図1に示す集水域,内の管渠
内に設置した水位計I,IIによる水位データI',II' を
もとにポンプ場(雨水排水施設)への流入量を予測し把
握して、雨水ポンプ運転を支援するシステムにおける、
過去のデータによる雨水ポンプ運転用シミュレーション
を行なうためのオフラインシステムのフローを示すもの
である。FIG. 2 shows the amount of inflow to the pumping station (rainwater drainage facility) based on the water level data I'and II 'by the water level gauges I and II installed in the catchment area shown in FIG. In the system that supports the rainwater pump operation by predicting and grasping
It shows a flow of an off-line system for performing a rainwater pump operation simulation based on past data.
【0010】図2のオフラインシステムを説明する。The offline system of FIG. 2 will be described.
【0011】データ入力1において、過去の降雨データ
及び集水域,内の管渠内に設置した水位計I,IIに
よる管渠水位データI',II' を入力する。このとき、別
の雨水ポンプ運転アルゴリズムを選択する場合はルート
2に分岐し、雨水ポンプ運転アルゴリズムを変更しない
場合は、ルート1とする。In the data input 1, the past rainfall data and the water level data I ', II' by the water level gauges I, II installed in the water channels of the catchment area are input. At this time, when another rainwater pump operation algorithm is selected, the route is branched to Route 2, and when the rainwater pump operation algorithm is not changed, it is set to Route 1.
【0012】データ入力2において、過去に運転された
雨水ポンプ運転アルゴリズムにおける雨水ポンプ運転台
数などの運転状況を表す実績データが入力される。In the data input 2, the actual data representing the operating condition such as the number of rainwater pumps operated in the rainwater pump operation algorithm operated in the past is input.
【0013】データ入力1で入力された集水域内の管
渠内の水位計Iによる管渠水位データI’は、雨水幹線
管渠の形状に基づき幹線流下流量に変換され、また集水
域内の管渠内の水位計IIによる管渠水位データII’
は、RRL法(Roads ResearchLaboratory)のパラメー
タ調整に使用し、RRL法によって集水域からの雨水
幹線管渠への雨水流出量が演算される。The drainage water level data I'from the water level gauge I in the drainage pipe in the watershed which is input by the data input 1 is converted into the main runoff flow based on the shape of the rainwater main drainage pipe, and the Pipe water level data II 'by water level gauge II in the pipe
Is used for parameter adjustment of the RRL method (Roads Research Laboratory), and the rainwater outflow from the catchment area to the rainwater trunk pipe is calculated by the RRL method.
【0014】これらの雨水幹線管渠への流入量をもとに
雨水幹線管渠内を不定流計算などにより同管渠内の水位
のシミュレーションを行ない各計算点での水位をCRT
画面に出力表示するとともに、ポンプ場(雨水排水施
設)への雨水流入量が予測演算され運転ポンプ台数を加
味したポンプ場のポンプ井水位のシミュレーションを行
ない該水位をCRT画面などに出力表示する。同時に、
シミュレーションの経過をも表示する。Based on these inflows into the rainwater main conduit, the water level in the rainwater main conduit is simulated by indeterminate flow calculation in the rainwater main conduit to determine the water level at each calculation point by CRT.
In addition to displaying the output on the screen, the amount of rainwater flowing into the pumping station (rainwater drainage facility) is predicted and calculated, and the pump well water level at the pumping station is simulated in consideration of the number of operating pumps, and the water level is output and displayed on the CRT screen or the like. at the same time,
It also shows the progress of the simulation.
【0015】このようなシミュレーションをポンプ運転
アルゴリズムを変えて行なうことにより、ポンプ場にお
ける適切な雨水ポンプの運転を見出すことができる。図
3は、オンラインで図2に示す雨水ポンプ運転のオフラ
インシステムの処理を行なうためのオンラインシステム
であって、雨水ポンプの運転を操作する操作員の手助け
となるポンプ操作ガイダンスを出力表示するフローを示
すものである。By performing such a simulation by changing the pump operation algorithm, it is possible to find an appropriate operation of the rainwater pump at the pump station. FIG. 3 is an online system for performing the processing of the offline system for rainwater pump operation shown in FIG. 2 online, and shows a flow for outputting and displaying the pump operation guidance to assist the operator who operates the rainwater pump. It is shown.
【0016】図3のオンラインシステムのフローを説明
すると、 (1).降雨計から送られてくる実測降雨量,雨水ポンプ運
転周期,及びポンプ井水位などのプロセスデータを入力
する。 (2).実測降雨量をもとに、図4に示すように現在時点よ
り例えば30分先の予測降雨量(例えば、“指数平滑法”
による)を予測降雨データとして入力する。The flow of the online system shown in FIG. 3 will be described. (1). Process data such as measured rainfall, rainwater pump operation cycle, and pump well water level sent from the rain gauge are input. (2). Based on the measured rainfall, as shown in Fig. 4, predicted rainfall 30 minutes ahead of the present time (for example, "Exponential smoothing method")
Input) as predicted rainfall data.
【0017】但し、操作員の判断で明らかにこうなると
予測される場合は手入力によって入力する。However, if it is predicted by the operator's judgment that this will happen, the operator manually inputs the value.
【0018】(3).予測降雨データをRRL法に入力して
集水域から流出する流出量を演算する。(3). The predicted rainfall data is input to the RRL method to calculate the outflow amount from the catchment area.
【0019】(4).集水域内の管渠内の水位計からの
水位データI’をΔt時間毎に入力する。(4). The water level data I'from the water level gauge in the pipe in the catchment area is input every Δt time.
【0020】(5).水位データI’は集水域の管渠の形
状に基づいて「流量」に変換される。 (6).集中域から雨水幹線に流出する流出量及び集水域
の管渠内における流量をもとに雨水幹線流下流量が演
算される。(5). The water level data I'is converted into "flow rate" based on the shape of the conduit in the catchment area. (6). The runoff flow of the rainwater trunk line is calculated based on the outflow from the concentrated area to the rainwater trunk line and the flow rate in the catchment basin.
【0021】(7).ポンプ運転アルゴリズムによるポンプ
運転台数及び回転数が決定される。(7). The number of pumps operating and the number of rotations are determined by the pump operation algorithm.
【0022】(8).ポンプ操作量が出力される。(8). The pump operation amount is output.
【0023】(9).水位データI’から変換した流量値と
ポンプ運転状況(ポンプ操作量出力)をもとに、Δt’
時間毎に雨水幹線管渠内を不定流計算などで水位の計算
をする。(9). Based on the flow rate value converted from the water level data I ′ and the pump operating condition (pump operation amount output), Δt ′
The water level in the rainwater main conduit is calculated every hour by non-constant flow calculation.
【0024】(10).ポンプ運転状況(ポンプ操作量)が
Δt時間毎に帰還されプロセスデータとともに入力され
る。(10). The pump operating condition (pump operation amount) is fed back every Δt time and input together with the process data.
【0025】(11).ポンプ操作量出力の経過やプロセス
状態など操作員の手助けとなるポンプ操作ガイダンスが
出力表示される。(11). Pump operation guidance that helps the operator, such as progress of pump operation amount output and process status, is output and displayed.
【0026】なお、上記(2)における降雨量の予測は、
以下に示すような指数平滑法で換算した降雨量が現在か
ら30分先まで一定に続くと予想するものであるが、ポ
ンプ操作員の判断で明らかにこのようになると予想され
る場合、図4に示すように手入力で補正をすることもで
きる。The forecast of rainfall in (2) above is as follows:
It is expected that the amount of rainfall converted by the exponential smoothing method as shown below will continue to be constant for 30 minutes from now, but if it is clearly predicted that this will occur in the judgment of the pump operator, It can also be manually corrected as shown in.
【0027】『指数平滑法』 5分後から30分後までの予測降雨量(Ymm) Ymm = αXn +(1−α)Yn 但し、Xn :現在の降雨量 Yn :過去のデータによる移動平均(15分または30分)
降雨量 α :平均化定数(0∧α≦1)"Exponential smoothing method" Predicted rainfall amount from 5 minutes to 30 minutes (Ymm) Ymm = αXn + (1-α) Yn where Xn: present rainfall amount Yn: moving average based on past data ( 15 minutes or 30 minutes)
Rainfall α: Averaging constant (0∧α ≦ 1)
【0028】[0028]
【発明の効果】以上のように、本発明によれば、ポンプ
場や処理場など雨水排水施設へ流入する雨水流入量が5
〜30分先まで予測することができるうえ、オンラインで
雨水ポンプ操作のガイダンスを出力表示することができ
るので、雨水排水施設への雨水流入量にかかわらず操作
員のカンや経験に頼ることなく、雨水ポンプを的確に運
転制御することが出来る。As described above, according to the present invention, the inflow amount of rainwater flowing into a rainwater drainage facility such as a pump station or a treatment plant is 5 or less.
It is possible to predict up to 30 minutes ahead, and since the guidance of rainwater pump operation can be output and displayed online, regardless of the amount of rainwater inflow to the rainwater drainage facility, without depending on the operator's can and experience, It is possible to precisely control the operation of the rainwater pump.
【0029】また、過去の降雨に対して種々な運転方法
での検討をすることができるので、雨水ポンプをより一
層的確に運転制御ができる。Further, since it is possible to study past rain by various operating methods, it is possible to more accurately control the operation of the rainwater pump.
【図1】本発明の雨水ポンプ運転支援システムを適用す
る雨水集水区域の例FIG. 1 is an example of a rainwater catchment area to which a rainwater pump operation support system of the present invention is applied.
【図2】本発明の雨水ポンプ運転支援システムにおける
ポンプ運転シミュレーションを行なうためのオフライン
システムのフローFIG. 2 is a flow of an off-line system for performing pump operation simulation in the rainwater pump operation support system of the present invention.
【図3】本発明の雨水ポンプ運転支援システムにおける
ポンプ運転ガイダンスを表示するためのオンラインシス
テムのフローFIG. 3 is a flow of an online system for displaying pump operation guidance in the rainwater pump operation support system of the present invention.
【図4】本発明の雨水ポンプ運転支援システムにおける
オンラインシステムに適用する降雨量予測FIG. 4 Rainfall prediction applied to an online system in the rainwater pump operation support system of the present invention
Claims (1)
水が流入する雨水排水施設における雨水ポンプ制御装置
の運転支援システムにおいて、 区域内の降雨量や雨水排水施設のポンプ井水位などのプ
ロセスデータ、区域内の予測降雨データ、及び区域内の
管渠水位データなどを入力して、現在のプロセス状態及
び今後予測される雨水排水施設への流入量に対する対応
をガイダンス表示するオンラインシステムと、 区域内の過去の降雨データ、区域内の管渠水位データ、
及び過去に運転された雨水ポンプ運転アルゴリズムにお
けるポンプ運転台数などポンプ運転状況を表す実績デー
タをもとにして演算される区域内の各集水域から雨水幹
線に流出する雨水流出量及び雨水幹線流下流量とから、
雨水排水施設への予測流入量を演算し、それら演算値と
ポンプ操作台数とにより雨水集水区域内の管渠水位及び
雨水排水施設のポンプ井水位をシミュレートするオフラ
インシステムとからなる雨水ポンプ制御装置の運転支援
システム。1. An operation support system for a rainwater pump control device in a rainwater drainage facility in which rainwater flows from a rainwater catchment area through a rainwater trunk pipe, such as the amount of rainfall in the area and the pump well water level of the rainwater drainage facility. An online system for inputting process data, predicted rainfall data in the area, and pipe water level data in the area, and displaying guidance on the current process status and future correspondence to the inflow to the rainwater drainage facility, Past rainfall data in the area, pipe water level data in the area,
And the amount of rainwater runoff and runoff from the rainwater trunk line that is calculated from each catchment area in the area, which is calculated based on the actual data that indicates the pump operating status such as the number of pumps operating in the rainwater pump operating algorithm in the past. And from
Rainwater pump control consisting of an offline system that calculates the predicted inflow to the rainwater drainage facility and simulates the drainage water level in the rainwater catchment area and the pump well water level of the rainwater drainage facility by using the calculated values and the number of pumps operated. Device driving support system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18196192A JPH0626093A (en) | 1992-07-09 | 1992-07-09 | Rain water pump operation supporting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18196192A JPH0626093A (en) | 1992-07-09 | 1992-07-09 | Rain water pump operation supporting system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0626093A true JPH0626093A (en) | 1994-02-01 |
Family
ID=16109899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18196192A Pending JPH0626093A (en) | 1992-07-09 | 1992-07-09 | Rain water pump operation supporting system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0626093A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7110835B2 (en) * | 2002-10-22 | 2006-09-19 | Fisher-Rosemount Systems, Inc. | Integration of graphic display elements, process modules and control modules in process plants |
US9904263B2 (en) | 2002-10-22 | 2018-02-27 | Fisher-Rosemount Systems, Inc. | Smart process objects used in a process plant modeling system |
US9904268B2 (en) | 2002-10-22 | 2018-02-27 | Fisher-Rosemount Systems, Inc. | Updating and utilizing dynamic process simulation in an operating process environment |
US10878140B2 (en) | 2016-07-27 | 2020-12-29 | Emerson Process Management Power & Water Solutions, Inc. | Plant builder system with integrated simulation and control system configuration |
CN113822931A (en) * | 2020-07-07 | 2021-12-21 | 湖北亿立能科技股份有限公司 | Front-end water level detection system based on combination of online learning and offline learning |
US11418969B2 (en) | 2021-01-15 | 2022-08-16 | Fisher-Rosemount Systems, Inc. | Suggestive device connectivity planning |
-
1992
- 1992-07-09 JP JP18196192A patent/JPH0626093A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7110835B2 (en) * | 2002-10-22 | 2006-09-19 | Fisher-Rosemount Systems, Inc. | Integration of graphic display elements, process modules and control modules in process plants |
US9904263B2 (en) | 2002-10-22 | 2018-02-27 | Fisher-Rosemount Systems, Inc. | Smart process objects used in a process plant modeling system |
US9904268B2 (en) | 2002-10-22 | 2018-02-27 | Fisher-Rosemount Systems, Inc. | Updating and utilizing dynamic process simulation in an operating process environment |
US9983559B2 (en) | 2002-10-22 | 2018-05-29 | Fisher-Rosemount Systems, Inc. | Updating and utilizing dynamic process simulation in an operating process environment |
US10878140B2 (en) | 2016-07-27 | 2020-12-29 | Emerson Process Management Power & Water Solutions, Inc. | Plant builder system with integrated simulation and control system configuration |
CN113822931A (en) * | 2020-07-07 | 2021-12-21 | 湖北亿立能科技股份有限公司 | Front-end water level detection system based on combination of online learning and offline learning |
CN113822931B (en) * | 2020-07-07 | 2024-04-19 | 湖北亿立能科技股份有限公司 | Front-end water level detection system based on combination of online learning and offline learning |
US11418969B2 (en) | 2021-01-15 | 2022-08-16 | Fisher-Rosemount Systems, Inc. | Suggestive device connectivity planning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4987913A (en) | Apparatus and method for controlling operation of storm sewage pump | |
CN108009736A (en) | A kind of water quality early-warning and predicting system and water quality early-warning and predicting method | |
JP2019153101A (en) | Simulation device and rainwater monitoring system using the simulation device | |
JP2003014868A (en) | System for providing predictive information of flood | |
JPH0626093A (en) | Rain water pump operation supporting system | |
CN110486260A (en) | Supervisor control and pump method for controlling of operation | |
CN117196302A (en) | Regional waterlogging risk prediction method and system based on catchment partition | |
JP3379008B2 (en) | Flow forecasting system | |
JP3906096B2 (en) | Drain pump operation support device and drain pump control device | |
JP2955413B2 (en) | Rainwater inflow prediction device using neural network | |
JPH05346807A (en) | Pump plant operation control device | |
CN208654841U (en) | A kind of water quality early-warning and predicting system | |
JP4511435B2 (en) | Water supply operation planning device | |
JP3625367B2 (en) | Sewer system storage facility operation support device | |
KR101588130B1 (en) | Intelligent pump system and method for controlling the same | |
JP2002001381A (en) | Sewage treatment system and waste water control system | |
JP2000345604A (en) | Device for estimating inflow sewage quantity | |
JPH0843545A (en) | Rainfall prediction system | |
JPH10204966A (en) | Method for estimating tide level and method for simulating river level | |
JP3830807B2 (en) | Wastewater disinfection method | |
JPH0962367A (en) | Rainwater pump control device and control method | |
JP2002322727A (en) | Operation support system | |
Tsukiyama | A Prediction Model for Stormwater Inflow to Drain Pump Stations in Sewer Systems | |
JP6839041B2 (en) | Pump equipment and its operation support method | |
JPH05128092A (en) | Rainwater flow-in amount forecasting device applying neural network |