JPH06260205A - Solid polyelectrolyte fuel cell stack - Google Patents
Solid polyelectrolyte fuel cell stackInfo
- Publication number
- JPH06260205A JPH06260205A JP5039983A JP3998393A JPH06260205A JP H06260205 A JPH06260205 A JP H06260205A JP 5039983 A JP5039983 A JP 5039983A JP 3998393 A JP3998393 A JP 3998393A JP H06260205 A JPH06260205 A JP H06260205A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- cell stack
- fuel
- pure water
- polymer electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 108
- 239000007787 solid Substances 0.000 title claims abstract description 22
- 229920000867 polyelectrolyte Polymers 0.000 title abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000007800 oxidant agent Substances 0.000 claims description 29
- 230000001590 oxidative effect Effects 0.000 claims description 19
- 239000005518 polymer electrolyte Substances 0.000 claims description 19
- 210000004027 cell Anatomy 0.000 description 54
- 239000000498 cooling water Substances 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 210000005056 cell body Anatomy 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 230000036647 reaction Effects 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- -1 Hydrogen ions Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000010763 heavy fuel oil Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は固体高分子電解質燃料電
池スタックに関する。TECHNICAL FIELD The present invention relates to a solid polymer electrolyte fuel cell stack.
【0002】[0002]
【従来の技術】固体高分子電解質燃料電池の原理を以下
に説明する。高分子イオン交換膜例えばスルホン酸基を
持つフッ素樹脂系イオン交換膜からなる電解質の両面
に、それぞれ例えば白金触媒からなるアノードおよびカ
ソードが設けられ、さらにこれらの両面に多孔質カーボ
ン電極が設けられ、電極接合体が構成される。多孔質カ
ーボン電極は外部回路に接続される。アノードには燃料
として例えば水素が加湿されて供給され、カソードには
酸化剤として例えば酸素が加湿されて供給される。アノ
ードに供給された水素は、アノード上で水素イオン化さ
れる。水素イオンは電解質中を水の介在のもとにH+ ・
xH2 Oとしてカソード側へ移動し、電子は外部回路を
通してカソード側へ移動する。移動した水素イオンは、
カソード上で、酸化剤中の酸素および外部回路を通過し
た電子と反応して水を生成する。生成した水は、カソー
ド側から燃料電池外へ排出される。このとき、外部回路
を通過する電子の流れを直流の電気エネルギーとして利
用できる。2. Description of the Related Art The principle of a solid polymer electrolyte fuel cell will be described below. A polymer ion exchange membrane, such as an electrolyte made of a fluororesin ion exchange membrane having a sulfonic acid group, is provided on both sides with an anode and a cathode made of, for example, a platinum catalyst, and a porous carbon electrode is provided on both sides thereof. An electrode assembly is constructed. The porous carbon electrode is connected to an external circuit. Hydrogen, for example, is humidified and supplied as a fuel to the anode, and oxygen, for example, is humidified and supplied as an oxidant to the cathode. The hydrogen supplied to the anode is hydrogen-ionized on the anode. Hydrogen ions are H + in the electrolyte due to the presence of water. ・
The electrons move to the cathode side as xH 2 O, and the electrons move to the cathode side through the external circuit. The transferred hydrogen ions are
On the cathode, it reacts with oxygen in the oxidant and electrons that have passed through the external circuit to produce water. The generated water is discharged outside the fuel cell from the cathode side. At this time, the flow of electrons passing through the external circuit can be used as DC electric energy.
【0003】前述したように、高分子イオン交換膜から
なる電解質において、水素イオン透過性を実現するため
には、電解質を常に十分な保水状態に保持する必要があ
る。このため、通常、燃料および/または酸化剤に電池
の運転温度(常温〜100℃程度)近辺相当の飽和水蒸
気を含ませて加湿し、燃料および酸化剤を電極接合体に
供給している。As described above, in order to realize hydrogen ion permeability in an electrolyte composed of a polymer ion exchange membrane, it is necessary to always keep the electrolyte in a sufficiently water-retentive state. For this reason, usually, the fuel and / or the oxidizer are saturated with saturated steam corresponding to the operating temperature of the battery (normal temperature to about 100 ° C.) to be humidified, and the fuel and the oxidizer are supplied to the electrode assembly.
【0004】図3に、従来の固体高分子電解質燃料電池
システムの一例を示す。燃料電池本体1内には前記のよ
うな電極接合体が収容され、所定の部材により酸化剤、
燃料および冷却水の流路がそれぞれ形成されている。燃
料電池本体1の外部には、酸化剤の加湿器2および燃料
の加湿器3が設けられている。これらの加湿器2、3に
は純水6が満たされ、それぞれヒータ4、5により所定
の温度に加熱される。FIG. 3 shows an example of a conventional solid polymer electrolyte fuel cell system. The above-mentioned electrode assembly is housed in the fuel cell main body 1, and an oxidizer,
Flow paths for fuel and cooling water are formed respectively. An oxidizer humidifier 2 and a fuel humidifier 3 are provided outside the fuel cell body 1. The humidifiers 2 and 3 are filled with pure water 6 and heated to predetermined temperatures by the heaters 4 and 5, respectively.
【0005】酸化剤は加湿器2中の純水6を通過し、飽
和蒸気圧相当の湿分を含んだ状態で燃料電池本体1に送
気される。同様に、燃料は加湿器3中の純水6を通過
し、飽和蒸気圧相当の湿分を含んだ状態で燃料電池本体
1に送気される。燃料電池本体1内で使用されなかった
残存酸化剤は残存加湿水蒸気および電池反応生成水とと
もに燃料電池本体1外部へ排出される。燃料電池本体1
内で使用されなかった残存燃料は残存加湿水蒸気ととも
に燃料電池本体1外部へ排出される。また、燃料電池本
体1は、冷却水7により冷却される。The oxidant passes through the pure water 6 in the humidifier 2 and is sent to the fuel cell main body 1 in a state where it contains moisture equivalent to the saturated vapor pressure. Similarly, the fuel passes through the pure water 6 in the humidifier 3 and is sent to the fuel cell main body 1 in a state where the fuel contains the moisture equivalent to the saturated vapor pressure. The residual oxidant not used in the fuel cell body 1 is discharged to the outside of the fuel cell body 1 together with the residual humidified water vapor and the water produced by the cell reaction. Fuel cell body 1
The residual fuel not used therein is discharged to the outside of the fuel cell body 1 together with the residual humidified steam. Further, the fuel cell body 1 is cooled by the cooling water 7.
【0006】[0006]
【発明が解決しようとする課題】図3に示した従来の固
体高分子電解質燃料電池システムでは、燃料電池本体の
外部に純水を貯溜した燃料用および酸化剤用の加湿器を
設けているため、システム全体が大きくなる。In the conventional solid polymer electrolyte fuel cell system shown in FIG. 3, a humidifier for fuel and oxidant, which stores pure water, is provided outside the fuel cell body. , The whole system gets bigger.
【0007】また、加湿器及び貯溜純水の温度を維持す
るためにヒータが必要である。一方、冷却水は燃料電池
本体を冷却した後、温水として燃料電池本体外部へ排出
されるが、この温水が保有する熱エネルギーは全く利用
されていない。このため、従来の固体高分子電解質燃料
電池システムは、エネルギー効率が悪かった。本発明の
目的は、システム全体の大きさが小さく、しかもエネル
ギー効率の良好な固体高分子電解質燃料電池スタックを
提供することにある。Further, a heater is required to maintain the temperature of the humidifier and the stored pure water. On the other hand, the cooling water is discharged to the outside of the fuel cell main body as hot water after cooling the fuel cell main body, but the thermal energy possessed by the hot water is not used at all. Therefore, the conventional solid polymer electrolyte fuel cell system has poor energy efficiency. An object of the present invention is to provide a solid polymer electrolyte fuel cell stack having a small overall size and good energy efficiency.
【0008】[0008]
【課題を解決するための手段】本発明の固体高分子電解
質燃料電池スタックは、固体高分子電解質の両面にそれ
ぞれアノードおよびカソードを有する電極接合体、電極
接合体の一方の面に設けられた燃料流路を形成する部
材、および電極接合体の他方の面に設けられた酸化剤流
路を形成する部材からなる単位電池を複数個重ねた固体
高分子電解質燃料電池スタックにおいて、燃料供給側お
よび酸化剤供給側のうち少なくとも一方に、純水を貯溜
した外部マニホールドを設けたことを特徴とするもので
ある。The solid polymer electrolyte fuel cell stack of the present invention comprises an electrode assembly having an anode and a cathode on both surfaces of the solid polymer electrolyte, and a fuel provided on one surface of the electrode assembly. In a solid polymer electrolyte fuel cell stack in which a plurality of unit cells each including a member forming a flow path and a member forming an oxidant flow path provided on the other surface of the electrode assembly are stacked, An external manifold that stores pure water is provided on at least one of the agent supply sides.
【0009】本発明においては、純水を貯溜した外部マ
ニホールドと固体高分子電解質燃料電池スタックとの間
に純水の循環系を形成し、貯溜純水を燃料電池スタック
の冷却媒体として用いることが好ましい。さらに、例え
ば燃料を燃料電池スタックから排出された温度が上昇し
た純水が収容された外部マニホールドを通して燃料電池
スタックに供給し、一方酸化剤を外部マニホールドから
燃料電池スタックへの純水の経路に設けられた熱交換器
を通して燃料電池スタックに供給するという構成が採用
することが好ましい。In the present invention, a pure water circulation system is formed between the external manifold storing pure water and the solid polymer electrolyte fuel cell stack, and the pure water stored is used as a cooling medium for the fuel cell stack. preferable. Further, for example, fuel is supplied to the fuel cell stack through an external manifold that contains pure water discharged from the fuel cell stack and whose temperature has risen, while an oxidizer is provided in the path of pure water from the external manifold to the fuel cell stack. It is preferable to adopt a configuration in which the fuel cell stack is supplied through the heat exchanger.
【0010】[0010]
【作用】本発明においては、燃料供給側および酸化剤供
給側のうち少なくとも一方に純水を貯溜した外部マニホ
ールドを設けており、その外部マニホールド中の純水を
通過した燃料および/または酸化剤は加湿された状態で
燃料電池スタックに給気される。したがって、従来のよ
うに燃料電池スタックの外部に燃料用および酸化剤用の
加湿器を設ける必要がないので、システム全体の大きさ
をコンパクトにできる。In the present invention, at least one of the fuel supply side and the oxidant supply side is provided with an external manifold that stores pure water, and the fuel and / or the oxidant that has passed the pure water in the external manifold is Air is supplied to the fuel cell stack in a humidified state. Therefore, it is not necessary to provide a humidifier for the fuel and an oxidizer for the outside of the fuel cell stack as in the conventional case, so that the size of the entire system can be made compact.
【0011】また、純水を貯溜した外部マニホールドと
固体高分子電解質燃料電池スタックとの間で純水の循環
系を形成して貯溜純水を燃料電池スタックの冷却媒体と
して用い、この循環系における熱交換により燃料および
酸化剤を予熱して燃料電池スタックに供給するようにす
れば、エネルギー効率を向上できる。Further, a pure water circulation system is formed between the external manifold storing the pure water and the solid polymer electrolyte fuel cell stack, and the stored pure water is used as a cooling medium for the fuel cell stack. If the fuel and the oxidant are preheated by heat exchange and supplied to the fuel cell stack, energy efficiency can be improved.
【0012】[0012]
【実施例】以下、本発明の実施例を図面を参照して説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0013】図1は本発明の固体高分子電解質燃料電池
スタックを示す断面図である。図1において、複数の挿
入面に挿入された電極接合体11にはそれぞれ、一方の
面に配流板が設けられて燃料流路12が形成され、他方
の面に配流板が設けられて酸化剤流路13が形成され
る。また、所定の冷却面13に沿って冷却水セパレータ
によって冷却水流路14が形成される。これらの各部材
を重ねて燃料電池スタック10が構成されている。本実
施例においては、燃料流路12の方向と酸化剤流路13
の方向とは互いに直交している。また、燃料流路12は
燃料電池スタック10内において出口が閉じている。FIG. 1 is a sectional view showing a solid polymer electrolyte fuel cell stack of the present invention. In FIG. 1, the electrode assembly 11 inserted into a plurality of insertion surfaces is provided with a flow distribution plate on one surface to form a fuel flow path 12, and a flow distribution plate is provided on the other surface to form an oxidizer. The flow path 13 is formed. Further, the cooling water flow path 14 is formed by the cooling water separator along the predetermined cooling surface 13. The fuel cell stack 10 is configured by stacking these respective members. In the present embodiment, the direction of the fuel flow path 12 and the oxidant flow path 13
Are orthogonal to each other. The outlet of the fuel passage 12 is closed in the fuel cell stack 10.
【0014】さらに、燃料電池スタック10の燃料供給
側には、外部マニホールド15が設けられ、その内部に
は純水16が貯溜されている。この純水16内には燃料
供給管17が設けられている。外部マニホールド15と
燃料電池スタック10との間には純水16の循環系が形
成されている。この循環系の外部マニホールド15から
燃料電池スタック10への経路には、熱交換器18およ
び冷却水ポンプ19が設けられている。また、外部マニ
ホールド15には制御弁20を設けた純水供給管が接続
されている。Further, an external manifold 15 is provided on the fuel supply side of the fuel cell stack 10, and pure water 16 is stored inside the external manifold 15. A fuel supply pipe 17 is provided in the pure water 16. A circulation system of pure water 16 is formed between the external manifold 15 and the fuel cell stack 10. A heat exchanger 18 and a cooling water pump 19 are provided in a path from the external manifold 15 of the circulation system to the fuel cell stack 10. A pure water supply pipe provided with a control valve 20 is connected to the external manifold 15.
【0015】この燃料電池スタック10の動作を説明す
る。純水16は冷却水ポンプ19により外部マニホール
ド15と燃料電池スタック10との間の循環系を循環し
ている。外部マニホールド15には燃料電池スタック1
0から排出されて温度が上昇した純水16が収容されて
いる。燃料(純水素)は燃料供給管17から外部マニホ
ールド15内の純水16中に噴出される。この結果、純
水16の熱エネルギーを受け取って予熱され、かつ雰囲
気の温度に相当する飽和水蒸気を含んで加湿された状態
で燃料流路12に供給される。一方、酸化剤は熱交換器
18を通って、純水16の熱エネルギーを受け取って予
熱され、無加湿の状態で酸化剤流路13に供給される。
電極接合体11では電池反応が起こり、燃料および酸化
剤が消費される。消費されなかった残存酸化剤は外部へ
排出される。前記のように燃料および酸化剤との熱交換
により冷却された純水は燃料電池スタック10内で発生
した熱を奪って加熱され、外部マニホールド15へ戻
る。燃料の加湿による純水の減少分は、制御弁20を設
けた純水供給管を通して適宜補給される。The operation of the fuel cell stack 10 will be described. The pure water 16 is circulated in the circulation system between the external manifold 15 and the fuel cell stack 10 by the cooling water pump 19. The external manifold 15 has a fuel cell stack 1
The pure water 16 that has been discharged from 0 and has increased in temperature is stored. Fuel (pure hydrogen) is ejected from the fuel supply pipe 17 into the pure water 16 in the external manifold 15. As a result, the heat energy of the pure water 16 is received, preheated, and supplied to the fuel flow path 12 in a humidified state containing saturated steam corresponding to the temperature of the atmosphere. On the other hand, the oxidant passes through the heat exchanger 18, receives the heat energy of the pure water 16, is preheated, and is supplied to the oxidant flow path 13 in a non-humidified state.
A battery reaction occurs in the electrode assembly 11 and the fuel and the oxidant are consumed. The remaining oxidant that has not been consumed is discharged to the outside. The pure water cooled by the heat exchange with the fuel and the oxidant as described above removes the heat generated in the fuel cell stack 10 to be heated and returns to the external manifold 15. The depleted amount of pure water due to humidification of the fuel is appropriately replenished through a pure water supply pipe provided with the control valve 20.
【0016】このような構成の燃料電池スタックでは、
燃料供給側に純水を貯溜した外部マニホールド15を設
けており、この外部マニホールド15中の純水16を通
過した燃料を加湿した状態で供給しているので、従来の
ように燃料電池スタックの外部に燃料用および酸化剤用
の加湿器を設ける必要がなく、システム全体の大きさを
コンパクトにできる。In the fuel cell stack having such a structure,
An external manifold 15 that stores pure water is provided on the fuel supply side, and the fuel that has passed through the pure water 16 in the external manifold 15 is supplied in a humidified state. Since it is not necessary to provide a humidifier for fuel and oxidizer, the size of the entire system can be made compact.
【0017】また、外部マニホールド15と燃料電池ス
タック10との間で純水の循環系を形成して貯溜純水を
燃料電池スタック10の冷却媒体として用い、しかもこ
の循環系における熱交換により燃料および酸化剤を予熱
して燃料電池スタック10に供給しているので、エネル
ギー効率を向上できる。Further, a pure water circulation system is formed between the external manifold 15 and the fuel cell stack 10 and the stored pure water is used as a cooling medium for the fuel cell stack 10. Since the oxidizer is preheated and supplied to the fuel cell stack 10, energy efficiency can be improved.
【0018】本実施例では燃料流路12の出口が閉じて
おり、燃料が燃料電池スタック10外部へ排出されな
い。このため、前述した外部マニホールド15を通って
供給される燃料の量は、電池反応によって消費された減
少分に相当する量である。ただし、本実施例のように燃
料流路12の出口を閉じた構成では、燃料中に水素以外
の不純物が含まれる場合、水素は電池反応で消費される
が、不純物は燃料電池スタック内で濃縮される。したが
って、本実施例のように燃料流路12の出口を閉じた構
成は、燃料が純水素である場合にのみ適用できる。In this embodiment, the outlet of the fuel flow path 12 is closed, and fuel is not discharged to the outside of the fuel cell stack 10. Therefore, the amount of fuel supplied through the external manifold 15 described above is an amount corresponding to the reduction amount consumed by the cell reaction. However, in the configuration in which the outlet of the fuel flow path 12 is closed as in the present embodiment, when the fuel contains impurities other than hydrogen, hydrogen is consumed in the cell reaction, but the impurities are concentrated in the fuel cell stack. To be done. Therefore, the configuration in which the outlet of the fuel flow path 12 is closed as in the present embodiment can be applied only when the fuel is pure hydrogen.
【0019】そこで、図3に示すように、電池反応によ
り使用されなかった残存燃料を燃料電池スタック10外
部へ排出する構成を採用してもよい。このような構成で
は、燃料中に水素以外に他のガス成分を含んでいても、
運転に支障が生じることはない。Therefore, as shown in FIG. 3, a structure may be adopted in which the residual fuel not used by the cell reaction is discharged to the outside of the fuel cell stack 10. In such a configuration, even if the fuel contains other gas components in addition to hydrogen,
It does not hinder driving.
【0020】なお、以上の実施例では、燃料電池スタッ
クの燃料供給側に外部マニホールドを設けて純水を貯溜
させて燃料を加湿するようにしているが、酸化剤供給側
にも同様な構成を採用して酸化剤を加湿するようにして
もよい。In the above embodiments, an external manifold is provided on the fuel supply side of the fuel cell stack to store pure water to humidify the fuel, but a similar structure is also provided on the oxidant supply side. It may be adopted to humidify the oxidant.
【0021】[0021]
【発明の効果】以上詳述したように本発明によれば、全
体の大きさが小さく、しかもエネルギー効率の良好な固
体高分子電解質燃料電池システムを提供できる。As described above in detail, according to the present invention, it is possible to provide a solid polymer electrolyte fuel cell system having a small overall size and good energy efficiency.
【図1】本発明の実施例における固体高分子電解質燃料
電池システムを示す断面図。FIG. 1 is a sectional view showing a solid polymer electrolyte fuel cell system in an example of the present invention.
【図2】本発明の他の実施例における固体高分子電解質
燃料電池システムを示す断面図。FIG. 2 is a sectional view showing a solid polymer electrolyte fuel cell system according to another embodiment of the present invention.
【図3】従来の固体高分子電解質燃料電池システムの構
成図。FIG. 3 is a configuration diagram of a conventional solid polymer electrolyte fuel cell system.
1…燃料電池本体、2、3…加湿器、4、5…ヒータ、
6…純水、10…燃料電池スタック、11…電極接合
体、12…燃料流路、13…酸化剤流路、14…冷却水
流路、15…外部マニホールド、16…純水、17…燃
料供給管、18…熱交換器、19…冷却水ポンプ、20
…制御弁。1 ... Fuel cell main body 2, 3 ... Humidifier 4, 5 ... Heater,
6 ... Pure water, 10 ... Fuel cell stack, 11 ... Electrode assembly, 12 ... Fuel flow path, 13 ... Oxidizer flow path, 14 ... Cooling water flow path, 15 ... External manifold, 16 ... Pure water, 17 ... Fuel supply Pipe, 18 ... Heat exchanger, 19 ... Cooling water pump, 20
… Control valve.
Claims (1)
ードおよびカソードを有する電極接合体、該電極接合体
の一方の面に設けられた燃料流路を形成する部材、およ
び該電極接合体の他方の面に設けられた酸化剤流路を形
成する部材からなる単位電池を複数個重ねた固体高分子
電解質燃料電池スタックにおいて、燃料供給側および酸
化剤供給側のうち少なくとも一方に、純水を貯溜した外
部マニホールドを設けたことを特徴とする固体高分子電
解質燃料電池スタック。1. An electrode assembly having an anode and a cathode on both surfaces of a solid polymer electrolyte, a member for forming a fuel flow path provided on one surface of the electrode assembly, and the other of the electrode assembly. In a solid polymer electrolyte fuel cell stack in which a plurality of unit cells made of a member for forming an oxidant channel provided on the surface are stacked, pure water is stored in at least one of the fuel supply side and the oxidant supply side. A solid polymer electrolyte fuel cell stack comprising an external manifold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5039983A JPH06260205A (en) | 1993-03-01 | 1993-03-01 | Solid polyelectrolyte fuel cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5039983A JPH06260205A (en) | 1993-03-01 | 1993-03-01 | Solid polyelectrolyte fuel cell stack |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06260205A true JPH06260205A (en) | 1994-09-16 |
Family
ID=12568186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5039983A Withdrawn JPH06260205A (en) | 1993-03-01 | 1993-03-01 | Solid polyelectrolyte fuel cell stack |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06260205A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998024138A1 (en) * | 1996-11-29 | 1998-06-04 | Siemens Aktiengesellschaft | Liquid-cooled fuel cell batteries |
JP2005203361A (en) * | 2003-12-17 | 2005-07-28 | Matsushita Electric Ind Co Ltd | FUEL CELL SYSTEM, FUEL CELL SYSTEM OPERATION METHOD, PROGRAM, AND RECORDING MEDIUM |
-
1993
- 1993-03-01 JP JP5039983A patent/JPH06260205A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998024138A1 (en) * | 1996-11-29 | 1998-06-04 | Siemens Aktiengesellschaft | Liquid-cooled fuel cell batteries |
JP2005203361A (en) * | 2003-12-17 | 2005-07-28 | Matsushita Electric Ind Co Ltd | FUEL CELL SYSTEM, FUEL CELL SYSTEM OPERATION METHOD, PROGRAM, AND RECORDING MEDIUM |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8304123B2 (en) | Ambient pressure fuel cell system employing partial air humidification | |
US5382478A (en) | Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section | |
JP3077618B2 (en) | Solid polymer electrolyte fuel cell | |
JP3111697B2 (en) | Solid polymer electrolyte fuel cell | |
US6432566B1 (en) | Direct antifreeze cooled fuel cell power plant | |
JP3352716B2 (en) | Solid polymer electrolyte fuel cell device | |
EP0831543B1 (en) | Gas humidifying device for use with a fuel cell | |
EP1030396B1 (en) | Solid polymer type fuel cell system | |
JPH06338338A (en) | Humidification of high polymer ion exchange film of fuel cell | |
JP3510285B2 (en) | Solid polymer electrolyte fuel cell system | |
JP5341624B2 (en) | Fuel cell system | |
JPH06333583A (en) | Solid polymer electrolyte fuel cell power generator | |
JP3111682B2 (en) | Solid polymer electrolyte fuel cell system | |
JP2002170584A (en) | Polymer electrolyte fuel cell | |
JP3276175B2 (en) | Solid polymer electrolyte fuel cell | |
JPH11312531A (en) | Fuel cell system | |
JP2000277128A (en) | Solid polymer type fuel cell | |
JP2004363027A (en) | Fuel cell humidification method and fuel cell system | |
JPH11214022A (en) | Fuel cell generator | |
JP2008084646A (en) | Fuel cell system | |
JPH0864218A (en) | Operating method of solid polymer electrolyte fuel cell | |
US6632555B2 (en) | Proton electrolyte membrane fuel cell with anti-freeze coolant and humidifiers | |
JPH0935737A (en) | Solid polymer electrolyte fuel cell | |
JPH06260205A (en) | Solid polyelectrolyte fuel cell stack | |
JP2008243540A (en) | Solid polymer electrolyte fuel cell power generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000509 |