[go: up one dir, main page]

JPH06257413A - Gas turbine-steam turbine composite plant - Google Patents

Gas turbine-steam turbine composite plant

Info

Publication number
JPH06257413A
JPH06257413A JP4703793A JP4703793A JPH06257413A JP H06257413 A JPH06257413 A JP H06257413A JP 4703793 A JP4703793 A JP 4703793A JP 4703793 A JP4703793 A JP 4703793A JP H06257413 A JPH06257413 A JP H06257413A
Authority
JP
Japan
Prior art keywords
pressure
cooling
steam
evaporator
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4703793A
Other languages
Japanese (ja)
Inventor
Masanori Yamazaki
雅則 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4703793A priority Critical patent/JPH06257413A/en
Publication of JPH06257413A publication Critical patent/JPH06257413A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

(57)【要約】 【目的】ガスタービンの翼等を冷却するために、ガスタ
ービンの空気圧縮機から部分抽出した圧縮空気を冷却水
により冷却してガスタービンに供給する際の圧縮空気の
冷却に伴う排熱を回収して熱損失を低減する。 【構成】空気圧縮機1から部分抽出した圧縮空気を冷却
空気冷却器6にて脱気器23からの冷却水と熱交換して
冷却し、冷却空気冷却器6から排出される冷却水の圧力
を圧力制御弁38により低減して蒸発器35内の圧力を
冷却空気冷却器6から排出される冷却水の温度に対応す
る飽和圧力以下で、かつ脱気器23内の圧力より高い所
定圧力に制御して蒸発器35内で冷却水を沸騰させ、生
じた蒸気を脱気器23に供給する。
(57) [Abstract] [Purpose] To cool the blades of a gas turbine, etc., the compressed air partially extracted from the air compressor of the gas turbine is cooled by cooling water and supplied to the gas turbine. The exhaust heat associated with is recovered to reduce heat loss. [Structure] Compressed air partially extracted from an air compressor 1 is cooled by heat exchange with cooling water from a deaerator 23 in a cooling air cooler 6 and pressure of cooling water discharged from the cooling air cooler 6. Is reduced by the pressure control valve 38 so that the pressure in the evaporator 35 becomes equal to or lower than the saturation pressure corresponding to the temperature of the cooling water discharged from the cooling air cooler 6 and higher than the pressure in the deaerator 23. The cooling water is controlled to boil the cooling water in the evaporator 35, and the generated steam is supplied to the deaerator 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンを駆動し
て動力を発生させるとともにガスタービンからの排ガス
によりボイラにて給水を加熱して蒸気を発生させ、この
蒸気により蒸気タービンを駆動して動力を発生させるガ
スタービン・蒸気タービン複合プラント、特に前記ガス
タービンと蒸気タービンとの動力を発電機により電力に
変換するガスタービン・蒸気タービン複合発電プラント
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention drives a gas turbine to generate power, heats feed water in a boiler with exhaust gas from the gas turbine to generate steam, and drives the steam turbine with this steam. The present invention relates to a gas turbine / steam turbine combined power generation plant for generating power, and more particularly to a gas turbine / steam turbine combined power generation plant for converting the power of the gas turbine and the steam turbine into electric power by a generator.

【0002】[0002]

【従来の技術】ガスタービンと蒸気タービンとを複合し
たガスタービン・蒸気タービン複合プラントとして空気
圧縮機で圧縮した圧縮空気により燃料を燃焼器にて燃焼
させて生じる燃焼ガスによりガスタービンを駆動して得
られた動力を発電機にて電力を変換するとともに、ガス
タービンの排ガスによりボイラに供給される給水を加熱
して蒸気を発生させ、この蒸気により蒸気タービンを駆
動して得られた動力を発電機にて電力に変換するガスタ
ービン・蒸気タービン複合発電プラントとして図3に示
す系統のものが知られている。
2. Description of the Related Art As a gas turbine / steam turbine combined plant in which a gas turbine and a steam turbine are combined, a gas turbine is driven by combustion gas generated by burning fuel in a combustor with compressed air compressed by an air compressor. The generated power is converted into electric power by a generator, and the feed water supplied to the boiler is heated by the exhaust gas of the gas turbine to generate steam, and the steam is used to drive the steam turbine to generate power. As a gas turbine / steam turbine combined cycle power plant that is converted into electric power by a machine, the system shown in FIG. 3 is known.

【0003】図3において空気圧縮機1と、これと同軸
のガスタービン2とは発電機3に軸結合されている。燃
焼器4はこれに供給される燃料を空気圧縮機1からの圧
縮空気により燃焼し、その燃焼ガスはガスタービン2に
供給される。冷却空気冷却器6は空気圧縮機1の中段と
ガスタービン2とに接続される冷却空気供給系7に設け
られ、空気圧縮機1の中段から抽出した圧縮空気を冷却
する。ラジエータ8は、冷却空気冷却器6を経由する冷
却水循環系9に設けられ、空気圧縮機1から抽出される
圧縮空気を冷却した後、冷却空気冷却器6から排出され
る冷却水を冷却するファン10を備えている。なお、ラ
ジエータ8の代りに冷却用のファンを備えた冷却塔も使
用される。
In FIG. 3, an air compressor 1 and a gas turbine 2 coaxial with the air compressor 1 are axially coupled to a generator 3. The combustor 4 combusts the fuel supplied thereto by the compressed air from the air compressor 1, and the combustion gas thereof is supplied to the gas turbine 2. The cooling air cooler 6 is provided in the cooling air supply system 7 connected to the middle stage of the air compressor 1 and the gas turbine 2, and cools the compressed air extracted from the middle stage of the air compressor 1. The radiator 8 is provided in the cooling water circulation system 9 passing through the cooling air cooler 6 and cools the compressed air extracted from the air compressor 1 and then cools the cooling water discharged from the cooling air cooler 6. Equipped with 10. A cooling tower equipped with a cooling fan may be used instead of the radiator 8.

【0004】ボイラ11はガスタービン2の排気口に排
ガス供給系12を介して接続され、ガスタービン2から
の排ガスが供給される。蒸気タービン15は復水器16
を備え、発電機17と軸結合している。なお蒸気タービ
ン15は蒸気供給系18を介してボイラ11に接続され
ている。給水加熱系20は復水ポンプ21,蒸気タービ
ン15からの抽気を供給する脱気用抽気系22に接続す
る脱気器23,高圧抽気系24と低圧抽気系26とにそ
れぞれ接続する高圧給水加熱器25,低圧給水加熱器2
7、及び給水ポンプ28を備えて復水器16とボイラ1
1とに接続して設けられている。なお、30は高圧給水
加熱器25のドレンを脱気器23に導くドレン排出系、
31は低圧給水加熱器27のドレンを復水器16に導く
ドレン排出系である。
The boiler 11 is connected to the exhaust port of the gas turbine 2 via an exhaust gas supply system 12 and is supplied with exhaust gas from the gas turbine 2. The steam turbine 15 is a condenser 16
And is axially coupled to the generator 17. The steam turbine 15 is connected to the boiler 11 via a steam supply system 18. The feed water heating system 20 is a condensate pump 21, a deaerator 23 connected to a degassing extraction system 22 for supplying extraction air from the steam turbine 15, a high pressure feed water heating connected to a high pressure extraction system 24 and a low pressure extraction system 26, respectively. Vessel 25, low-pressure feed water heater 2
7 and the water supply pump 28, and the condenser 16 and the boiler 1
It is provided by connecting with 1. In addition, 30 is a drain discharge system for guiding the drain of the high-pressure feed water heater 25 to the deaerator 23,
Reference numeral 31 is a drain discharge system for guiding the drain of the low-pressure feed water heater 27 to the condenser 16.

【0005】このような構成により、空気圧縮機1で圧
縮された圧縮空気は燃焼器4に供給され、燃焼器4にて
燃料が圧縮空気により燃焼し、この燃焼により生じた燃
焼ガスはガスタービン2に供給されてガスタービン2を
駆動し、軸結合された発電機3により電力を発生する。
この際、空気圧縮機1の中段から抽出された圧縮空気は
冷却空気供給系7に設けられた冷却空気冷却器6を通流
する冷却水により冷却されてガスタービン2に供給さ
れ、燃焼ガスにより駆動されるガスタービン2の翼やガ
ス流路を冷却する。
With such a structure, the compressed air compressed by the air compressor 1 is supplied to the combustor 4, the fuel is combusted by the compressed air in the combustor 4, and the combustion gas generated by this combustion is the gas turbine. 2, the gas turbine 2 is driven to generate electric power by a generator 3 which is axially coupled.
At this time, the compressed air extracted from the middle stage of the air compressor 1 is cooled by the cooling water flowing through the cooling air cooler 6 provided in the cooling air supply system 7 and supplied to the gas turbine 2, where it is burned by the combustion gas. The blades of the driven gas turbine 2 and the gas flow path are cooled.

【0006】ここで冷却空気冷却器6を通流する冷却水
は冷却水循環系9を循環し、冷却空気冷却器6にて圧縮
空気を冷却して排出される昇温した冷却水をラジエータ
8にてファン10の駆動により冷却して再び冷却空気冷
却器6に供給する。ガスタービン2の駆動により排出さ
れる排ガスはボイラ11に供給され、復水器16からの
給水加熱系20を経る給水を加熱して蒸気を発生する。
この発生した蒸気は蒸気供給系18を経て蒸気タービン
15に供給されて蒸気タービン15を駆動する。なお蒸
気タービン15から排出される排気は復水器16にて冷
却水により冷却,凝縮されて復水となり、復水器16内
は大気圧以下の圧力に保持される。なおこの復水はボイ
ラ11の給水となる。
The cooling water flowing through the cooling air cooler 6 circulates through a cooling water circulation system 9 and the heated cooling water discharged by cooling the compressed air in the cooling air cooler 6 is discharged to a radiator 8. The cooling air is cooled by driving the fan 10 and supplied again to the cooling air cooler 6. Exhaust gas discharged by driving the gas turbine 2 is supplied to the boiler 11 to heat the feed water from the condenser 16 through the feed water heating system 20 to generate steam.
The generated steam is supplied to the steam turbine 15 via the steam supply system 18 to drive the steam turbine 15. The exhaust gas discharged from the steam turbine 15 is cooled and condensed by the cooling water in the condenser 16 to be condensed water, and the inside of the condenser 16 is maintained at a pressure equal to or lower than the atmospheric pressure. Note that this condensate serves as water for the boiler 11.

【0007】復水器16からの復水、すなわち給水は復
水ポンプ21により低圧給水加熱器27に供給され、蒸
気タービン15から低圧抽気系26を経て供給される抽
気により加熱されて昇温する。この昇温した給水は脱気
器23に供給され、蒸気タービン15から脱気用抽気系
22を経て供給される抽気により加熱,脱気されて脱気
器23内に貯留される。
Condensed water from the condenser 16, that is, feed water is supplied to the low-pressure feed water heater 27 by the condensate pump 21 and heated by the extraction air supplied from the steam turbine 15 through the low-pressure extraction system 26 to raise the temperature. . The heated supply water is supplied to the deaerator 23, and is heated and deaerated by the extracted air supplied from the steam turbine 15 through the deaeration extraction system 22 and stored in the deaerator 23.

【0008】脱気器23内の脱気された給水は給水ポン
プ28により高圧給水加熱器25に供給され、蒸気ター
ビン15から高圧抽気系24を経て供給される抽気によ
り加熱,昇温されてボイラ11に供給される。ボイラ1
1に供給された給水は前述のように蒸気に変換されて蒸
気タービン15に供給され、蒸気タービン15を駆動し
て発電機17により電力を発生する。
The degassed feed water in the deaerator 23 is supplied to the high-pressure feed water heater 25 by the feed water pump 28, heated and heated by the bleed air supplied from the steam turbine 15 through the high-pressure bleed system 24, and then heated by the boiler. 11 is supplied. Boiler 1
The feed water supplied to No. 1 is converted into steam and supplied to the steam turbine 15 as described above, and drives the steam turbine 15 to generate electric power by the generator 17.

【0009】なお、高圧給水加熱器25にて生じたドレ
ンはドレン排出管30を経て脱気器23に、また低圧給
水加熱器27にて生じたドレンはドレン排出系31を経
て復水器16に供給される。
The drain generated in the high-pressure feed water heater 25 passes through the drain discharge pipe 30 to the deaerator 23, and the drain generated in the low-pressure feed water heater 27 passes through the drain discharge system 31 to the condenser 16 Is supplied to.

【0010】[0010]

【発明が解決しようとする課題】ガスタービン2の翼や
ガス流路を冷却するために空気圧縮機1の中段から抽出
した圧縮空気は、冷却空気冷却器6にて冷却水循環系9
を循環する冷却水により冷却されてガスタービン2に供
給されるが、冷却空気冷却器6で圧縮空気を冷却して昇
温した冷却水はラジエータ8や図示しない冷却塔により
冷却される。この際、空気圧縮機1から抽出した圧縮空
気を冷却した熱は回収されずに冷却水循環系9を流れる
冷却水のラジエータや冷却塔での冷却により大気に放出
しているという欠点がある。
The compressed air extracted from the middle stage of the air compressor 1 for cooling the blades and gas passages of the gas turbine 2 is cooled by the cooling air cooler 6 in the cooling water circulation system 9.
Is supplied to the gas turbine 2 by being circulated through cooling water, and the cooling water whose temperature has been raised by cooling the compressed air by the cooling air cooler 6 is cooled by the radiator 8 and a cooling tower (not shown). At this time, there is a drawback in that the heat of cooling the compressed air extracted from the air compressor 1 is not recovered but is released to the atmosphere by being cooled by the radiator of the cooling water flowing through the cooling water circulation system 9 or the cooling tower.

【0011】また、冷却水循環系9を循環する冷却水を
冷却するためラジエータ又は冷却塔を使用しているの
で、冷却用のファンの騒音が発生して環境公害になると
いう欠点がある。本発明の目的は、ガスタービン冷却用
の圧縮空気の冷却に伴う排熱を回収でき、かつ騒音の発
生を防止できるガスタービン・蒸気タービン複合プラン
トを提供することである。
Further, since a radiator or a cooling tower is used to cool the cooling water circulating in the cooling water circulation system 9, there is a drawback that noise of a cooling fan is generated and environmental pollution occurs. An object of the present invention is to provide a gas turbine / steam turbine combined plant capable of recovering exhaust heat accompanying cooling of compressed air for cooling a gas turbine and preventing generation of noise.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば燃焼器にて燃料を空気圧縮機からの
圧縮空気により燃焼して生じた燃焼ガスにより駆動され
るガスタービンと、このガスタービンからの排ガスによ
り給水を加熱して蒸気にするボイラと、このボイラから
の蒸気により駆動される蒸気タービンと、給水を蒸気タ
ービンからの抽気によりそれぞれ加熱してボイラに供給
する脱気器と給水加熱器とを備える給水加熱系と、前記
空気圧縮機の中段から抽出した圧縮空気を冷却してガス
タービンの内部に送出する冷却空気冷却器とを備えるガ
スタービン・蒸気タービン複合プラントにおいて、脱気
器からの給水を冷却水として冷却空気冷却器を経由して
脱気器に戻す循環ポンプを備える冷却水循環系と、この
冷却水循環系に設けられ、冷却空気冷却器から排出され
る冷却水を蒸発させる蒸発器と、この蒸発器の冷却水入
口側の冷却水循環系に設けられ、蒸発器内の圧力を前記
排出される冷却水の温度に対応する飽和圧力より低く、
かつ脱気器内の圧力又は給水加熱器内の圧力より高い所
定圧力に制御する圧力制御弁と、この圧力制御弁による
圧力制御手段と、蒸発器内の蒸気を脱気器又は給水加熱
器に供給する蒸気供給系とを設けるものとする。
In order to solve the above-mentioned problems, according to the present invention, a gas turbine driven by combustion gas produced by burning fuel with compressed air from an air compressor in a combustor and , A boiler that heats the feed water by the exhaust gas from this gas turbine to turn it into steam, a steam turbine that is driven by the steam from this boiler, and a deaeration that heats the feed water by extraction from the steam turbine and supplies it to the boiler In a gas turbine / steam turbine combined plant including a feed water heating system including a water heater and a feed water heater, and a cooling air cooler that cools compressed air extracted from the middle stage of the air compressor and sends the cooled air to the inside of a gas turbine. , A cooling water circulation system equipped with a circulation pump for returning the water supplied from the deaerator as cooling water to the deaerator via the cooling air cooler, and the cooling water circulation system And an evaporator for evaporating the cooling water discharged from the cooling air cooler and a cooling water circulation system on the cooling water inlet side of the evaporator, and the pressure in the evaporator is adjusted to the temperature of the discharged cooling water. Lower than the corresponding saturation pressure,
And a pressure control valve for controlling the pressure in the deaerator or a predetermined pressure higher than the pressure in the feed water heater, the pressure control means by this pressure control valve, and the vapor in the evaporator to the deaerator or the feed water heater. A steam supply system for supply shall be provided.

【0013】また、上記のガスタービン,ボイラ,蒸気
タービン,給水加熱系及び冷却空気冷却器を備えるガス
タービン・蒸気タービン複合プラントにおいて、冷却空
気冷却器から排出される冷却水を蒸発させる蒸発器と、
この蒸発器内の冷却水を冷却空気冷却器を経由して蒸発
器に戻す循環ポンプを備える冷却水循環系と、蒸発器の
冷却水入口側の冷却水循環系に設けられ、蒸発器内の圧
力を前記排出される冷却水の温度に対応する飽和圧力よ
り低く、かつ脱気器内の圧力又は給水加熱器内の圧力よ
り高い所定圧力に制御する圧力制御弁と、この圧力制御
弁による圧力制御手段と、給水加熱系から分岐して給水
を蒸発器に供給する給水供給系と、蒸発器で生じた蒸気
を脱気器又は給水加熱器に供給する蒸気供給系とを設け
るものとする。
Further, in the gas turbine / steam turbine combined plant comprising the above gas turbine, boiler, steam turbine, feed water heating system and cooling air cooler, an evaporator for evaporating the cooling water discharged from the cooling air cooler, ,
The cooling water circulation system is equipped with a circulation pump that returns the cooling water in the evaporator to the evaporator via the cooling air cooler, and the cooling water circulation system on the cooling water inlet side of the evaporator is provided to control the pressure in the evaporator. A pressure control valve for controlling to a predetermined pressure lower than the saturation pressure corresponding to the temperature of the discharged cooling water and higher than the pressure in the deaerator or the pressure in the feed water heater, and pressure control means by this pressure control valve. And a water supply system that branches from the water supply heating system to supply the water supply to the evaporator, and a steam supply system that supplies the steam generated in the evaporator to the deaerator or the water supply heater.

【0014】なお、上記において圧力制御手段は、蒸発
器内の圧力を検出する圧力検出器と、この圧力検出器で
の検出圧力と前記所定圧力の目標値との偏差から圧力制
御弁を制御する制御手段とを備えるものとする。
In the above description, the pressure control means controls the pressure control valve based on the pressure detector for detecting the pressure in the evaporator and the deviation between the pressure detected by the pressure detector and the target value of the predetermined pressure. And control means.

【0015】[0015]

【作用】ガスタービンの内部を冷却するために空気圧縮
機の中段から抽出した圧縮空気を冷却空気冷却器で冷却
した圧縮空気が使用される。この冷却空気冷却器での圧
縮空気の冷却は、冷却水循環系の循環ポンプにより昇圧
されて冷却空気冷却器に供給される脱気器内の給水、す
なわち冷却水により行なわれ、冷却空気冷却器から排出
された冷却水は蒸発器を経て脱気器に戻される。この
際、冷却空気冷却器から排出された冷却水は圧力制御弁
によりその圧力が低減され、蒸発器内の圧力を排出され
る冷却水の温度に対応する飽和圧力より低く、かつ脱気
器内の圧力又は給水加熱器内の圧力より高い所定圧力に
制御する。したがって、蒸発器内の冷却水はその温度に
対応する飽和圧力以下の圧力なので沸騰して蒸気を発生
するので、この蒸気を蒸気供給系を経て脱気器又は給水
加熱器に供給する。この結果空気圧縮機の中段から抽出
した圧縮空気の冷却に伴う排熱は回収され、プラント効
率が向上する。
In order to cool the inside of the gas turbine, the compressed air extracted from the middle stage of the air compressor is cooled by the cooling air cooler. The cooling of the compressed air in the cooling air cooler is performed by the feed water in the deaerator, which is boosted by the circulation pump of the cooling water circulation system and is supplied to the cooling air cooler, that is, the cooling water. The discharged cooling water is returned to the deaerator through the evaporator. At this time, the pressure of the cooling water discharged from the cooling air cooler is reduced by the pressure control valve, so that the pressure inside the evaporator is lower than the saturation pressure corresponding to the temperature of the discharged cooling water, and the inside of the deaerator is reduced. Or a predetermined pressure higher than the pressure in the feed water heater. Therefore, since the cooling water in the evaporator has a pressure equal to or lower than the saturation pressure corresponding to the temperature and boils to generate steam, this steam is supplied to the deaerator or the feed water heater via the steam supply system. As a result, the exhaust heat accompanying the cooling of the compressed air extracted from the middle stage of the air compressor is recovered, and the plant efficiency is improved.

【0016】また、上記と異なる手段でのガスタービン
の内部を冷却する空気圧縮機の中段から抽出した圧縮空
気の冷却空気冷却器での冷却は、冷却空気冷却器を経由
し、蒸発器に戻る冷却水循環系を循環する蒸発器内の冷
却水を循環ポンプにより昇圧して冷却空気冷却器に供給
して行なわれる。この際、冷却空気冷却器から排出され
る冷却水は圧力制御弁によりその圧力が低減され、蒸発
器内の圧力を前述した所定圧力に制御されて蒸発器に供
給される。したがって、蒸発器内の冷却水は沸騰して蒸
気を発生するので、この蒸気を蒸気供給系を経て給水加
熱系の脱気器又は給水加熱器に供給する。なお、蒸発器
から蒸気を脱気器又は給水加熱器に供給して消費された
給水分は、給水加熱系から分岐した給水供給系から供給
される給水により補給される。
Further, the cooling of the compressed air extracted from the middle stage of the air compressor for cooling the inside of the gas turbine by the means different from the above by the cooling air cooler is returned to the evaporator via the cooling air cooler. The cooling water in the evaporator, which circulates in the cooling water circulation system, is pressurized by a circulation pump and supplied to the cooling air cooler. At this time, the pressure of the cooling water discharged from the cooling air cooler is reduced by the pressure control valve, and the pressure inside the evaporator is controlled to the aforementioned predetermined pressure and supplied to the evaporator. Therefore, since the cooling water in the evaporator boils to generate steam, this steam is supplied to the deaerator or the feed water heater of the feed water heating system via the steam supply system. The water supply that is consumed by supplying steam from the evaporator to the deaerator or the feed water heater is replenished by the feed water supplied from the feed water supply system branched from the feed water heating system.

【0017】このようにすることにより、空気圧縮機の
中段から抽出した圧縮空気の冷却に伴う排熱は回収さ
れ、プラント効率が向上する。なお、蒸発器内の圧力制
御は、蒸発器に設けられた圧力検出器で蒸発器内の圧力
を検出した検出圧力と前記所定圧力の目標値との偏差か
ら制御手段により圧力制御弁を制御することにより行な
われ、蒸発器内の圧力は所定圧力に制御される。
By doing so, the exhaust heat due to the cooling of the compressed air extracted from the middle stage of the air compressor is recovered, and the plant efficiency is improved. The pressure control in the evaporator controls the pressure control valve by the control means from the deviation between the detected pressure detected by the pressure detector provided in the evaporator and the target value of the predetermined pressure. The pressure inside the evaporator is controlled to a predetermined pressure.

【0018】[0018]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例によるガスタービン・
蒸気タービン複合プラントとしての複合発電プラントの
系統図である。なお、図1及び後述する図2において図
3の従来例と同一部品には同じ符号を付し、その説明を
省略する。図1において図3の従来例と異なるのは下記
の通りである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a gas turbine according to an embodiment of the present invention.
It is a system diagram of a combined cycle power generation plant as a steam turbine combined plant. In FIG. 1 and FIG. 2 described later, the same parts as those of the conventional example of FIG. 1 is different from the conventional example of FIG. 3 in the following points.

【0019】冷却空気冷却器6から排出された冷却水を
蒸発させる蒸発器35を設け、脱気器23と冷却空気冷
却器6の入口とに接続され、循環ポンプ36を備える冷
却水入口系37と、冷却空気冷却器6の出口と蒸発器3
5とに接続され、圧力制御弁38を備える冷却水出口系
39と、蒸発器35と脱気器23とに接続される冷却水
戻り系40とからなり、循環ポンプ36により脱気器2
3内の貯留された給水、すなわち冷却水が脱気器23→
冷却空気冷却器6→蒸発器35→脱気器23と循環する
冷却水循環系41を設けている。
A cooling water inlet system 37 provided with an evaporator 35 for evaporating the cooling water discharged from the cooling air cooler 6 and connected to the deaerator 23 and the inlet of the cooling air cooler 6 and having a circulation pump 36. And the outlet of the cooling air cooler 6 and the evaporator 3
5, a cooling water outlet system 39 including a pressure control valve 38, and a cooling water return system 40 connected to the evaporator 35 and the deaerator 23.
The supply water stored in 3, that is, the cooling water is the deaerator 23 →
A cooling water circulation system 41 that circulates the cooling air cooler 6-> evaporator 35-> deaerator 23 is provided.

【0020】また、蒸発器35と脱気器23とに接続し
て蒸発器35で発生した蒸気を脱気器23に供給する蒸
気供給系42を設けている。なお43は逆止弁である。
蒸発器35には蒸発器35内の圧力を検出する圧力検出
器45を設け、圧力検出器45での検出圧力と冷却空気
冷却器6から排出される冷却水の温度に対応する飽和圧
力以下で、かつ脱気器23内の圧力より高い所定圧力の
目標値との偏差から圧力制御弁38を制御する調節器4
6を設けている。
Further, a vapor supply system 42 is provided which is connected to the evaporator 35 and the deaerator 23 and supplies the vapor generated in the evaporator 35 to the deaerator 23. Reference numeral 43 is a check valve.
The evaporator 35 is provided with a pressure detector 45 for detecting the pressure inside the evaporator 35, and the pressure is below the saturation pressure corresponding to the pressure detected by the pressure detector 45 and the temperature of the cooling water discharged from the cooling air cooler 6. And the regulator 4 for controlling the pressure control valve 38 from the deviation from the target value of the predetermined pressure higher than the pressure in the deaerator 23.
6 is provided.

【0021】このような構成により、脱気器23内の給
水、すなわち冷却水を循環ポンプ36により昇圧して冷
却水入口系37を経て冷却空気冷却器6に供給する。こ
こで循環ポンプ36により昇圧する冷却水の圧力は、昇
圧された冷却水が冷却空気冷却器6での熱交換により沸
騰を起こさせない圧力とする。冷却空気冷却器6に供給
された冷却水は、前述のように空気圧縮機1の中段から
抽出した圧縮空気を冷却して昇温した冷却水となって冷
却水出口系39を流れ、圧力制御弁38により減圧され
て蒸発器35に流入する。この際、圧力検出器45での
蒸発器35内の圧力の検出圧力と前述した冷却空気冷却
器6から排出される冷却水の温度に対応する飽和圧力よ
り低く、かつ脱気器23内の圧力より高い所定圧力の目
標値との偏差から調節器46により圧力制御弁38を制
御して蒸発器35内の圧力は所定圧力になるように制御
される。
With such a configuration, the feed water in the deaerator 23, that is, the cooling water is pressurized by the circulation pump 36 and supplied to the cooling air cooler 6 via the cooling water inlet system 37. Here, the pressure of the cooling water boosted by the circulation pump 36 is set to a pressure at which the boosted cooling water does not cause boiling due to heat exchange in the cooling air cooler 6. The cooling water supplied to the cooling air cooler 6 becomes the cooling water that has been heated by cooling the compressed air extracted from the middle stage of the air compressor 1 as described above and flows through the cooling water outlet system 39 to control the pressure. The pressure is reduced by the valve 38 and flows into the evaporator 35. At this time, the pressure in the evaporator 35 detected by the pressure detector 45 is lower than the saturation pressure corresponding to the temperature of the cooling water discharged from the cooling air cooler 6 and the pressure in the deaerator 23. The pressure in the evaporator 35 is controlled to a predetermined pressure by controlling the pressure control valve 38 by the controller 46 based on the deviation from the target value of the higher predetermined pressure.

【0022】したがって、蒸発器35内の冷却水は上記
の蒸発器35内の圧力により沸騰して蒸気を発生する。
ここで蒸発器35内の冷却水は冷却水戻り系40を経て
脱気器23に戻される。このようにして脱気器23内の
冷却水は冷却空気冷却器6,蒸発器35を経て脱気器2
3に戻されて冷却水循環系41を循環する。一方、蒸発
器35内の蒸気は蒸気供給系42を経て脱気器23に供
給される。
Therefore, the cooling water in the evaporator 35 boils due to the pressure in the evaporator 35 to generate steam.
Here, the cooling water in the evaporator 35 is returned to the deaerator 23 via the cooling water return system 40. In this way, the cooling water in the deaerator 23 passes through the cooling air cooler 6 and the evaporator 35, and then the deaerator 2
It returns to 3 and circulates through the cooling water circulation system 41. On the other hand, the steam in the evaporator 35 is supplied to the deaerator 23 via the steam supply system 42.

【0023】このように脱気器23から供給され、冷却
空気冷却器6から排出された冷却水を蒸発器35で蒸発
させ、その蒸気を脱気器23に供給することにより、脱
気器23内の給水を脱気用抽気系22を経る抽気ととも
に加熱するので、ガスタービン・蒸気タービン複合発電
プラントの通常運転時に冷却空気冷却器6での排熱とな
る交換熱量を回収できる。
As described above, the cooling water supplied from the deaerator 23 and discharged from the cooling air cooler 6 is evaporated by the evaporator 35, and the vapor is supplied to the deaerator 23, whereby the deaerator 23 is discharged. Since the feed water inside is heated together with the extracted air that passes through the deaerating extraction system 22, it is possible to recover the amount of heat exchanged as exhaust heat in the cooling air cooler 6 during normal operation of the gas turbine / steam turbine combined cycle power plant.

【0024】また、ガスタービン・蒸気タービン複合発
電プラントの起動時、この蒸発器35からの蒸気により
脱気器23内の給水を予熱できるので、起動時の熱損失
の低減を行なうことができる。なお、本実施例では蒸発
器35で生じた蒸気を脱気器23供給しているが、蒸発
器35内の圧力を前記飽和圧力より低く、かつ高圧又は
低圧給水加熱器25,27内の圧力より高い所定圧力に
制御して、脱気器23の代りに高圧又は低圧給水加熱器
25,27に蒸発器35で生じた蒸気を供給することに
より、前述と同じ効果が得られる。
When the gas turbine / steam turbine combined cycle power plant is started, the feed water in the deaerator 23 can be preheated by the steam from the evaporator 35, so that the heat loss at the start can be reduced. In this embodiment, the vapor generated in the evaporator 35 is supplied to the deaerator 23, but the pressure inside the evaporator 35 is lower than the saturation pressure and the pressure inside the high or low pressure feed water heater 25, 27. By controlling to a higher predetermined pressure and supplying the steam generated in the evaporator 35 to the high-pressure or low-pressure feed water heaters 25 and 27 instead of the deaerator 23, the same effect as described above can be obtained.

【0025】図2は本発明の異なる実施例によるガスタ
ービン・蒸気タービン複合発電プラントの系統図であ
る。図2において図1の冷却水循環系41を取除き、蒸
発器35の下部と冷却空気冷却器6の冷却水入口とに接
続して循環ポンプ36を備える冷却水入口系48と、冷
却空気冷却器6の冷却水出口と蒸発器35に接続して圧
力制御弁38を備える冷却水出口系49とからなる冷却
水循環系50、及び給水加熱系20の低圧給水加熱器2
7の下流から分岐して蒸発器35に接続し、給水ポンプ
51を備える給水供給系52を設けた他は図1と同じで
ある。
FIG. 2 is a system diagram of a combined gas turbine / steam turbine power plant according to another embodiment of the present invention. In FIG. 2, the cooling water circulation system 41 of FIG. 1 is removed, and the cooling water inlet system 48 including the circulation pump 36 is connected to the lower portion of the evaporator 35 and the cooling water inlet of the cooling air cooling device 6, and the cooling air cooling device. 6, a cooling water circulation system 50 including a cooling water outlet 6 and a cooling water outlet system 49 connected to the evaporator 35 and provided with a pressure control valve 38, and a low-pressure feed water heater 2 of the feed water heating system 20.
7 is the same as FIG. 1 except that it is branched from the downstream side of 7 and connected to the evaporator 35, and a water supply system 52 having a water supply pump 51 is provided.

【0026】このような構成により、蒸発器35内の冷
却水は循環ポンプ36により冷却空気冷却器6での熱交
換により沸騰しない圧力に昇圧されて冷却空気冷却器6
に供給される。そして供給された冷却水は空気圧縮機1
の中段から抽出された圧縮空気を冷却し、昇温して排出
される冷却水は前述の圧力制御手段による圧力制御弁3
8により前述の所定圧力に圧力制御され、蒸発器35内
で沸騰して蒸気を発生する。ここで、蒸発器35内の冷
却水は再び冷却空気冷却器6に供給され、一方蒸気は脱
気器23に供給される。
With such a configuration, the cooling water in the evaporator 35 is boosted by the circulation pump 36 to a pressure at which it does not boil due to heat exchange in the cooling air cooler 6, and the cooling air cooler 6 is cooled.
Is supplied to. The supplied cooling water is the air compressor 1
The cooling water that cools the compressed air extracted from the middle stage, raises the temperature, and is discharged is the pressure control valve 3 by the pressure control means described above.
The pressure is controlled to the above-mentioned predetermined pressure by 8 and boils in the evaporator 35 to generate steam. Here, the cooling water in the evaporator 35 is again supplied to the cooling air cooler 6, while the steam is supplied to the deaerator 23.

【0027】なお、蒸気が脱気器23に供給されること
により生じる冷却水が消費された給水分は給水供給系5
2を経て給水ポンプ51により給水加熱系20を経る給
水により補給される。なお、蒸発器35で生じた蒸気は
脱気器23の代りに前述のように高圧給水加熱器25又
は低圧給水加熱器27に供給することもできる。
The feed water consumed by the cooling water generated by the supply of the steam to the deaerator 23 is the feed water supply system 5.
The water is supplied via the water supply heating system 20 via the water supply pump 51 via the water supply system 2. The vapor generated in the evaporator 35 may be supplied to the high-pressure feed water heater 25 or the low-pressure feed water heater 27 as described above, instead of the deaerator 23.

【0028】このような蒸発器35で生じた蒸気を脱気
器23,高圧給水加熱器25又は低圧給水加熱器27に
供給することにより前述と同じ効果が得られる。
By supplying the vapor generated in the evaporator 35 to the deaerator 23, the high pressure feed water heater 25 or the low pressure feed water heater 27, the same effect as described above can be obtained.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
によれば前述の構成により、冷却空気冷却器で空気圧縮
機の中段から抽出した圧縮空気を冷却して熱交換した冷
却水を蒸発器内の圧力を制御して沸騰させて生じた蒸気
を脱気器又は給水加熱器に供給して蒸気タービンからの
抽気とともに給水を加熱するので、圧縮空気の冷却に伴
う排熱を回収でき、プラント効率が向上する。また、ガ
スタービン・蒸気タービン複合プラントの起動時、脱気
器,給水加熱器を流れる給水を予熱できるので起動損失
を低減することができる。
As is apparent from the above description, according to the present invention, with the above-described structure, the compressed air extracted from the middle stage of the air compressor is cooled by the cooling air cooler to evaporate the heat-exchanged cooling water. Since the steam generated by boiling by controlling the pressure in the vessel is supplied to the deaerator or the feed water heater to heat the feed water together with the extraction air from the steam turbine, it is possible to recover the exhaust heat accompanying the cooling of the compressed air, Plant efficiency is improved. Further, since the feed water flowing through the deaerator and feed water heater can be preheated at the time of starting the gas turbine / steam turbine combined plant, starting loss can be reduced.

【0030】また、従来のようにラジエータ,冷却塔を
使用しないので、騒音が発生しない。
Since no radiator or cooling tower is used unlike the conventional case, no noise is generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるガスタービン・蒸気ター
ビン複合発電プラントの系統図
FIG. 1 is a system diagram of a gas turbine / steam turbine combined power generation plant according to an embodiment of the present invention.

【図2】本発明の異なる実施例によるガスタービン・蒸
気タービン複合発電プラントの系統図
FIG. 2 is a system diagram of a gas turbine / steam turbine combined power generation plant according to a different embodiment of the present invention.

【図3】従来のガスタービン・蒸気タービン複合発電プ
ラントの系統図
[Fig. 3] System diagram of a conventional gas turbine / steam turbine combined cycle power plant

【符号の説明】[Explanation of symbols]

1 空気圧縮機 2 ガスタービン 6 冷却空気冷却器 11 ボイラ 15 蒸気タービン 16 復水器 17 発電機 20 給水加熱系 23 脱気器 25 高圧給水加熱器 27 低圧給水加熱器 35 蒸発器 36 循環ポンプ 38 圧力制御弁 41 冷却水循環系 42 蒸気供給系 45 圧力検出器 46 調節器 50 冷却水循環系 52 給水供給系 1 Air Compressor 2 Gas Turbine 6 Cooling Air Cooler 11 Boiler 15 Steam Turbine 16 Condenser 17 Generator 20 Water Supply Heating System 23 Deaerator 25 High Pressure Water Heater 27 Low Pressure Water Heater 35 Evaporator 36 Circulation Pump 38 Pressure Control valve 41 Cooling water circulation system 42 Steam supply system 45 Pressure detector 46 Regulator 50 Cooling water circulation system 52 Water supply system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】燃焼器にて燃料を空気圧縮機からの圧縮空
気により燃焼して生じた燃焼ガスにより駆動されるガス
タービンと、このガスタービンからの排ガスにより給水
を加熱して蒸気にするボイラと、このボイラからの蒸気
により駆動される蒸気タービンと、給水を蒸気タービン
からの抽気によりそれぞれ加熱してボイラに供給する脱
気器と給水加熱器とを備える給水加熱系と、前記空気圧
縮機の中段から抽出した圧縮空気を冷却してガスタービ
ンの内部に送出する冷却空気冷却器とを備えるガスター
ビン・蒸気タービン複合プラントにおいて、脱気器から
の給水を冷却水として冷却空気冷却器を経由して脱気器
に戻す循環ポンプを備える冷却水循環系と、この冷却水
循環系に設けられ、冷却空気冷却器から排出される冷却
水を蒸発させる蒸発器と、この蒸発器の冷却水入口側の
冷却水循環系に設けられ、蒸発器内の圧力を前記排出さ
れる冷却水の温度に対応する飽和圧力より低く、かつ脱
気器内の圧力又は給水加熱器内の圧力より高い所定圧力
に制御する圧力制御弁と、この圧力制御弁による圧力制
御手段と、蒸発器で生じた蒸気を脱気器又は給水加熱器
に供給する蒸気供給系とを備えたことを特徴とするガス
タービン・蒸気タービン複合プラント。
1. A gas turbine driven by a combustion gas produced by combusting fuel with compressed air from an air compressor in a combustor, and a boiler for heating feed water to steam by exhaust gas from the gas turbine. And a steam turbine driven by steam from the boiler, a feed water heating system including a deaerator and a feed water heater that heat feed water by bleed air from the steam turbine to supply the boiler, and the air compressor. In a gas turbine / steam turbine combined plant equipped with a cooling air cooler that cools the compressed air extracted from the middle stage and sends it out to the inside of the gas turbine, feed water from the deaerator is used as cooling water via the cooling air cooler. Cooling water circulation system equipped with a circulation pump for returning to the deaerator and steam for evaporating the cooling water discharged from the cooling air cooler provided in this cooling water circulation system. And a cooling water circulation system on the cooling water inlet side of the evaporator, the pressure inside the evaporator is lower than the saturation pressure corresponding to the temperature of the discharged cooling water, and the pressure inside the deaerator or the water supply. A pressure control valve for controlling a predetermined pressure higher than the pressure in the heater, a pressure control means by this pressure control valve, and a steam supply system for supplying the steam generated in the evaporator to the deaerator or the feed water heater A gas turbine / steam turbine combined plant characterized by
【請求項2】燃焼器にて燃料を空気圧縮機からの圧縮空
気により燃焼して生じた燃焼ガスにより駆動されるガス
タービンと、このガスタービンからの排ガスにより給水
を加熱して蒸気にするボイラと、このボイラからの蒸気
により駆動される蒸気タービンと、給水を蒸気タービン
からの抽気によりそれぞれ加熱してボイラに供給する脱
気器と給水加熱器とを備える給水加熱系と、前記空気圧
縮機の中段から抽出した圧縮空気を冷却してガスタービ
ンの内部に送出する冷却空気冷却器とを備えるガスター
ビン・蒸気タービン複合プラントにおいて、冷却空気冷
却器から排出される冷却水を蒸発させる蒸発器と、この
蒸発器内の冷却水を冷却空気冷却器を経由して蒸発器に
戻す循環ポンプを備える冷却水循環系と、蒸発器の冷却
水入口側の冷却水循環系に設けられ、蒸発器内の圧力を
前記排出される冷却水の温度に対応する飽和圧力より低
く、かつ脱気器内の圧力又は給水加熱器内の圧力より高
い所定圧力に制御する圧力制御弁と、この圧力制御弁に
よる圧力制御手段と、給水加熱系から分岐して給水を蒸
発器に供給する給水供給系と、蒸発器で生じた蒸気を脱
気器又は給水加熱器に供給する蒸気供給系とを備えたこ
とを特徴とするガスタービン・蒸気タービン複合プラン
ト。
2. A gas turbine driven by combustion gas produced by combusting fuel with compressed air from an air compressor in a combustor, and a boiler for heating feed water into steam by exhaust gas from the gas turbine. And a steam turbine driven by steam from the boiler, a feed water heating system including a deaerator and a feed water heater that heat feed water by bleed air from the steam turbine to supply the boiler, and the air compressor. In a gas turbine / steam turbine combined plant comprising a cooling air cooler for cooling the compressed air extracted from the middle stage and sending it to the inside of the gas turbine, an evaporator for evaporating the cooling water discharged from the cooling air cooler, , A cooling water circulation system having a circulation pump for returning the cooling water in the evaporator to the evaporator via a cooling air cooler, and cooling water at the cooling water inlet side of the evaporator A pressure provided in the ring system for controlling the pressure in the evaporator to a predetermined pressure lower than the saturation pressure corresponding to the temperature of the discharged cooling water and higher than the pressure in the deaerator or the pressure in the feed water heater. A control valve, a pressure control means by this pressure control valve, a feed water supply system that branches from the feed water heating system to supply the feed water to the evaporator, and the steam generated in the evaporator is supplied to the deaerator or the feed water heater. A gas turbine / steam turbine combined plant, comprising a steam supply system.
【請求項3】請求項1又は2記載のものにおいて、圧力
制御手段は、蒸発器内の圧力を検出する圧力検出器と、
この圧力検出器での検出圧力と前記所定圧力の目標値と
の偏差から圧力制御弁を制御する制御手段とを備えたこ
とを特徴とするガスタービン・蒸気タービン複合プラン
ト。
3. The pressure control means according to claim 1, wherein the pressure control means detects a pressure in the evaporator,
A gas turbine / steam turbine combined plant comprising: a control unit that controls a pressure control valve based on a deviation between a pressure detected by the pressure detector and a target value of the predetermined pressure.
JP4703793A 1993-03-09 1993-03-09 Gas turbine-steam turbine composite plant Pending JPH06257413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4703793A JPH06257413A (en) 1993-03-09 1993-03-09 Gas turbine-steam turbine composite plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4703793A JPH06257413A (en) 1993-03-09 1993-03-09 Gas turbine-steam turbine composite plant

Publications (1)

Publication Number Publication Date
JPH06257413A true JPH06257413A (en) 1994-09-13

Family

ID=12763974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4703793A Pending JPH06257413A (en) 1993-03-09 1993-03-09 Gas turbine-steam turbine composite plant

Country Status (1)

Country Link
JP (1) JPH06257413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053184A1 (en) * 1997-05-16 1998-11-26 Siemens Aktiengesellschaft Gas and steam turbine system, and refrigeration of the coolant intended for the gas turbine in such a system
FR2911913A1 (en) * 2007-01-25 2008-08-01 Air Liquide Mechanical or electrical energy and heat producing method, involves supplying hot water to heat recuperation unit, and preheating cold water by heat exchange with hot water before cold water is preheated by degasser
JP2009299682A (en) * 2008-06-10 2009-12-24 General Electric Co <Ge> System for recovering waste heat generated by auxiliary system of turbo machine
KR20180086880A (en) * 2017-01-24 2018-08-01 두산중공업 주식회사 Gas turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053184A1 (en) * 1997-05-16 1998-11-26 Siemens Aktiengesellschaft Gas and steam turbine system, and refrigeration of the coolant intended for the gas turbine in such a system
FR2911913A1 (en) * 2007-01-25 2008-08-01 Air Liquide Mechanical or electrical energy and heat producing method, involves supplying hot water to heat recuperation unit, and preheating cold water by heat exchange with hot water before cold water is preheated by degasser
EP2067935A2 (en) * 2007-01-25 2009-06-10 L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Method of energy optimisation on a site including cogeneration and a thermal power station
EP2067935A3 (en) * 2007-01-25 2013-06-19 L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Method of energy optimisation on a site including cogeneration and a thermal power station
JP2009299682A (en) * 2008-06-10 2009-12-24 General Electric Co <Ge> System for recovering waste heat generated by auxiliary system of turbo machine
KR20180086880A (en) * 2017-01-24 2018-08-01 두산중공업 주식회사 Gas turbine
US10837366B2 (en) 2017-01-24 2020-11-17 DOOSAN Heavy Industries Construction Co., LTD Gas turbine

Similar Documents

Publication Publication Date Title
US5386685A (en) Method and apparatus for a combined cycle power plant
CA2589781C (en) Method and apparatus for power generation using waste heat
US6145295A (en) Combined cycle power plant having improved cooling and method of operation thereof
CA2230325C (en) Steam cooled gas turbine system
US6530208B1 (en) Steam cooled gas turbine system with regenerative heat exchange
CN100365247C (en) Combined circulation generator and steam supply method for cooling
JPH0758043B2 (en) Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator
JPH10169414A (en) Combined power plant with forced once-through steam generator as gas turbine cooling air cooler
RU2148725C1 (en) Method and device for cooling down gas-turbine coolant
JP2010038159A (en) System and method for use in combined cycle power plant or rankine cycle power plant using air-cooled steam condenser
JPH11173111A (en) Thermal power plant
US6286297B1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
JP2014009606A (en) Cooling system of turbine blade and gas turbine
JP4109488B2 (en) Marine gas turbine system with pure water production equipment
JPH06257413A (en) Gas turbine-steam turbine composite plant
JP3919883B2 (en) Combined cycle power plant
JPH08210151A (en) Power plant
JPH11173109A (en) Power generation and hot water supply system
JP5463313B2 (en) Thermal power plant
JPH1113488A (en) Exhaust reburn combined plant using steam-cooled gas turbine
KR101935637B1 (en) Combined cycle power generation system
JPH10311206A (en) Combined cycle power generation plant
JP2002371861A (en) Steam injection gas turbine generator
JP2002021508A (en) Condensate supply system
JP2806338B2 (en) Gas turbine generator