JPH06254723A - Junction body, its combination body with ceramic, and their manufacture - Google Patents
Junction body, its combination body with ceramic, and their manufactureInfo
- Publication number
- JPH06254723A JPH06254723A JP7111893A JP7111893A JPH06254723A JP H06254723 A JPH06254723 A JP H06254723A JP 7111893 A JP7111893 A JP 7111893A JP 7111893 A JP7111893 A JP 7111893A JP H06254723 A JPH06254723 A JP H06254723A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- thermal expansion
- metal member
- low thermal
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、金属と他の金属との
接合体及びその接合体とセラミックスとの結合体並びに
それらの製造方法に関する。この発明の接合体は、ター
ボチャージャーローターの回転軸又はガスタービンロー
ターの回転軸に好適に利用され得る。また、この発明の
結合体は、ターボチャージャーローター又はガスタービ
ンローターに好適に利用され得る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joined body of a metal and another metal, a joined body of the joined body and ceramics, and a method for producing them. INDUSTRIAL APPLICABILITY The joined body of the present invention can be suitably used for a rotary shaft of a turbocharger rotor or a rotary shaft of a gas turbine rotor. Further, the combined body of the present invention can be suitably used for a turbocharger rotor or a gas turbine rotor.
【0002】[0002]
【従来の技術】タ−ボチャ−ジャ−やガスタ−ビンエン
ジンなどの高温雰囲気下で回転体として使用される機構
部品には機械的強度、耐熱性、耐摩耗性に優れ、比重の
小さいセラミックス体(窒化珪素、サイアロン、炭化珪
素等の焼結体)が適している。2. Description of the Related Art A ceramic body having excellent mechanical strength, heat resistance and abrasion resistance and a small specific gravity is used as a mechanical component used as a rotating body in a high temperature atmosphere such as a turbocharger or a gas turbine engine. (Sintered body of silicon nitride, sialon, silicon carbide, etc.) is suitable.
【0003】従って、上記セラミックに金属を複合又は
接合し、セラミックスの脆性を補った構造体が一般に用
いられる。ところで、セラミツクスと金属とは熱膨張係
数が大きく異なるため、その大きな膨張差によって接合
近傍には相当の歪みが残存することになる。この歪みに
よってもろいセラミツクスに破壊がおこる。これを防止
するため熱膨張係数がセラミツクスのそれに近い低膨張
金属を、接合すべきセラミツクスと金属との間に緩衝層
として介在させて接合される。Therefore, a structure in which a metal is compounded or bonded to the above ceramic to compensate for the brittleness of the ceramic is generally used. By the way, since the ceramics and the metal have large thermal expansion coefficients, considerable strain remains in the vicinity of the joint due to the large difference in thermal expansion. This distortion causes damage to the brittle ceramics. In order to prevent this, a low-expansion metal having a coefficient of thermal expansion close to that of the ceramic is interposed as a buffer layer between the ceramic and the metal to be bonded and bonded.
【0004】この場合、セラミックスと低熱膨張金属と
の接合方法としては、嵌合又は化学的接着が用いられ
る。嵌合とは、例えば、圧入、焼嵌め及び冷やし嵌めで
あり、化学的接着とは、活性ろう又は銀ろうによるロー
付けである。また、低熱膨張金属と金属部材との接合方
法としては、摩擦圧接、電子ビーム溶接、レーザー溶接
などの溶接が用いられる。In this case, fitting or chemical adhesion is used as a method for joining the ceramic and the low thermal expansion metal. Mating is, for example, press-fitting, shrink-fitting, and cold-fitting, and chemical bonding is brazing with active brazing or silver brazing. As a method of joining the low thermal expansion metal and the metal member, welding such as friction welding, electron beam welding, and laser welding is used.
【0005】そして、低熱膨張金属は、析出硬化した状
態のものが用いられる。析出硬化しなければ、セラミッ
クスとの接合時又は高温高速回転体としての使用時の負
荷に耐えることができないからである。また、金属部材
は、通常約1000℃で焼入れされ、続いて約300〜
600℃で焼戻しされたものが用いられる。焼入れ・焼
戻しをしなければ、軸受けとしての充分な硬度が備わら
ないからである。The low thermal expansion metal is used in a precipitation hardened state. This is because unless it is precipitated and hardened, it cannot bear the load when it is bonded to ceramics or when it is used as a high-temperature high-speed rotating body. Further, the metal member is usually quenched at about 1000 ° C., and then about 300-
What is tempered at 600 ° C. is used. This is because without hardening and tempering, the bearing will not have sufficient hardness.
【0006】[0006]
【発明が解決しようとする課題】従来、低熱膨張金属と
金属部材を摩擦圧接する場合、摩擦圧接前に低熱膨張金
属を析出硬化処理しておき且つ金属部材を焼入れ・焼戻
し処理しておいても、摩擦圧接時の熱により低熱膨張金
属が溶体化状態になってしまい、その強度が著しく低下
してしまった。一方、金属部材を予め焼入れ・焼戻し処
理しておき、これと低熱膨張金属とを摩擦圧接した後、
低熱膨張金属を析出硬化処理すると、析出硬化処理温度
(通常約700℃)で金属部材が鈍ってしまい、金属部
材の強度が著しく低下するという問題があった。Conventionally, when friction-welding a low-thermal-expansion metal and a metal member, even if the low-thermal-expansion metal is precipitation-hardened and the metal member is quenched and tempered before friction-welding. The heat of friction welding causes the low thermal expansion metal to be in a solution state, and its strength is significantly reduced. On the other hand, after quenching and tempering the metal member in advance, and friction-welding this with a low thermal expansion metal,
When the precipitation hardening treatment of the low thermal expansion metal is performed, the metal member becomes dull at the precipitation hardening treatment temperature (usually about 700 ° C.), and there is a problem that the strength of the metal member is significantly reduced.
【0007】また、摩擦圧接後に析出硬化処理を行い、
その後高周波により部分的に焼入れ・焼戻し処理を行う
方法も試みられているが、摩擦圧接部分まで完全に焼入
れ・焼戻し等の熱処理を行うことは、熱処理温度が低熱
膨張金属の溶体化温度よりも高いために困難であった。
従って、摩擦圧接部分の近傍の低膨張金属に強度の低い
部分が残存するという問題があった。しかも工程が長
く、コスト的に不利であった。Further, precipitation hardening treatment is performed after friction welding.
After that, a method of partially quenching and tempering by high frequency is also attempted, but performing heat treatment such as quenching and tempering completely up to the friction welding part has a heat treatment temperature higher than the solution temperature of the low thermal expansion metal. It was difficult because.
Therefore, there is a problem that a portion having low strength remains in the low expansion metal near the friction welding portion. Moreover, the process is long, which is disadvantageous in terms of cost.
【0008】更に予め析出硬化した低熱膨張金属と焼入
れ・焼戻し済みの金属部材とを電子ビーム溶接する方法
も考えられるが、この方法も、溶接時に発生する熱によ
り、溶接部周辺の析出硬化部分が溶体化してしまう問題
と、溶接部周辺の金属組織が変化するとともに、溶接に
よる残留応力が生じる問題が発生した。これらの現象
は、強度的な問題だけでなく、タ−ボチャ−ジャ−やガ
スタ−ビンのロ−タ−のように、高速でしかも高温で長
時間運転される回転体では、回転体の不つり合いが増加
し、異音、振動の増加、さらには翼車、軸受けの破損
等、信頼性に重大な問題が生じるおそれがあった。Further, a method of electron beam welding a pre-precipitation-hardened low thermal expansion metal and a hardened / tempered metal member may be considered, but this method also causes the precipitation-hardened portion around the welded portion to be generated by the heat generated during welding. There was a problem that the solution became a solution and a problem that a residual stress due to welding occurred as well as a change in the metal structure around the weld. These phenomena are not only a problem in terms of strength, but also in the case of a rotating body that is operated at high speed and at high temperature for a long time, such as a rotor of a turbocharger or a rotor of a gas turbine, the problem of the rotating body is lost. There is a possibility that serious problems may occur in reliability such as increased balance, abnormal noise, increased vibration, and damage to the impeller and bearings.
【0009】発明者等は、かかる問題を、熱処理時の冷
却速度を遅くするだけで強度を確保できる低熱膨張析出
硬化型金属と、冷却速度が遅くても硬度の入る金属部材
を用いる事により解決できる事を見い出した。本発明の
目的は、上記従来の課題を解決し、高強度の低熱膨張金
属と高硬度の金属部材との接合体を提供することであ
る。本発明の他の目的は、そのような接合体とセラミッ
クスとが強固に結合した結合体を提供することである。The present inventors have solved this problem by using a low thermal expansion precipitation hardening type metal which can secure strength only by slowing the cooling rate during heat treatment, and a metal member which has hardness even if the cooling rate is slow. I found what I could do. An object of the present invention is to solve the conventional problems described above and to provide a joined body of a high-strength low thermal expansion metal and a high-hardness metal member. Another object of the present invention is to provide a bonded body in which such a bonded body and ceramics are firmly bonded.
【0010】[0010]
【課題を解決するための手段】その第一の手段は、気体
を冷却媒体として焼入れされた硬度がHRC28以上の金
属部材と、この金属部材に接合され0.2%耐力が50
0MPa以上の析出硬化型低熱膨張金属とからなること
を特徴とする接合体である。[Means for Solving the Problem] The first means is a metal member having a hardness of H RC of 28 or more, which is hardened by using a gas as a cooling medium, and a 0.2% proof stress of 50% which is joined to the metal member.
A joined body comprising a precipitation hardening type low thermal expansion metal of 0 MPa or more.
【0011】第二の手段は、気体を冷却媒体として焼入
れされた硬度がHRC28以上の金属部材と、この金属部
材に接合され0.2%耐力が500MPa以上の析出硬
化型低熱膨張金属と、この析出硬化型低熱膨張金属に結
合されたセラミックスとからなることを特徴とする接合
体とセラミックスとの結合体である。A second means is a metal member having a hardness of H RC of 28 or more, which is hardened by using a gas as a cooling medium, and a precipitation hardening type low thermal expansion metal which is joined to the metal member and has a 0.2% proof stress of 500 MPa or more. A bonded body of a ceramic and a ceramic bonded to the precipitation hardening type low thermal expansion metal.
【0012】本発明の接合体を製造する第一の手段は、
気体を冷却媒体として焼入れ可能な金属部材と析出硬化
型低熱膨張金属とを溶接した後、金属部材の焼入れ温度
以上に加熱し、次いで850℃から550℃までの間の
平均冷却速度が50℃/分以下となるように気体中で冷
却することを特徴とする。The first means for producing the joined body of the present invention is
After welding a quenchable metal member using a gas as a cooling medium and a precipitation hardening type low thermal expansion metal, the metal member is heated to the quenching temperature or higher, and then the average cooling rate between 850 ° C. and 550 ° C. is 50 ° C. / It is characterized in that it is cooled in a gas so as to be less than a minute.
【0013】同じく第二の製造手段は、気体を冷却媒体
として焼入れ可能な金属部材と析出硬化型低熱膨張金属
との間にロー材を介在させて金属部材の焼入れ温度以上
に加熱した後、850℃から550℃までの間の平均冷
却速度が50℃/分以下となるように気体中で冷却する
ことを特徴とする。Similarly, in the second manufacturing means, a brazing material is interposed between a metal member capable of quenching using gas as a cooling medium and a precipitation hardening type low thermal expansion metal, and the metal member is heated to the quenching temperature or higher, and then 850 It is characterized by cooling in a gas so that the average cooling rate between 50 ° C. and 550 ° C. is 50 ° C./min or less.
【0014】本発明の結合体を製造する第一の手段は、
気体を冷却媒体として焼入れ可能な金属部材と析出硬化
型低熱膨張金属とを溶接した後、金属部材の焼入れ温度
以上に加熱し、次いで850℃から550℃までの間の
平均冷却速度が50℃/分以下となるように気体中で冷
却し、更に析出硬化型低熱膨張金属にセラミックスを嵌
合により結合することを特徴とする。The first means for producing the conjugate of the present invention is
After welding a quenchable metal member using a gas as a cooling medium and a precipitation hardening type low thermal expansion metal, the metal member is heated to the quenching temperature or higher, and then the average cooling rate between 850 ° C. and 550 ° C. is 50 ° C. / It is characterized in that it is cooled in a gas so that the amount becomes equal to or less than a minute, and further the ceramics is fitted to the precipitation hardening type low thermal expansion metal by fitting.
【0015】同じく第二の製造手段は、気体を冷却媒体
として焼入れ可能な金属部材と析出硬化型低熱膨張金属
とセラミックスとの間にそれぞれロー材を介在させて金
属部材の焼入れ温度以上に加熱した後、850℃から5
50℃までの間の平均冷却速度が50℃/分以下となる
ように気体中で冷却することを特徴とする。Similarly, in the second manufacturing means, a brazing material is interposed between the metal member capable of quenching using gas as a cooling medium, the precipitation hardening type low thermal expansion metal and the ceramics, and the metal member is heated to the quenching temperature or higher. After that, from 850 ℃ to 5
It is characterized by cooling in a gas so that the average cooling rate up to 50 ° C. is 50 ° C./min or less.
【0016】ここで850℃から550℃までの間の平
均冷却速度が50℃/分以下というのは、冷却速度を変
化させてもよいが、その温度範囲における冷却速度の平
均値を50℃/分以下とするように設定することをい
う。従って、例えば、850℃から析出硬化温度付近ま
での間を比較的速く冷却し、析出硬化温度付近で一定時
間保持し、続いて550℃まで冷却するような冷却操作
を行ってもよい。Here, the average cooling rate between 850 ° C. and 550 ° C. being 50 ° C./min or less means that the cooling rate may be changed, but the average value of the cooling rate in that temperature range is 50 ° C./min. It means setting to be less than or equal to minutes. Therefore, for example, a cooling operation may be performed such that the temperature from 850 ° C. to near the precipitation hardening temperature is cooled relatively quickly, the temperature is kept near the precipitation hardening temperature for a certain period of time, and then the temperature is cooled to 550 ° C.
【0017】[0017]
【作用】低熱膨張金属の析出硬化処理は一般に720℃
8hr−620℃8hrであるが、冷却速度と低熱膨張
金属の強度の関係について調査した結果、図1に示す様
に850℃から550℃までの間の冷却速度を50℃/
分以下にすれば0.2%耐力で500MPaが確保でき
る事を見い出した。望ましくは冷却速度を5℃/分以下
にすれば、通常の析出硬化処理を行ったものとほぼ同じ
強度を得られる。これらの冷却速度で硬度が得られる金
属部材としてはSNCM−630、SNCM−616、
SUH−616、SUS−420等が適している。[Function] The precipitation hardening treatment of the low thermal expansion metal is generally 720 ° C.
8 hr-620 ° C. 8 hr, but as a result of investigating the relationship between the cooling rate and the strength of the low thermal expansion metal, as shown in FIG. 1, the cooling rate from 850 ° C. to 550 ° C. was 50 ° C. /
It was found that if it is less than or equal to the minute, 500 MPa can be secured with a 0.2% proof stress. Desirably, if the cooling rate is set to 5 ° C./minute or less, strength that is almost the same as that obtained by the ordinary precipitation hardening treatment can be obtained. SNCM-630, SNCM-616, and metal members that can obtain hardness at these cooling rates,
SUH-616, SUS-420, etc. are suitable.
【0018】従って、焼鈍処理を行ったこれらの金属部
材と溶体化処理を行った低熱膨張金属とを、摩擦圧接、
電子ビ−ム溶接又はレ−ザ−溶接などの溶接により一体
化した後、金属部材の焼入れ温度まで加熱し、次いで8
50℃〜550℃の間の冷却速度を50℃/分以下にな
る様に調整して冷却すれば、低熱膨張金属の強度が50
0MPa以上、金属部材の硬度がHRC28以上の接合体
が得られる。Therefore, these annealing-treated metal members and solution-treated low-thermal-expansion metals are friction-welded,
After being integrated by welding such as electron beam welding or laser welding, the metal member is heated to the quenching temperature, then 8
If the cooling rate between 50 ° C. and 550 ° C. is adjusted to 50 ° C./min or less and cooled, the strength of the low thermal expansion metal is 50
A joined body having a hardness of 0 MPa or more and a metal member hardness of H RC 28 or more can be obtained.
【0019】そこで、接合後に低熱膨張金属に凹部を穿
設するか又は接合前に低膨張金属をスリーブ状、袋管状
に加工しておき、その凹部にセラミック翼車の軸部を圧
入又は焼嵌め等により結合すれば、信頼性にすぐれたタ
−ボチャ−ジャ−、ガスタ−ビンが製造可能となる。ま
た、金属部材、低熱膨張金属及びセラミックを金属部材
の焼入れ温度付近でロ−付し、ロ−付後の冷却速度を8
50℃〜550℃の間で50℃/分以下にすればロ−付
処理工程のみで、低熱膨張金属の強度が500MPa、
金属部材の硬度がHRC28以上の金属とセラミックの接
合体が得られる。Therefore, a recess is formed in the low-thermal-expansion metal after joining, or the low-expansion metal is processed into a sleeve or bag shape before joining, and the shaft portion of the ceramic impeller is press-fitted or shrink-fitted into the recess. If they are combined with each other, a turbocharger and a gas turbine with excellent reliability can be manufactured. Further, the metal member, the low thermal expansion metal and the ceramic are roll-bonded near the quenching temperature of the metal member, and the cooling rate after the roll is 8
If the temperature is 50 ° C./min or less between 50 ° C. and 550 ° C., the strength of the low thermal expansion metal is 500 MPa only in the rolling treatment step.
A metal / ceramic bonded body having a hardness of the metal member of H RC 28 or more can be obtained.
【0020】なお低熱膨張金属部はセラミックと一体化
した場合の接合時の応力、振動、遠心力に耐える為に5
00MPa以上が必要であり、また、金属部材は軸受部
として用いる場合に摩擦防止の為HRC28以上が必要で
ある。以下実施例に基づいて説明を行う。It should be noted that the low thermal expansion metal portion is 5 in order to withstand stress, vibration and centrifugal force at the time of joining when integrated with ceramics.
Is required above MPa, also metallic member is required for more than H RC 28 in anti-friction when used as a bearing portion. Hereinafter, description will be given based on examples.
【0021】[0021]
[実施例1]図2は、実施例1の接合体とセラミックス
との結合体を製造しようとするところを示す図である。
結合体11は、ターボチャージャーローターであり、セ
ラミックス12と接合体13とが結合されたものであ
る。[Embodiment 1] FIG. 2 is a diagram showing an attempt to manufacture a joined body of the joined body of Example 1 and ceramics.
The combined body 11 is a turbocharger rotor, and is formed by combining the ceramics 12 and the joined body 13.
【0022】セラミックス12は、中実のハブ12a
と、このハブ12aの外周に渦巻状に設けられた複数の
翼12bと、ハブ12aの背面に突出して設けられた軸
12cとからなるタービンローターであり、密度3.2
0g/cm3の窒化珪素質焼結体にて一体的に作製され
たものである。翼12bの外径は、55mm、軸12c
の外径は、12mmである。The ceramic 12 is a solid hub 12a.
And a plurality of blades 12b spirally provided on the outer periphery of the hub 12a, and a shaft 12c protrudingly provided on the back surface of the hub 12a, and having a density of 3.2.
It was integrally manufactured from a 0 g / cm 3 silicon nitride sintered body. The outer diameter of the blade 12b is 55 mm, the shaft 12c
Has an outer diameter of 12 mm.
【0023】接合体13は、ターボチャージャーロータ
ーの回転軸であり、タービンローターの回転駆動力をコ
ンプレッサーホイールに伝達する。接合体13は、長尺
の金属軸14とほぼカップ形状のスリーブ15とからな
る。金属軸14とスリーブ15とは、端面同志で突き合
わせて接合されている。金属軸14は、軸受け(図示省
略)にて支えられコンプレッサーホイール(図示省略)
に連結する。スリーブ15は、外周にオイルリング溝1
5a及びシールリング溝15bが加工されており、接合
体13をセラミックス12と結合する際に、金属軸14
とセラミックス12との中間部材となるものである。The joint body 13 is the rotating shaft of the turbocharger rotor and transmits the rotational driving force of the turbine rotor to the compressor wheel. The joined body 13 includes a long metal shaft 14 and a substantially cup-shaped sleeve 15. The metal shaft 14 and the sleeve 15 are joined together by abutting each other on their end faces. The metal shaft 14 is supported by a bearing (not shown) and a compressor wheel (not shown).
Connect to. The sleeve 15 has an oil ring groove 1 on the outer circumference.
5a and the seal ring groove 15b are processed, and when the joined body 13 is joined to the ceramics 12, the metal shaft 14
And an intermediate member between the ceramics 12 and the ceramics 12.
【0024】以下にこのターボチャージャーローターの
製造方法を説明する。インコロイ903からなる外径1
7mmの低熱膨張金属とSNCM630からなる外径1
1.0mmの金属軸14とを摩擦圧接により接合した。
そして、低熱膨張金属の端面に内径12mm、深さ8.
5mmの凹部を、外周面に2つのリング溝をそれぞれ機
械加工し、スリ−ブ15とした。こうして接合体13
(回転軸)を製造した。A method of manufacturing this turbocharger rotor will be described below. Outer diameter 1 made of Incoloy 903
Outer diameter 1 consisting of 7mm low thermal expansion metal and SNCM630
The 1.0 mm metal shaft 14 was joined by friction welding.
Then, an inner diameter of 12 mm and a depth of 8.
A groove of 5 mm and two ring grooves were machined on the outer peripheral surface to form a sleeve 15. Thus, the joined body 13
(Rotating shaft) was manufactured.
【0025】次に、この接合体13を900℃で30分
保持した後、900℃〜500℃まで平均3℃/分の冷
却速度で炉内冷却した。スリーブ15と同質の低熱膨張
金属及び金属軸14と同質の金属部材に、この熱処理と
同じ条件で熱処理を施したところ、前者の0.2%耐力
は950MPa、後者の硬度はHRC45であった。最後
にセラミックス12の軸12cをスリーブ15の凹部に
圧入代70μにて圧入し、タ−ボチャ−ジャ−ロ−タ−
の形状に仕上げた。Next, after holding this joined body 13 at 900 ° C. for 30 minutes, it was cooled in the furnace from 900 ° C. to 500 ° C. at an average cooling rate of 3 ° C./min. When the heat treatment was performed on the low thermal expansion metal of the same quality as the sleeve 15 and the metal member of the same quality as the metal shaft 14 under the same conditions as this heat treatment, the former 0.2% proof stress was 950 MPa and the latter hardness was H RC 45. It was Finally, the shaft 12c of the ceramic 12 is press-fitted into the recess of the sleeve 15 with a press-fitting margin of 70 μ, and the turbocharger rotor is rotated.
Finished in the shape of.
【0026】[実施例2]実施例1と同じ条件で製造し
た接合体を900℃で30分保持した後、900℃〜5
00℃まで平均45℃/分の冷却速度で炉内冷却した。
この接合体のスリーブと同質の低熱膨張金属及び金属軸
と同質の金属部材に、この熱処理と同じ条件で熱処理を
施したところ、低熱膨張金属の0.2%耐力は550M
Pa、金属部材の硬度はHRC47であった。最後にセラ
ミックス12の軸12cをスリーブ15の凹部に圧入代
70μにて圧入し、タ−ボチャ−ジャ−ロ−タ−の形状
に仕上げた。[Embodiment 2] The joined body produced under the same conditions as in Embodiment 1 was held at 900 ° C for 30 minutes, and then, 900 ° C to 5 ° C.
The furnace was cooled to 00 ° C. at an average cooling rate of 45 ° C./min.
When the heat treatment was performed on the low thermal expansion metal of the same quality as the sleeve of this joined body and the metal member of the same quality as the metal shaft under the same conditions as this heat treatment, the 0.2% proof stress of the low thermal expansion metal was 550 M.
Pa, the hardness of the metal member was H RC 47. Finally, the shaft 12c of the ceramic 12 was press-fitted into the recess of the sleeve 15 at a press-fitting margin of 70 μm to finish the shape of a turbocharger rotor.
【0027】[実施例3]図3は、実施例3の接合体と
セラミックスとの結合体を製造しようとするところを示
す図である。結合体21は、ターボチャージャーロータ
ーであり、セラミックス22と接合体23とが結合され
たものである。[Embodiment 3] FIG. 3 is a diagram showing an attempt to manufacture a joined body of the joined body and ceramics of the third embodiment. The combined body 21 is a turbocharger rotor, and the ceramics 22 and the joined body 23 are combined.
【0028】セラミックス22は、実施例1のセラミッ
クス12と同形同質のタービンローターである。接合体
23は、実施例1と同様にターボチャージャーローター
の回転軸であり、金属軸24とスリーブ25とからな
る。但し、金属軸24の端面には、凸部24aが設けら
れており、これに対応してスリーブ25の端面に貫通孔
25cが設けられている。そして、凸部24aと貫通孔
25cとを嵌合した状態で、金属軸24とスリーブ25
とが接合されている。The ceramic 22 is a turbine rotor of the same shape and quality as the ceramic 12 of the first embodiment. The joined body 23 is the rotating shaft of the turbocharger rotor as in the first embodiment, and includes the metal shaft 24 and the sleeve 25. However, a convex portion 24a is provided on the end surface of the metal shaft 24, and a through hole 25c is provided on the end surface of the sleeve 25 correspondingly. Then, the metal shaft 24 and the sleeve 25 are fitted together with the convex portion 24a and the through hole 25c fitted together.
And are joined.
【0029】以下にこのターボチャージャーローターの
製造方法を説明する。インコロイ909からなる低熱膨
張金属を予め、貫通孔25cを有するカップ形状に機械
加工し、スリーブ25とした。スリーブ25の貫通孔2
5cにSUH−616からなる金属軸24の凸部を嵌合
し、この状態で電子ビ−ム溶接を行い、スリーブ25と
金属軸24を一体化した。こうして接合体23を製造し
た。The method of manufacturing this turbocharger rotor will be described below. A low thermal expansion metal made of Incoloy 909 was previously machined into a cup shape having a through hole 25c to form a sleeve 25. Through hole 2 of sleeve 25
The convex portion of the metal shaft 24 made of SUH-616 was fitted to 5c, and electron beam welding was performed in this state to integrate the sleeve 25 and the metal shaft 24. Thus, the joined body 23 was manufactured.
【0030】次にスリーブ25の凹部25bにロー材を
充填し、セラミックス22の軸部22cを嵌入した。嵌
入した状態で接合体23及びセラミックス22を105
0℃で1hr保持した後、1000℃から550℃まで
を5℃/分の冷却速度で冷却するロ−付スケジュ−ル
で、接合体23とセラミックス22をロー付けした。こ
うして、ターボチャージャーローターを製造した。尚、
スリーブ25と同質の低熱膨張合金及び金属軸24と同
質の金属部材にそれぞれ上記ロ−付スケジュ−ルと同じ
条件で熱処理を施したところ、低熱膨張合金の0.2%
耐力は900MPa、金属部材の硬度はHRC50であっ
た。Next, the recess 25b of the sleeve 25 was filled with a brazing material, and the shaft portion 22c of the ceramic 22 was fitted therein. In the fitted state, the bonded body 23 and the ceramics 22 are 105
After holding at 0 ° C. for 1 hour, the joined body 23 and the ceramics 22 were brazed by a schedule with a roller for cooling from 1000 ° C. to 550 ° C. at a cooling rate of 5 ° C./min. Thus, a turbocharger rotor was manufactured. still,
The low thermal expansion alloy of the same quality as the sleeve 25 and the metal member of the same quality as the metal shaft 24 were subjected to heat treatment under the same conditions as the above-mentioned schedule with a roll, respectively.
The proof stress was 900 MPa, and the hardness of the metal member was H RC 50.
【0031】[比較例1]実施例1と同じ条件で製造し
た接合体を900℃で30分保持した後、900℃〜5
00℃まで平均200℃/分の冷却速度で炉内冷却し
た。この接合体のスリーブと同質の低熱膨張金属及び金
属軸と同質の金属部材に、この熱処理と同じ条件で熱処
理を施したところ、低熱膨張金属の0.2%耐力は40
0MPa、金属部材の硬度はHRC46であった。最後に
セラミックス12の軸12cをスリーブ15の凹部に圧
入代70μにて圧入し、タ−ボチャ−ジャ−ロ−タ−の
形状に仕上げた。[Comparative Example 1] A bonded body produced under the same conditions as in Example 1 was held at 900 ° C for 30 minutes, and then, 900 ° C to 5 ° C.
The inside of the furnace was cooled to 00 ° C. at an average cooling rate of 200 ° C./min. A low thermal expansion metal of the same quality as the sleeve of this joined body and a metal member of the same quality as the metal shaft were subjected to heat treatment under the same conditions as this heat treatment, and the 0.2% proof stress of the low thermal expansion metal was 40%.
The hardness of the metal member was 0 MPa, and the hardness was H RC 46. Finally, the shaft 12c of the ceramic 12 was press-fitted into the recess of the sleeve 15 at a press-fitting margin of 70 μm to finish the shape of a turbocharger rotor.
【0032】[比較例2]金属軸14の材質をSNCM
630に代えてSNCM439とした以外は実施例1と
同一条件でターボチャージャーローターを製造した。こ
の時の低熱膨張金属の強度は0.2%耐力で950MP
a、金属部材の硬度はHRC25であった。[Comparative Example 2] The material of the metal shaft 14 is SNCM.
A turbocharger rotor was manufactured under the same conditions as in Example 1 except that SNCM439 was used instead of 630. The strength of the low thermal expansion metal at this time is 950MPa with 0.2% proof stress.
a, the hardness of the metal member was H RC 25.
【0033】[比較例3]比較例2と同一条件でターボ
チャージャーローターを製造し、熱処理後に金属軸のみ
高周波加熱装置で焼入れ・焼戻し処理を行い、HRC40
の硬度とした。しかし、摩擦圧接部から2mmの間は焼
入れ・焼戻し処理ができなかった。それより摩擦圧接部
に近い位置まで焼入れ・焼戻し処理すると低熱膨張金属
が溶体化する可能性があったからである。[Comparative Example 3] A turbocharger rotor was manufactured under the same conditions as in Comparative Example 2, and after heat treatment, only the metal shaft was quenched and tempered by a high frequency heating device to obtain H RC 40.
And the hardness. However, quenching and tempering treatment could not be performed within 2 mm from the friction welding portion. This is because if the quenching / tempering process is performed to a position closer to the friction welded portion, the low thermal expansion metal may become a solution.
【0034】[比較例4]実施例1と同形同質のスリー
ブ15を真空中720℃で8hr保持し、続いて速度6
0℃/hrで冷却し620℃に達したところで8hr保
持した後、室温まで冷却することにより、比較用スリー
ブの析出硬化処理を行った。次いでその凹部にセラミッ
クス12の軸部12cを圧入代80μで圧入した後、焼
入れ・焼戻し処理を行った。その後、スリーブ15の端
面に硬度がHRC35である金属軸14を電子ビ−ムにて
溶接し、比較用のローターを製造した。最後にこのロ−
タ−を機械加工にて完成形状に仕上げた。このターボチ
ャージャーローターの溶接部近傍の低熱膨張金属の強度
は400MPaであった。[Comparative Example 4] A sleeve 15 having the same shape and quality as in Example 1 was held in vacuum at 720 ° C for 8 hours, and then at a speed of 6.
After cooling at 0 ° C./hr and holding at 620 ° C. for 8 hours, the comparative sleeve was subjected to precipitation hardening treatment by cooling to room temperature. Then, the shaft portion 12c of the ceramic 12 was press-fitted into the recess with a press-fitting margin of 80 μ, and then quenching / tempering treatment was performed. Then, the metal shaft 14 having a hardness of H RC 35 was welded to the end surface of the sleeve 15 by an electron beam to manufacture a rotor for comparison. Finally this
The machine was machined to a finished shape. The strength of the low thermal expansion metal in the vicinity of the welded portion of this turbocharger rotor was 400 MPa.
【0035】[実験例]実施例1〜3、比較例1〜4の
部品材質、冷却速度及び特性をまとめて表1に示す。こ
れらのターボチャージャーローターをタ−ボチャ−ジャ
−に組み込み、2500ccのエンジンに取り付け、5
分間アイドリング−5分間1/2負荷2500rpm−
5分間4/4負荷6000rpm(タ−ボ回転数max
150000rpm)という3つのサイクルを繰り返す
耐久試験を10hr行った後、不つり合い量の変化を調
べた。[Experimental Example] Table 1 shows a summary of parts materials, cooling rates and characteristics of Examples 1 to 3 and Comparative Examples 1 to 4. These turbocharger rotors are installed in the turbocharger and attached to a 2500cc engine.
Minute idling-5 minutes 1/2 load 2500 rpm-
5 minutes 4/4 load 6000 rpm (turbo rotation speed max
After carrying out a durability test in which three cycles of 150,000 rpm) were repeated for 10 hours, the change in the amount of imbalance was examined.
【0036】不つり合いの測定位置は図3に示めす様に
セラミックス22(12)の頭部T及び背板Hの2ケ所
である。測定結果を表1に示す。As shown in FIG. 3, the unbalanced measurement positions are the head T and the back plate H of the ceramics 22 (12). The measurement results are shown in Table 1.
【表1】 表1に示めされる様に、実施例1〜3のように本発明を
適用したものは、本発明を適用しない比較例1〜4に比
べ回転バランスの変化又は破損を抑制することができ
た。[Table 1] As shown in Table 1, those to which the present invention is applied as in Examples 1 to 3 can suppress the change or breakage of the rotational balance as compared with Comparative Examples 1 to 4 to which the present invention is not applied. It was
【0037】また、これらの結果より、低熱膨張金属の
強度は0.2%耐力で500MPa以上、金属部材硬度
はHRC28以上必要である事が判る。低熱膨張金属の強
度が500MPaより低い場合には不つり合いの変化が
大きく、また、金属部材の硬度がHRC28より低い場合
には軸受部の磨耗が増大し、ロ−タ−の破損につながり
好ましくない。From these results, it can be seen that the strength of the low thermal expansion metal must be 0.2 MPa at a strength of 500 MPa or more, and the metal member hardness must be H RC 28 or more. When the strength of the low thermal expansion metal is lower than 500 MPa, the change in imbalance is large, and when the hardness of the metal member is lower than H RC 28, the wear of the bearing part is increased, which leads to the damage of the rotor. Not preferable.
【0038】[0038]
【発明の効果】以上説明したように、本発明接合体は、
低熱膨張金属においてセラミックスとの強固な結合に必
要な高い強度を具備し、金属部材において軸受け等との
摩耗に耐える高い硬度を具備する。従って、セラミック
スとの結合体を回転体として使用するとき、不つり合い
の変化が少なく且つ破損のおそれも少なく信頼性に優れ
た物となる。As described above, the joined body of the present invention is
The low thermal expansion metal has high strength required for strong bonding with ceramics, and the metal member has high hardness to withstand abrasion with bearings and the like. Therefore, when the combined body with ceramics is used as a rotating body, the change in imbalance is small, the possibility of breakage is small, and the reliability is excellent.
【図1】低熱膨張金属の冷却速度と0.2%耐力との関
係を示すグラフである。FIG. 1 is a graph showing a relationship between a cooling rate of a low thermal expansion metal and 0.2% proof stress.
【図2】実施例1の接合体とセラミックスとの結合体を
製造しようとするところを示す図である。FIG. 2 is a diagram showing a state in which a bonded body of the bonded body and ceramics of Example 1 is to be manufactured.
【図3】実施例2の接合体とセラミックスとの結合体を
製造しようとするところを示す図である。FIG. 3 is a diagram showing a state where an attempt is made to produce a combined body of the joined body and ceramics of Example 2.
【符号の説明】 11,21 結合体(ターボチャージャーローター) 12,22 セラミックス(タービンローター) 13,23 接合体(回転軸) 14,24 金属軸(金属部材) 15,25 スリーブ(低熱膨張金属)[Explanation of reference numerals] 11,21 Combined body (turbocharger rotor) 12,22 Ceramics (turbine rotor) 13,23 Bonded body (rotating shaft) 14,24 Metal shaft (metal member) 15,25 Sleeve (low thermal expansion metal)
Claims (13)
がHRC28以上の金属部材と、この金属部材に接合され
0.2%耐力が500MPa以上の析出硬化型低熱膨張
金属とからなることを特徴とする接合体。1. A metal member having a hardness of H RC of 28 or more, which is hardened by using a gas as a cooling medium, and a precipitation hardening type low thermal expansion metal which is joined to the metal member and has a 0.2% proof stress of 500 MPa or more. Characterized zygote.
が、摩擦圧接、電子ビーム溶接、レーザー溶接又はロー
付けにより接合されている請求項1に記載の接合体。2. The joined body according to claim 1, wherein the metal member and the precipitation hardening type low thermal expansion metal are joined by friction welding, electron beam welding, laser welding or brazing.
するターボチャージャーローター。3. A turbocharger rotor having the joint body according to any one of claims 1 and 2 as a rotation axis.
するガスタービンローター。4. A gas turbine rotor having the joint body according to claim 1 as a rotating shaft.
がHRC28以上の金属部材と、この金属部材に接合され
0.2%耐力が500MPa以上の析出硬化型低熱膨張
金属と、この析出硬化型低熱膨張金属に結合されたセラ
ミックスとからなることを特徴とする接合体とセラミッ
クスとの結合体。5. A metal member having a hardness of H RC of 28 or more, which is quenched by using a gas as a cooling medium, a precipitation hardening type low thermal expansion metal having a 0.2% proof stress of 500 MPa or more and joined to the metal member, and the precipitation hardening A bonded body of ceramics and ceramics bonded to a low thermal expansion metal.
との結合体よりなるターボチャージャーローター。6. A turbocharger rotor comprising a joined body of the joined body according to claim 5 and ceramics.
との結合体よりなるガスタービンローター。7. A gas turbine rotor comprising a joined body of the joined body according to claim 5 and ceramics.
部材と析出硬化型低熱膨張金属とを溶接した後、金属部
材の焼入れ温度以上に加熱し、次いで850℃から55
0℃までの間の平均冷却速度が50℃/分以下となるよ
うに気体中で冷却することを特徴とする接合体の製造方
法。8. A metal member that can be hardened by using gas as a cooling medium and a precipitation hardening type low thermal expansion metal are welded, then heated to a temperature not lower than the hardening temperature of the metal member, and then from 850 ° C. to 55.
A method for producing a joined body, which comprises cooling in a gas so that an average cooling rate up to 0 ° C. is 50 ° C./minute or less.
レ−ザ−溶接のいずれかである請求項8に記載の接合体
の製造方法。9. The method for producing a joined body according to claim 8, wherein the welding is any one of friction welding, electron beam welding and laser welding.
属部材と析出硬化型低熱膨張金属とを溶接した後、金属
部材の焼入れ温度以上に加熱し、次いで850℃から5
50℃までの間の平均冷却速度が50℃/分以下となる
ように気体中で冷却し、更に析出硬化型低熱膨張金属に
セラミックスを嵌合により結合することを特徴とする接
合体とセラミックスとの結合体の製造方法。10. A metal member that can be hardened by using gas as a cooling medium and a precipitation hardening type low thermal expansion metal are welded, then heated to a temperature not lower than the hardening temperature of the metal member, and then 850 ° C. to 5 ° C.
A joined body and ceramics, characterized by cooling in a gas so that the average cooling rate up to 50 ° C. is 50 ° C./min or less, and further bonding the ceramics to the precipitation hardening type low thermal expansion metal by fitting. A method for producing a conjugate.
はレ−ザ−溶接のいずれかである請求項10に記載の接
合体とセラミックスとの結合体の製造方法。11. The method for producing a joined body of a joined body and ceramics according to claim 10, wherein the welding is friction welding, electron beam welding or laser welding.
属部材と析出硬化型低熱膨張金属との間にロー材を介在
させて金属部材の焼入れ温度以上に加熱した後、850
℃から550℃までの間の平均冷却速度が50℃/分以
下となるように気体中で冷却することを特徴とする接合
体の製造方法。12. A brazing material is interposed between a metal member that can be hardened by using gas as a cooling medium and a precipitation hardening type low thermal expansion metal, and after heating to a hardening temperature of the metal member or higher, 850
A method for producing a joined body, which comprises cooling in a gas so that an average cooling rate between 50 ° C. and 550 ° C. is 50 ° C./minute or less.
属部材と析出硬化型低熱膨張金属とセラミックスとの間
にそれぞれロー材を介在させて金属部材の焼入れ温度以
上に加熱した後、850℃から550℃までの間の平均
冷却速度が50℃/分以下となるように気体中で冷却す
ることを特徴とする接合体とセラミックスとの結合体の
製造方法。13. A brazing material is interposed between a metal member capable of quenching using gas as a cooling medium, a precipitation hardening type low thermal expansion metal and ceramics, and the metal member is heated to a temperature not lower than the quenching temperature and then 850 ° C. to 550 ° C. A method for producing a bonded body of a bonded body and ceramics, which comprises cooling in a gas so that an average cooling rate up to ° C is 50 ° C / minute or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07111893A JP3179928B2 (en) | 1993-03-04 | 1993-03-04 | Bonded body, bonded body thereof and ceramics, and methods of manufacturing them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07111893A JP3179928B2 (en) | 1993-03-04 | 1993-03-04 | Bonded body, bonded body thereof and ceramics, and methods of manufacturing them |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06254723A true JPH06254723A (en) | 1994-09-13 |
JP3179928B2 JP3179928B2 (en) | 2001-06-25 |
Family
ID=13451337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07111893A Expired - Fee Related JP3179928B2 (en) | 1993-03-04 | 1993-03-04 | Bonded body, bonded body thereof and ceramics, and methods of manufacturing them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3179928B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011185344A (en) * | 2010-03-08 | 2011-09-22 | Iguchi Issei:Kk | Fastening structure for metal component |
WO2014005905A1 (en) * | 2012-07-03 | 2014-01-09 | Robert Bosch Gmbh | Method and device for producing an assembly with heating of the first component and of the second material to a reaction temperature; corresponding rotor for a turbine |
FR3112604A1 (en) * | 2020-07-20 | 2022-01-21 | Fogale Nanotech | Capacitive high temperature sensor |
WO2022017850A1 (en) * | 2020-07-20 | 2022-01-27 | Fogale Nanotech | High temperature capacitive sensor |
-
1993
- 1993-03-04 JP JP07111893A patent/JP3179928B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011185344A (en) * | 2010-03-08 | 2011-09-22 | Iguchi Issei:Kk | Fastening structure for metal component |
WO2014005905A1 (en) * | 2012-07-03 | 2014-01-09 | Robert Bosch Gmbh | Method and device for producing an assembly with heating of the first component and of the second material to a reaction temperature; corresponding rotor for a turbine |
CN104379295A (en) * | 2012-07-03 | 2015-02-25 | 罗伯特·博世有限公司 | Method and device for producing a component with heating of a first component and a second material to a reaction temperature, corresponding rotating body for a turbomachine |
CN104379295B (en) * | 2012-07-03 | 2018-11-06 | 罗伯特·博世有限公司 | Method and device for producing a component and corresponding rotating body for a turbomachine |
FR3112604A1 (en) * | 2020-07-20 | 2022-01-21 | Fogale Nanotech | Capacitive high temperature sensor |
WO2022017850A1 (en) * | 2020-07-20 | 2022-01-27 | Fogale Nanotech | High temperature capacitive sensor |
Also Published As
Publication number | Publication date |
---|---|
JP3179928B2 (en) | 2001-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0837221B1 (en) | Ti-Al turbine rotor and method of manufacturing said rotor | |
US5314106A (en) | Method for joining steel to aluminum alloy components or titanium alloy components, and turbochargers obtained by the method | |
JP4698979B2 (en) | Metal injection-molded turbine rotor and connection of metal shaft to the rotor | |
US6291086B1 (en) | Friction welding interlayer and method for joining gamma titanium aluminide to steel, and turbocharger components thereof | |
JPH0248514B2 (en) | ||
KR20110019415A (en) | Rotor shaft of turbomachine, and manufacturing method of rotor of turbomachine | |
EP0816007A2 (en) | Method of friction-welding a shaft to a titanium aluminide turbine rotor | |
US7473049B2 (en) | Ceramic-to-metal shaft assembly | |
JPH05155668A (en) | Combination of ceramic with metal | |
JP3829388B2 (en) | TiAl turbine rotor | |
JPH06254723A (en) | Junction body, its combination body with ceramic, and their manufacture | |
JPH0329031B2 (en) | ||
JPH03279277A (en) | Joint structure of turbine rotor | |
EP0323207B1 (en) | Joined metal-ceramic assembly method of preparing the same | |
JPH05347122A (en) | Brazed x-ray tube anode | |
JPH10193087A (en) | Manufacture of titanium-aluminum-made turbine rotor | |
US20080000558A1 (en) | Friction welding | |
EP1424465A1 (en) | Hybrid rotor, method of manufacturing the hybrid rotor, and gas turbine | |
US20070071545A1 (en) | Lubricated Hirth serration coupling | |
JPS60201002A (en) | Turbine rotor | |
JPH09272021A (en) | Manufacture of turbine rotor | |
JPH10118764A (en) | Method for joining tial turbine impeller with rotor shaft | |
JPH08257804A (en) | Main spindle for machine tool | |
JP2003097213A (en) | Ceramic turbine rotor | |
JP2883223B2 (en) | Method of joining ceramic member and metal member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |