[go: up one dir, main page]

JPH0625894A - Production of fe-zn alloy plated steel sheet - Google Patents

Production of fe-zn alloy plated steel sheet

Info

Publication number
JPH0625894A
JPH0625894A JP18097192A JP18097192A JPH0625894A JP H0625894 A JPH0625894 A JP H0625894A JP 18097192 A JP18097192 A JP 18097192A JP 18097192 A JP18097192 A JP 18097192A JP H0625894 A JPH0625894 A JP H0625894A
Authority
JP
Japan
Prior art keywords
content
plating
alloy
steel sheet
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18097192A
Other languages
Japanese (ja)
Inventor
Shoji Nakamura
昭二 中村
Masatoshi Iwai
正敏 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18097192A priority Critical patent/JPH0625894A/en
Publication of JPH0625894A publication Critical patent/JPH0625894A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To rapidly measure Fe content in a plating layer by online with high precision by determining the interplanar spacing of the alpha-phase in an Fe-Zn plating layer by measurement by an X-ray diffraction method. CONSTITUTION:At the time of producing an Fe-Zn alloy plated steel sheet by means of a continuous electroplating line, the relation between Fe content and the interplanar spacing of alpha-phase is previously determined in the form of an analytical curve, with respect to an Fe-Zn alloy plating layer whose Fe content is known. From this relation and the measured value of the interplanar spacing of alpha-phase with respect to an Fe-Zn alloy plating layer whose Fe content is unknown, the Fe content in the plating layer is measured. This measurement of the interplanar spacing of alpha-phase is done under the online of plating by an X-ray diffraction method. On the other hand, coating weight is measured. On the basis of the resulting measured values plating conditions are regulated, by which Fe content in the plating layer and coating weight are controlled to the prescribed values, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Fe-Zn 系合金めっき鋼
板の製造方法に関し、詳細には、連続電気めっきライン
により鋼板にFe-Zn 系合金めっきを施すと共に、このめ
っき鋼板のめっき付着量及びFe-Zn 系合金めっき層中の
Fe含有率をオンライン下で且つ非破壊で測定し、それら
測定値に基づき、めっき条件を調整することにより、め
っき付着量及びめっき層中のFe含有率を制御するFe-Zn
系合金めっき鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Fe-Zn alloy plated steel sheet. More specifically, the steel sheet is plated with Fe-Zn alloy by a continuous electroplating line and the plated steel sheet adheres to the plated steel sheet. Amount of Fe-Zn alloy plating layer
Fe-Zn that controls the Fe content in the plating layer and the Fe content in the plating layer by measuring the Fe content online and non-destructively and adjusting the plating conditions based on these measured values
The present invention relates to a method for manufacturing a base alloy-plated steel sheet.

【0002】[0002]

【従来の技術】連続電気めっきラインによりFe-Zn 系合
金めっき鋼板を製造するに際し、めっき鋼板のめっき付
着量及びFe-Zn 系合金めっき層中のFe含有率を測定し、
それら測定値に基づきめっき条件を調整することによ
り、めっき付着量及びFe含有率を制御することが行われ
る。
2. Description of the Related Art When manufacturing a Fe-Zn alloy plated steel sheet by a continuous electroplating line, the amount of coating on the plated steel sheet and the Fe content in the Fe-Zn alloy plated layer are measured,
By adjusting the plating conditions based on these measured values, the amount of deposited plating and the Fe content are controlled.

【0003】従来、上記めっき付着量及びFe含有率の測
定は、オフラインにてグロー放電発光分光分析装置を用
いて行われている。即ち、連続めっきの途中、めっき鋼
板の一部を切り出し、ライン外で上記分析装置を用いて
グロー放電発光分光分析(以降、GDS という)を行い、
めっき付着量及びFe含有率を測定する方法により行われ
ている。ここで、GDS は、Arスパッター等により、めっ
き層深さ方向に分析するものである。例えばめっき付着
量は、めっき層深さ方向でのFeの強度分布を分析し、そ
の分布からめっき付着量を推定する方法により求められ
る。
Conventionally, the above-mentioned coating weight and Fe content have been measured off-line using a glow discharge emission spectroscopic analyzer. That is, during the continuous plating, a part of the plated steel sheet is cut out and a glow discharge emission spectroscopic analysis (hereinafter referred to as GDS) is performed outside the line using the above analyzer.
It is carried out by a method of measuring the coating weight and the Fe content. Here, GDS is an analysis in the depth direction of the plating layer by Ar sputtering or the like. For example, the coating adhesion amount is obtained by a method of analyzing the Fe strength distribution in the depth direction of the plating layer and estimating the plating adhesion amount from the distribution.

【0004】上記めっき付着量及びFe含有率を制御は、
上記測定の結果に基づき、めっき付着量及びFe含有率が
所定値になるように、電流密度、めっき液濃度、めっき
液pH等のめっき条件を調整する方法により、行われてい
る。
The above-mentioned coating amount and Fe content are controlled by
Based on the results of the above measurement, the method is performed by adjusting the plating conditions such as the current density, the plating solution concentration, and the plating solution pH so that the plating adhesion amount and the Fe content rate become predetermined values.

【0005】[0005]

【発明が解決しようとする課題】前記従来のFe-Zn 系合
金めっき鋼板の製造方法において、めっき付着量及びFe
含有率の測定は、前述の如く、ラインの外(オフライ
ン)でGDS により行われ、このGDS はめっき層深さ方向
に分析するものであるので分析所要時間が長く、更に、
オフライン測定であるので迅速分析性に問題があり、従
って、迅速性に欠け、めっき付着量及びFe含有率制御の
ためのめっき条件の調整に遅れが生じ、その結果めっき
付着量及びFe含有率の確保のための制御が困難であり、
引いては安定した品質が得られ難いという問題点があ
る。更には、GDS はめっき鋼板のめっき表面或いは母材
鋼板表面の粗度に影響されて、分析値にバラツキが生
じ、分析精度が悪い場合もあるという欠点を有してい
る。
[Problems to be Solved by the Invention] In the above-mentioned conventional method for producing a Fe-Zn alloy plated steel sheet, the coating amount and Fe
As described above, the content rate is measured by GDS outside the line (offline). Since this GDS analyzes in the depth direction of the plating layer, the analysis time is long and
Since it is an off-line measurement, there is a problem in rapid analysis, and therefore it lacks promptness and delays in adjusting the plating conditions for controlling the plating deposit amount and the Fe content ratio. Control for securing is difficult,
However, there is a problem that it is difficult to obtain stable quality. Further, GDS has a drawback that the analytical value may be varied due to the roughness of the plating surface of the plated steel sheet or the surface of the base steel sheet, and the analysis accuracy may be poor.

【0006】本発明は、このような事情に着目してなさ
れたものであり、その目的は前記従来のものが有する問
題点を解消し、連続電気めっきラインによりFe-Zn 系合
金めっき鋼板を製造するに際し、めっき鋼板のめっき付
着量及びFe-Zn 系合金めっき層中のFe含有率をオンライ
ンにて迅速に且つ精度よく測定し得、めっき鋼板の品質
の向上を図り得るFe-Zn 系合金めっき鋼板の製造方法を
提供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to solve the problems of the above-mentioned conventional ones and to manufacture Fe-Zn alloy plated steel sheet by a continuous electroplating line. In doing so, the amount of coating on the plated steel sheet and the Fe content in the Fe-Zn alloy plating layer can be measured online quickly and accurately, and the quality of the plated steel sheet can be improved. It is intended to provide a method for manufacturing a steel sheet.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らは鋭意研究を重ねた結果、Fe-Zn 系合金
めっき鋼板についてX線回折法により測定されるFe-Zn
系合金めっき層のα相の面間隔と、Fe-Zn 系合金めっき
層中のFe含有率との間に反比例の良好な相関関係があ
り、更には、特にFe-Zn 系合金めっき層のα相(110) 面
の面間隔とFe含有率との間に最も良好な相関関係がある
ことを知見し、本発明を完成するに至った。本発明に係
るFe-Zn 系合金めっき鋼板の製造方法は次のような構成
としている。
[Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have conducted extensive studies, and as a result, Fe-Zn alloy-plated steel sheet was measured by X-ray diffractometry.
There is a good inverse inverse correlation between the interphase spacing of the α-phase of the Fe-Zn alloy plating layer and the Fe content in the Fe-Zn-based alloy plating layer. The inventors have found that there is the best correlation between the phase spacing of the phase (110) plane and the Fe content, and have completed the present invention. The manufacturing method of the Fe—Zn alloy plated steel sheet according to the present invention has the following constitution.

【0008】即ち、請求項1に記載のFe-Zn 系合金めっ
き鋼板の製造方法は、連続電気めっきラインにより鋼板
にFe-Zn 系合金めっきを施すと共に、このめっき鋼板の
めっき付着量及びFe-Zn 系合金めっき層中のFe含有率を
オンライン下で測定し、それら測定値に基づきめっき条
件を調整してめっき付着量及びめっき層中のFe含有率を
制御するFe-Zn 系合金めっき鋼板の製造方法であって、
前記Fe-Zn 系合金めっき層中のFe含有率の測定を、該Fe
-Zn 系合金めっき層のα相の面間隔をX線回折法により
測定することにより行うことを特徴とするFe-Zn 系合金
めっき鋼板の製造方法である。
That is, in the method for producing a Fe-Zn alloy plated steel sheet according to the first aspect, the steel sheet is subjected to Fe-Zn alloy plating by a continuous electroplating line, and the coating amount of the plated steel sheet and Fe- The Fe content in the Zn-based alloy plating layer is measured online, and the plating conditions are adjusted based on the measured values to control the coating weight and the Fe content in the plating layer. A manufacturing method,
The Fe content in the Fe-Zn alloy plated layer was measured by
A method for producing a Fe—Zn alloy plated steel sheet, characterized in that the interplanar spacing of the α phase of the —Zn alloy plated layer is measured by an X-ray diffraction method.

【0009】請求項2に記載のFe-Zn 系合金めっき鋼板
の製造方法は、前記α相の面間隔がα相(110) 面の面間
隔である請求項1記載のFe-Zn 系合金めっき鋼板の製造
方法である。請求項3に記載のFe-Zn 系合金めっき鋼板
の製造方法は、前記めっき付着量の測定を、蛍光X線法
によりめっき厚みを測定することにより行う請求項1記
載のFe-Zn 系合金めっき鋼板の製造方法である。
In the method for manufacturing the Fe-Zn alloy plated steel sheet according to claim 2, the interphase spacing of the α phase is the interplanar spacing of the α phase (110) plane. It is a method of manufacturing a steel sheet. In the method for producing an Fe-Zn alloy plated steel sheet according to claim 3, the measurement of the coating adhesion amount is performed by measuring the plating thickness by a fluorescent X-ray method. It is a method of manufacturing a steel sheet.

【0010】[0010]

【作用】前述の如く、X線回折法により測定されるFe-Z
n 系合金めっき層のα相の面間隔と、該めっき層中のFe
含有率との間に反比例の良好な相関関係があり、特にα
相(110) 面の面間隔とFe含有率との間に最も良好な相関
関係があるという知見が得られた。この知見に基づけ
ば、Fe含有率が未知のFe-Zn 系合金めっき層のα相の面
間隔をX線回折法により測定することにより、該めっき
層中のFe含有率を求め得る。即ち、予めFe含有率が既知
のFe-Zn 系合金めっき層についてFe含有率とα相の面間
隔との関係を求めておき、この関係と、上記Fe含有率未
知のFe-Zn 系合金めっき層についてのα相面間隔の測定
値とから、該合金めっき層のFe含有率を精度よく測定し
得る。ここで、上記X線回折法によるα相面間隔の測定
は、Fe-Zn 系合金めっきのオンライン下で行い得る。従
って、Fe-Zn 系合金めっき層中のFe含有率をオンライン
にて迅速に且つ精度よく測定し得ることになる。
[Function] As described above, Fe-Z measured by the X-ray diffraction method
The interplanar spacing of the α phase of the n-based alloy plating layer and the Fe in the plating layer
There is a good inverse correlation with the content, especially α
It was found that there is the best correlation between the interplanar spacing of the (110) phase and the Fe content. Based on this finding, the Fe content in the plating layer can be obtained by measuring the interplanar spacing of the α phase of the Fe—Zn alloy plating layer with an unknown Fe content by the X-ray diffraction method. That is, the relationship between the Fe content and the interplanar spacing of the α phase is obtained in advance for the Fe-Zn alloy plating layer with a known Fe content, and this relationship and the Fe-Zn alloy plating with an unknown Fe content described above. The Fe content of the alloy plated layer can be accurately measured from the measured value of the α phase surface spacing of the layer. Here, the measurement of the α phase surface spacing by the X-ray diffraction method can be performed under online Fe—Zn alloy plating. Therefore, the Fe content in the Fe—Zn alloy plating layer can be measured online quickly and accurately.

【0011】そこで、本発明に係るFe-Zn 系合金めっき
鋼板の製造方法においては、前記の如く、Fe-Zn 系合金
めっき層中のFe含有率の測定を、オンライン下でFe-Zn
系合金めっき層のα相の面間隔をX線回折法により測定
することにより行うようにしており、故に、上述のこと
からしてFe-Zn 系合金めっき層中のFe含有率をオンライ
ンにて迅速に且つ精度よく測定し得ることになる。
Therefore, in the method for manufacturing an Fe-Zn alloy plated steel sheet according to the present invention, as described above, the Fe content in the Fe-Zn alloy plated layer is measured online by Fe-Zn alloy measurement.
The interplanar spacing of the α phase of the Fe-Zn alloy plating layer is measured by the X-ray diffraction method. Therefore, from the above, the Fe content in the Fe-Zn alloy plating layer can be calculated online. The measurement can be performed quickly and accurately.

【0012】一方、めっき付着量もオンライン下で測定
するようにしている。この測定は、後述の如き蛍光X線
法によるめっき厚みの測定等により、精度良く且つ迅速
に行い得る。
On the other hand, the plating adhesion amount is also measured online. This measurement can be performed accurately and quickly by measuring the plating thickness by a fluorescent X-ray method as described below.

【0013】そして、上記Fe-Zn 系合金めっき層のFe含
有率の測定値及びめっき付着量の測定値に基づき、めっ
き条件を調整してめっき付着量及びめっき層中のFe含有
率を制御するようにしている。従って、本発明に係るFe
-Zn 系合金めっき鋼板の製造方法によれば、めっき付着
量及びめっき層中のFe含有率を所定値に正確に制御し
得、その結果めっき鋼板の品質の向上を図り得るように
なる。
Then, the plating conditions are adjusted to control the plating adhesion amount and the Fe content ratio in the plating layer based on the measurement values of the Fe content ratio and the plating adhesion amount of the Fe-Zn alloy plating layer. I am trying. Therefore, Fe according to the present invention
According to the method for producing a Zn-based alloy-plated steel sheet, the coating amount and the Fe content in the plating layer can be accurately controlled to predetermined values, and as a result, the quality of the plated steel sheet can be improved.

【0014】前記α相の面間隔の測定に際し、特にα相
(110) 面の面間隔を測定するようにすることが望まし
い。それは、前述の如く、特にα相(110) 面の面間隔と
Fe含有率との間に最も良好な相関関係があり、従って、
Fe含有率の測定値の精度がさらに向上し、その結果めっ
き層中Fe含有率をより一層正確に制御し得るようになる
からである。
When measuring the interplanar spacing of the α phase, especially the α phase
It is desirable to measure the plane spacing of the (110) plane. As mentioned above, it is especially the α-phase (110) plane spacing and
There is the best correlation with Fe content, and therefore
This is because the accuracy of the measured Fe content is further improved, and as a result, the Fe content in the plating layer can be controlled more accurately.

【0015】本発明において、めっき付着量のオンライ
ン下での測定方法としては、特に限定されないが、蛍光
X線法によりめっき厚みを測定する方法は精度及び迅速
性に優れているので、本法を採用することが望ましい。
In the present invention, the method for measuring the coating amount online is not particularly limited, but the method for measuring the plating thickness by the fluorescent X-ray method is excellent in accuracy and speed. It is desirable to adopt.

【0016】[0016]

【実施例】【Example】

(実施例1)予め、めっき層のFe含有率及びめっき付着
量が既知で且つ種々異なるFe-Zn 合金めっき鋼板につい
て、X線回折法によりα相(110) 面の面間隔を測定し、
Fe含有率とα相(110) 面の面間隔d(110) との関係(検
量線A)を求めた。その検量線を図1に示す。又、同鋼
板について、蛍光X線法により蛍光X線を照射し、めっ
き鋼板からの蛍光X線の強度を測定し、Zn付着量(めっ
き付着量×Zn含有率に相当する量)と蛍光X線の強度と
の関係(検量線B)を求めた。その検量線を図3に示
す。しかる後、連続電気めっきラインにおいて、下記の
如く、めっき付着量及びめっき層中のFe含有率を制御し
ながら、Fe-Zn 合金めっき鋼板の製造を実施した。尚、
上記面間隔d(110) の測定は、X線回折法により(110)
面の回折角2Θ(110) を最高ピーク位置で測定し、ブラ
グの式、即ち、λ(:X線波長)=2d sinΘの式より
dを算出する方法により行った。後述の面間隔d(110)
の測定もこれと同様の方法により行った。
(Example 1) For the Fe-Zn alloy-plated steel sheets of which the Fe content and the coating weight of the plating layer are known and different in advance, the interplanar spacing of the α phase (110) plane was measured by the X-ray diffraction method,
The relationship (calibration curve A) between the Fe content and the interplanar spacing d (110) of the α-phase (110) plane was determined. The calibration curve is shown in FIG. Further, the same steel sheet was irradiated with fluorescent X-rays by the fluorescent X-ray method, the intensity of the fluorescent X-rays from the plated steel sheet was measured, and the Zn adhesion amount (plating adhesion amount x Zn content rate) and fluorescence X The relationship with the intensity of the line (calibration curve B) was determined. The calibration curve is shown in FIG. Thereafter, in a continuous electroplating line, the Fe-Zn alloy plated steel sheet was manufactured while controlling the coating amount and the Fe content in the plating layer as described below. still,
The above-mentioned interplanar spacing d (110) was measured by an X-ray diffraction method (110)
The diffraction angle 2θ (110) of the surface was measured at the highest peak position, and d was calculated from the Bragg equation, that is, the equation of λ (: X-ray wavelength) = 2d sin θ. Surface spacing d (110) described later
Was also measured by the same method.

【0017】実施例1に係る制御システムの概要を図2
に示す。図2において、Sは鋼帯、1は導入ロール、2
はFe-Zn 合金めっき設備(めっき槽及び水洗装置)、3
は乾燥器、7はFe-Zn 合金めっき鋼板を示し、又、4は
Fe-Zn 合金めっき鋼板のZnからの蛍光X線の強度を測定
し、該測定値と前記検量線BとからZn付着量を求める蛍
光X線Zn付着量計、5はFe-Zn 合金めっき層のα相(11
0) 面の面間隔をX線回折法により測定し、該測定値と
前記検量線AとからFe含有率を求めるX線回折Fe含有率
計、6はこれら計器4及び5からデジタル信号9として
送られる結果を解析し、所定のめっき付着量及びFe含有
率になるようにめっき条件を決定すると共に調整制御す
るプロセスコンピュータを示すものである。
FIG. 2 shows an outline of the control system according to the first embodiment.
Shown in. In FIG. 2, S is a steel strip, 1 is an introducing roll, and 2 is
Is Fe-Zn alloy plating equipment (plating tank and washing equipment), 3
Is a dryer, 7 is a Fe-Zn alloy plated steel sheet, and 4 is
Fluorescent X-ray Zn adhesion amount meter for measuring the intensity of the fluorescent X-rays from Zn of the Fe-Zn alloy plated steel plate and obtaining the Zn adhesion amount from the measured value and the calibration curve B, 5 is an Fe-Zn alloy plating layer Α phase (11
0) X-ray diffraction Fe content meter for measuring the interplanar spacing by the X-ray diffraction method and obtaining the Fe content from the measured value and the calibration curve A. 6 is a digital signal 9 from these instruments 4 and 5. The process computer which analyzes the sent results, determines the plating conditions so as to obtain a predetermined coating adhesion amount and Fe content, and adjusts and controls them is shown.

【0018】上記制御システムにおいて、鋼帯Sは走行
しながらめっき設備2に導入され、該設備2によりFe-Z
n 合金めっきが施され、水洗された後、乾燥器3により
充分に乾燥される。次いで、このFe-Zn 合金めっき鋼板
7は、蛍光X線Zn付着量計4によりZn付着量が測定さ
れ、プロセスコンピュータ6に送られる。更に、X線回
折Fe含有率計5によりFe含有率が測定され、プロセスコ
ンピュータ6に送られ、入力される。
In the above control system, the steel strip S is introduced into the plating equipment 2 while running, and the equipment 2 is used to make Fe-Z.
After being plated with n alloy and washed with water, it is sufficiently dried by a drier 3. Next, the Fe-Zn alloy-plated steel sheet 7 is measured for the Zn adhesion amount by the fluorescent X-ray Zn adhesion amount meter 4 and sent to the process computer 6. Further, the Fe content is measured by the X-ray diffraction Fe content meter 5 and sent to the process computer 6 for input.

【0019】プロセスコンピュータ6では、入力された
Zn付着量とFe含有率の値から下記式によりめっき付着
量が計算され、このめっき付着量及び上記Fe含有率の値
に基づき、所定のめっき付着量及びFe含有率になるよう
に、ラインスピードに合わせて電気めっきの電流密度等
のめっき条件を決定し、調整制御する。即ち、測定値が
所定値から外れている時には瞬時に所定値が得られるめ
っき条件に変化させ、又、所定値から外れそうな時にも
所定値(所定範囲)の中央値になるようなめっき条件に
微調整する。 めっき付着量=〔Zn付着量/(1−Fe含有率)〕----
In the process computer 6, the input
The plating amount is calculated from the Zn deposition amount and the Fe content value by the following formula, and based on this plating deposition amount and the Fe content value, the line speed is adjusted so that the predetermined plating deposition amount and Fe content ratio are achieved. The plating conditions such as the current density of electroplating are determined according to the above, and the adjustment is controlled. That is, when the measured value deviates from the predetermined value, the plating condition is changed so that the predetermined value is obtained instantly, and even when the measured value is likely to deviate from the predetermined value, the plating condition becomes the median of the predetermined value (predetermined range). Fine-tune to. Coating weight = [Zn weight / (1-Fe content)] ----
formula

【0020】上記の如き制御下で連続電気めっきライン
によりFe-Zn 合金めっき鋼板の製造を実施した後、得ら
れたFe-Zn 合金めっき鋼板について、陽極溶解法等の方
法によりめっき付着量及びめっき層中のFe含有率の確認
分析を行ったところ、めっき付着量及びめっき層中のFe
含有率はいづれも所定値に入っていた。従って、Fe含有
率及びめっき付着量をオンラインにて迅速に且つ精度よ
く測定し得ると共に、Fe含有率及びめっき付着量を所定
値に正確に制御し得、そのため、めっき鋼板の品質の向
上が図れることが確認された。
After the Fe-Zn alloy-plated steel sheet was manufactured by the continuous electroplating line under the control as described above, the obtained Fe-Zn alloy-plated steel sheet was coated by the method such as anodic dissolution method and the amount of the deposited coating and the plating A confirmation analysis of the Fe content in the layer was performed.
The content rates were all within the prescribed values. Therefore, it is possible to measure the Fe content rate and the plating adhesion amount online and quickly and accurately, and it is possible to accurately control the Fe content rate and the plating adhesion amount to a predetermined value, so that the quality of the plated steel sheet can be improved. It was confirmed.

【0021】(実施例2)実施例2に係る制御システム
の概要を図4に示す。このシステムは、実施例1のシス
テムに、Fe-Zn 合金めっき液の自動分析計8を付加し、
めっき付着量及びFe含有率制御のために調整するめっき
条件として、電流密度等に加えてめっき液の濃度も採用
し得るようにしたものである。このめっき液自動分析計
8にはプラズマ発光分光分析計(:ICP)を用いている。
(Second Embodiment) FIG. 4 shows an outline of a control system according to the second embodiment. In this system, an automatic analyzer 8 for Fe—Zn alloy plating solution is added to the system of Example 1,
In addition to the current density and the like, the concentration of the plating solution can be adopted as the plating condition adjusted to control the coating weight and the Fe content. A plasma emission spectrophotometer (: ICP) is used as the plating solution automatic analyzer 8.

【0022】上記めっき液自動分析計8では、めっき設
備2のめっき槽から供給されためっき液を分析し、この
分析結果をデジタル信号10としてプロセスコンピュータ
6に送り、予め設定されためっき液濃度範囲となるよう
に制御する。このとき、分析は断続的であって連続分析
が困難であるため、液濃度制御する際は、Zn, Fe或いは
純水のいづれかを情報に基づいて選択し、一定量めっき
設備2に供給し、次回の分析結果が出るまで、供給を止
めて待機状態となる。
The automatic plating solution analyzer 8 analyzes the plating solution supplied from the plating tank of the plating facility 2 and sends the analysis result as a digital signal 10 to the process computer 6 to set a predetermined plating solution concentration range. Control so that. At this time, since the analysis is intermittent and continuous analysis is difficult, when controlling the liquid concentration, either Zn, Fe or pure water is selected based on the information, and a fixed amount is supplied to the plating equipment 2. Until the next analysis result comes out, supply is stopped and it will be in a standby state.

【0023】実施例2に係る制御システムによれば、電
流密度等に加えてめっき液の濃度も調整し得るので、Fe
含有率及びめっき付着量をより一層正確に制御し易くな
るという利点がある。
According to the control system of the second embodiment, the concentration of the plating solution can be adjusted in addition to the current density.
There is an advantage that it becomes easier to control the content rate and the coating deposition amount more accurately.

【0024】[0024]

【発明の効果】本発明に係るFe-Zn 系合金めっき鋼板の
製造方法によれば、めっき層中のFe含有率及びめっき付
着量をオンラインにて迅速に且つ精度よく測定し得るよ
うになり、それら測定値に基づきめっき条件を調整して
Fe含有率及びめっき付着量めっき付着量及びめっき層中
のFe含有率を制御することができるので、めっき層中の
Fe含有率及びめっき付着量を所定値に正確に制御し得、
その結果めっき鋼板の品質の向上が図れるようになる。
EFFECTS OF THE INVENTION According to the method for producing an Fe-Zn alloy plated steel sheet according to the present invention, it becomes possible to measure the Fe content in the plating layer and the coating adhesion amount online and quickly and accurately, Adjust the plating conditions based on those measured values
Fe content rate and plating adhesion amount Since it is possible to control the plating adhesion amount and the Fe content rate in the plating layer,
It is possible to accurately control the Fe content and the coating weight to a predetermined value,
As a result, the quality of the plated steel sheet can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係るFe-Zn 合金めっき層中のFe含有
率測定用の検量線であって、Fe含有率とFe-Zn 合金α相
(110) 面の面間隔d(110) との関係を示す図である。
FIG. 1 is a calibration curve for measuring the Fe content in the Fe—Zn alloy plating layer according to Example 1, showing the Fe content and the Fe—Zn alloy α phase.
It is a figure which shows the relationship with the surface spacing d (110) of a (110) surface.

【図2】実施例1に係る制御システムの概要を示す図で
ある。
FIG. 2 is a diagram showing an outline of a control system according to the first embodiment.

【図3】実施例1に係るFe-Zn 合金めっき層のZn付着量
測定用の検量線であって、Zn付着量と蛍光X線法により
測定される強度との関係を示す図である。
FIG. 3 is a calibration curve for measuring the Zn adhesion amount of the Fe—Zn alloy plating layer according to Example 1, showing the relationship between the Zn adhesion amount and the strength measured by the fluorescent X-ray method.

【図4】実施例2に係る制御システムの概要を示す図で
ある。
FIG. 4 is a diagram showing an outline of a control system according to a second embodiment.

【符号の説明】[Explanation of symbols]

1--導入ロール、2--Fe-Zn 合金めっき設備、3--乾燥
器、4--蛍光X線Zn付着量計、5--X線回折Fe含有率
計、6--プロセスコンピュータ、7--Fe-Zn 合金めっき
鋼板、8--めっき液の自動分析計、9,10--デジタル信
号、S--鋼帯。
1--Introduction roll, 2--Fe-Zn alloy plating equipment, 3--Dryer, 4--Fluorescent X-ray Zn adhesion meter, 5--X-ray diffraction Fe content meter, 6--Process computer, 7--Fe-Zn alloy plated steel sheet, 8--Automatic analyzer of plating solution, 9,10--Digital signal, S--Steel strip.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続電気めっきラインにより鋼板にFe-Z
n 系合金めっきを施すと共に、このめっき鋼板のめっき
付着量及びFe-Zn 系合金めっき層中のFe含有率をオンラ
イン下で測定し、それら測定値に基づきめっき条件を調
整してめっき付着量及びめっき層中のFe含有率を制御す
るFe-Zn 系合金めっき鋼板の製造方法であって、前記Fe
-Zn 系合金めっき層中のFe含有率の測定を、該Fe-Zn 系
合金めっき層のα相の面間隔をX線回折法により測定す
ることにより行うことを特徴とするFe-Zn 系合金めっき
鋼板の製造方法。
1. Fe-Z on steel plate by continuous electroplating line
In addition to performing n-based alloy plating, measure the plating adhesion amount of this plated steel sheet and the Fe content in the Fe-Zn alloy plating layer online, and adjust the plating conditions based on these measured values to determine the plating adhesion amount and A method for producing a Fe-Zn alloy-plated steel sheet for controlling the Fe content in a plating layer, the method comprising:
Fe-Zn alloy, characterized in that the Fe content in the Zn-Zn alloy plated layer is measured by measuring the interplanar spacing of the α phase of the Fe-Zn alloy plated layer by an X-ray diffraction method. Manufacturing method of plated steel sheet.
【請求項2】 前記α相の面間隔がα相(110) 面の面間
隔である請求項1記載のFe-Zn 系合金めっき鋼板の製造
方法。
2. The method for producing a Fe—Zn alloy plated steel sheet according to claim 1, wherein the α-phase interplanar spacing is the α-phase (110) interplanar spacing.
【請求項3】 前記めっき付着量の測定を、蛍光X線法
によりめっき厚みを測定することにより行う請求項1記
載のFe-Zn 系合金めっき鋼板の製造方法。
3. The method for producing a Fe—Zn based alloy plated steel sheet according to claim 1, wherein the coating amount is measured by measuring a plating thickness by a fluorescent X-ray method.
JP18097192A 1992-07-08 1992-07-08 Production of fe-zn alloy plated steel sheet Withdrawn JPH0625894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18097192A JPH0625894A (en) 1992-07-08 1992-07-08 Production of fe-zn alloy plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18097192A JPH0625894A (en) 1992-07-08 1992-07-08 Production of fe-zn alloy plated steel sheet

Publications (1)

Publication Number Publication Date
JPH0625894A true JPH0625894A (en) 1994-02-01

Family

ID=16092484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18097192A Withdrawn JPH0625894A (en) 1992-07-08 1992-07-08 Production of fe-zn alloy plated steel sheet

Country Status (1)

Country Link
JP (1) JPH0625894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT405770B (en) * 1997-09-24 1999-11-25 Voest Alpine Ind Anlagen METHOD FOR CONTROLLING A '' GALVANNEALING '' PROCESS
WO2004090200A1 (en) * 2002-10-04 2004-10-21 Ehrfeld Mikrotechnik Ag Alloy deposition controlled by a characteristic diagram
CN105960590A (en) * 2014-02-05 2016-09-21 杰富意钢铁株式会社 X-ray diffraction analyzer and analyzing method
KR20190045738A (en) * 2017-10-24 2019-05-03 주식회사 포스코 Electro forming coating auto control apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT405770B (en) * 1997-09-24 1999-11-25 Voest Alpine Ind Anlagen METHOD FOR CONTROLLING A '' GALVANNEALING '' PROCESS
WO2004090200A1 (en) * 2002-10-04 2004-10-21 Ehrfeld Mikrotechnik Ag Alloy deposition controlled by a characteristic diagram
CN105960590A (en) * 2014-02-05 2016-09-21 杰富意钢铁株式会社 X-ray diffraction analyzer and analyzing method
KR20190045738A (en) * 2017-10-24 2019-05-03 주식회사 포스코 Electro forming coating auto control apparatus

Similar Documents

Publication Publication Date Title
Ziemniak et al. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water
KR900008955B1 (en) Coating thickness and composition measuring method of alloy coating
CA1052479A (en) Method of measuring the degree of alloying of galvannealed steel sheets
JPH0625894A (en) Production of fe-zn alloy plated steel sheet
KR100916121B1 (en) Method for Measuring the Alloy Phase Fraction and Alloy Phase Control Method of Alloying Hot-Dip Galvanized Steel Sheet
JPH0933455A (en) Method for measuring alloying degree of alloyed plating layer
WO2022010434A1 (en) An electroplating system
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
Neuróhr et al. Composition depth profile analysis of electrodeposited alloys and metal multilayers: the reverse approach
JPH06347247A (en) Measuring method of thickness of alloy phase of plated layer
JPH0545305A (en) Method for measuring alloying degree of alloyzinc-plated layer
JPH09159428A (en) Method for measuring deposition quantities of mg, and surface layer zn of zn-mg based plated steel plate
JPH03175342A (en) Method for measuring the degree of alloying of alloyed hot-dip galvanized steel sheets
JPH01301155A (en) Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet
JPS5946543A (en) Method for measuring degree of alloy formation of galvannealed steel plate
JPH09127027A (en) Measuring method for zinc coating weight of galvannealed steel sheet
JPH0571936A (en) Method for measuring amount of adhesion of upper-layer plating of multiple-layer plated steel plate
US4808277A (en) Method for the continuous electrolytic plating of a metal strip with a metallic plating layer
Hilfiker et al. In-situ ellipsometric characterization of the electrodeposition of metal films
JPS646269B2 (en)
JP2809774B2 (en) Manufacturing method of hot dip galvanized alloyed steel sheet
SU1002941A1 (en) Coating quality determination method
Kimmel et al. Characterization of TiN film by XRD and XRF
JPH02236439A (en) Method for measuring alloying degree of plated metallic plate
JP2833337B2 (en) Manufacturing method of electrolytic chromate steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005