JPH0625271B2 - Method for plasma treatment on inner surface of tube - Google Patents
Method for plasma treatment on inner surface of tubeInfo
- Publication number
- JPH0625271B2 JPH0625271B2 JP61036211A JP3621186A JPH0625271B2 JP H0625271 B2 JPH0625271 B2 JP H0625271B2 JP 61036211 A JP61036211 A JP 61036211A JP 3621186 A JP3621186 A JP 3621186A JP H0625271 B2 JPH0625271 B2 JP H0625271B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- discharge
- output
- plasma treatment
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009832 plasma treatment Methods 0.000 title claims description 15
- 238000000034 method Methods 0.000 title claims description 9
- 238000012545 processing Methods 0.000 claims description 10
- 239000011810 insulating material Substances 0.000 claims description 5
- 238000003672 processing method Methods 0.000 claims 2
- 239000007789 gas Substances 0.000 description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 238000004381 surface treatment Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229920006254 polymer film Polymers 0.000 description 6
- 239000004014 plasticizer Substances 0.000 description 5
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- -1 organosilane compounds Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 2
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 229910001872 inorganic gas Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/14—Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Description
【発明の詳細な説明】 発明の目的 「産業上の利用分野」 本発明は、絶縁性材料よりなるチューブの内面をグロー
放電によるプラズマを利用して表面改質する方法に関す
る。The present invention relates to a method for surface-modifying the inner surface of a tube made of an insulating material by using plasma generated by glow discharge.
「従来の技術」 近来プラズマ励起反応を利用した表面改質が盛んに行な
われている。例えば親水性の付与や接着性の改善あるい
は、可塑剤の溶出防止の目的で、アルゴン,ヘリウム,
酸素,窒素,水素,アンモニア,一酸化炭素などの非重
合性ガスによるプラズマ処理が行なわれている。また重
合性の有機ガスを用いて、優れた物質選択透過性や電気
的特性,機械的特性をもつ薄膜を表面に堆積させること
を目的としたプラズマ重合も行なわれている。これらの
反応は、主にグロー放電により減圧空間で行なわれるた
めかなり複雑な形状をもつ基材の表面処理にも利用する
ことができるが、しかしながらチューブ内面などの狭い
細長い空間では、安定な放電の制御が難しく、その適用
は極めて限定されていた。“Prior Art” Recently, surface modification utilizing plasma-excited reaction has been actively carried out. For example, for the purpose of imparting hydrophilicity, improving adhesion, or preventing the elution of plasticizer, argon, helium,
Plasma treatment with non-polymerizable gases such as oxygen, nitrogen, hydrogen, ammonia and carbon monoxide is performed. Plasma polymerization has also been carried out using a polymerizable organic gas for the purpose of depositing a thin film having excellent material selective permeability, electrical characteristics and mechanical characteristics on the surface. These reactions are mainly performed in a decompressed space by glow discharge, and therefore can be used for surface treatment of a substrate having a considerably complicated shape, however, in a narrow and narrow space such as the inner surface of a tube, stable discharge is possible. It was difficult to control and its application was very limited.
「発明が解決しようとする問題点」 本発明の目的は、チューブ内面、特に内径の細いチュー
ブ内面に均質なプラズマ処理を行うことのできる方法を
提供することにある。[Problems to be Solved by the Invention] An object of the present invention is to provide a method capable of performing uniform plasma treatment on the inner surface of a tube, particularly the inner surface of a tube having a small inner diameter.
チューブ内面のように細長い空間に放電を発生,維持す
るには、高い放電出力が必要となる。放電の発生,維持
に必要な出力は、ガスの種類,圧力,電極の位置などで
変わるが、一般にチューブの内径が細く、長さが長くな
るほど、高い出力が必要となる。しかるに高い放電出力
の印加は、プラズマ密度の増大となり、基材チューブの
温度上昇と過度の分解を誘起することになり、均質かつ
適切なプラズマ反応を行うことができなかつた。A high discharge output is required to generate and maintain a discharge in an elongated space such as the inner surface of a tube. The output required to generate and maintain discharge varies depending on the type of gas, pressure, electrode position, etc., but generally the higher the tube inner diameter and the longer the length, the higher the output required. However, application of a high discharge power leads to an increase in plasma density, which leads to an increase in temperature and excessive decomposition of the substrate tube, making it impossible to carry out a homogeneous and appropriate plasma reaction.
発明の構成 「問題点を解決するための手段」 本発明は、絶縁性材料よりなるチューブを円筒状反応器
中にほぼ内接して置き、減圧下で処理ガスを導入後、外
部電源よりパルス化した高周波出力を前記反応器の外部
から印加して、チューブ内面をプラズマ化することを特
徴とするチューブの内面プラズマ処理方法である。処理
されるチューブは、その外径よりわずかに大きい円筒状
反応器中に置かれる。これはチューブと円筒状反応器と
のすき間が広いと、放電は、チューブの内空にではな
く、専らそのすき間に発生するからである。反応器は、
絶縁性,耐熱性を考慮して、石英あるいはパイレックス
製が好適に用いられる。処理されるチューブを反応器中
に設置後、系内を真空引きし、ついで処理ガスを導入す
る。処理ガスは、表面処理の目的に応じて、無機ガスあ
るいは、有機ガスを適宜選ぶことができる。例えば濡れ
性の改善には酸素,窒素,アンモニアなどの無機ガス
が、疎水性表面の形成には、テトラフルオロエチレンや
有機シラン化合物が、親水性表面の形成には、アリルア
ミンやピリジンなどの含窒素化合物が好適に用いられ
る。処理ガス導入後の系内圧力は、好ましくは、0.05To
rrから5Torrの範囲に維持される。これより低くして
も、また高くても放電は不安定になる。プラズマ励起手
段はパルス化した高周波出力が用いられる。これは放電
出力の異なる二つの状態が繰り返されることを意味す
る。その一方の状態は、放電が停止するか、あるいは他
方の放電より低い出力の放電が行なわれる。第1図は、
本発明で用いられるパルス化した高周波放電の出力波形
の例をいくつか示した図である。縦軸は放電出力W(ワ
ット)、横軸は時間tをあらわす。(a)の場合は、放電
と放電停止が同じ間隔で繰り返されている。(b)の場合
は、高い出力の放電と低い出力の放電が同じ間隔で繰り
返されている。(c)の場合は、放電停止時間が、放電時
間の2倍で繰り返されている。このように処理目的によ
り放電出力と放電時間を適宜選ぶことができる。放電出
力は、処理ガスの種類,系内の圧力,電極の位置等の条
件も考慮して選択する。また放電時間,放電間隔は、被
処理物であるチューブの発熱,分解状態や放電中に生成
される活性権の寿命の問題などを考慮して選択する。そ
の間隔は好ましくは、0.1ミリ秒から10秒の間にあ
る。これより短い間隔は、連続放電に近ずき、本発明の
有用性が減じる。またこれより長いと処理に要する時間
が長くなり、経済性が失われる。パルス化した高周波出
力は円筒状反応器の外部より印加される。円筒状反応器
の外部に1対の平板電極、又は円環状電極あるいはコイ
ル電極を設置し、整合器を介して高周波電源に接続す
る。第2図は、本発明におけるプラズマによるチューブ
内面処理のための装置の1例を示す概略図である。円筒
状反応器2に被処理物としてのチューブ1を挿入し、継
手6を介して、装置に設置する。排気口10より系内を
10-2Torr以下に減圧した後、導入口9より処理ガスを装
置内に流し込む。処理ガスの流量は、マスフローコント
ローラー8により適切な値に調整する。また系内の圧力
は、バルブ11を用い、圧力計7をみながら、適切な値
に設定する。放電は、電極3に高周波電源5から整合器
4を介して、パルス化した高周波出力を供給し、発生さ
せる。Structure of the Invention "Means for Solving the Problem" The present invention is to put a tube made of an insulating material in a cylindrical reactor almost inscribed therein, introduce a process gas under reduced pressure, and then pulse it from an external power source. The inner surface plasma treatment method for a tube is characterized in that the inner surface of the tube is turned into plasma by applying the high-frequency output from the outside of the reactor. The tube to be treated is placed in a cylindrical reactor slightly larger than its outer diameter. This is because when the gap between the tube and the cylindrical reactor is wide, the discharge is generated not in the inner space of the tube but exclusively in the gap. The reactor is
In consideration of insulation and heat resistance, quartz or Pyrex is preferably used. After the tube to be treated is placed in the reactor, the system is evacuated and then the treatment gas is introduced. As the treatment gas, an inorganic gas or an organic gas can be appropriately selected according to the purpose of the surface treatment. For example, inorganic gases such as oxygen, nitrogen, and ammonia are used to improve wettability, tetrafluoroethylene and organosilane compounds are used to form hydrophobic surfaces, and nitrogen-containing nitrogen compounds such as allylamine and pyridine are used to form hydrophilic surfaces. Compounds are preferably used. The system pressure after introducing the processing gas is preferably 0.05 To.
It is maintained in the range of rr to 5 Torr. If it is lower or higher than this, the discharge becomes unstable. A high frequency pulsed output is used as the plasma excitation means. This means that two states with different discharge outputs are repeated. In one of the states, the discharge is stopped or the discharge having a lower output than the other discharge is performed. Figure 1 shows
It is the figure which showed some examples of the output waveform of the pulsed high frequency discharge used by this invention. The vertical axis represents discharge output W (watt), and the horizontal axis represents time t. In the case of (a), discharge and discharge stop are repeated at the same interval. In the case of (b), high output discharge and low output discharge are repeated at the same intervals. In the case of (c), the discharge stop time is repeated twice as long as the discharge time. As described above, the discharge output and the discharge time can be appropriately selected depending on the purpose of treatment. The discharge output is selected in consideration of conditions such as the type of processing gas, the pressure in the system, and the position of the electrode. Further, the discharge time and the discharge interval are selected in consideration of the heat generation of the tube which is the object to be treated, the decomposition state and the problem of the life of the active right generated during the discharge. The interval is preferably between 0.1 ms and 10 seconds. Intervals shorter than this approach continuous discharge, reducing the usefulness of the present invention. On the other hand, if the length is longer than this, the processing time becomes long and the economy is lost. The pulsed high frequency output is applied from outside the cylindrical reactor. A pair of flat plate electrodes, or annular electrodes or coil electrodes are installed outside the cylindrical reactor, and connected to a high frequency power source through a matching unit. FIG. 2 is a schematic view showing an example of an apparatus for inner surface treatment of a tube with plasma according to the present invention. The tube 1 as an object to be processed is inserted into the cylindrical reactor 2 and installed in the apparatus via the joint 6. Through the exhaust port 10
After reducing the pressure to 10 -2 Torr or less, the processing gas is flown into the apparatus through the inlet 9. The flow rate of the processing gas is adjusted to an appropriate value by the mass flow controller 8. The pressure in the system is set to an appropriate value by using the valve 11 and observing the pressure gauge 7. The discharge supplies a pulsed high-frequency output to the electrode 3 from the high-frequency power source 5 through the matching device 4 to generate it.
「作用」 チューブ内側、特に内径が細く、長さの長いチューブ内
側に、放電を起し維持するには、大きな放電出力が必要
である。しかしながら大きな放電出力の印加で、細長い
空間に閉じこめられた高密度のプラズマエネルギーは、
チューブを発熱させ、過度の分解を引き起こす。また重
合性有機ガスを用いて、プラズマ重合膜を堆積させる場
合でも、プラズマエネルギーは、ガスや重合膜に過剰に
作用し、適度の重合膜を得ることが困難となる。これに
対し本発明は、パルス化した高周波放電を印加すること
で、放電の発生,維持を行いながら、かつ適切なプラズ
マ処理を行うことを可能にしている。すなわち放電に必
要な高い出力を印加するとともに過度な分解を押さえ
る、あるいは適度の重合膜を生成させるための放電の停
止あるいは、より低い出力の放電をパルス的に加えるこ
とで均質かつ適度なチューブ内面へのプラズマ処理を可
能としている。このように本発明は、チューブの内径が
細くなるほど、また長さが長くなるほど有効であり、チ
ューブ内径が6mmφ以下、長さが100mm以上であれば、
本発明の効果は一層明確になる。以下本発明を実施例に
より説明する。"Action" A large discharge output is required to cause and maintain a discharge inside the tube, especially inside the tube having a small inner diameter and a long length. However, when a large discharge power is applied, the high-density plasma energy confined in the elongated space becomes
Causes tube to heat up, causing excessive decomposition. Even when a plasma-polymerized film is deposited using a polymerizable organic gas, plasma energy acts excessively on the gas and the polymerized film, making it difficult to obtain an appropriate polymerized film. On the other hand, the present invention makes it possible to perform an appropriate plasma treatment while applying and applying a pulsed high-frequency discharge while generating and maintaining the discharge. In other words, by applying the high output required for discharge and suppressing excessive decomposition, or stopping the discharge to form an appropriate polymerized film, or by applying a lower output discharge in a pulsed manner, a uniform and appropriate inner surface of the tube can be obtained. Plasma processing is possible. Thus, the present invention is effective as the inner diameter of the tube becomes smaller and the length becomes longer. If the inner diameter of the tube is 6 mmφ or less and the length is 100 mm or more,
The effect of the present invention becomes clearer. The present invention will be described below with reference to examples.
実施例1. 可塑剤DEHP(フタル酸ジ−2−エチルヘキシル)を50
重量部含む塩化ビニル樹脂配合品から内径3mm,外径3.
5mmのチューブを成形した。このチューブを300mm長に裁
断した後、ベルジャー型プラズマ処理装置内に設置し、
一酸化炭素0.3Torrの雰囲気で、13.56MHZ、100Wの高周
波放電を与えて、5分間チューブ外表面をプラズマ処理
した。処理后のチューブを長さ方向に2等分し、その一
方を第2図で示したチューブ内面プラズマ処理装置内に
設置し、一酸化炭素0.3Torrの雰囲気で、放電出力100
W,放電時間100ミリ秒,放電停止時間200ミリ秒のパル
ス化した高周波放電(周波数13.56MHZ)を10分間印加
し、プラズマ処理した。処理したチューブの外観に異常
は認められらかつた。この内面処理も行つたチューブ
と、先の外表面処理のみのチューブとの可塑性溶出量を
n−ヘキサン抽出法により比較した。この結果内面処理
を行なつたチューブは0.1mg、内面処理をなわないチュ
ーブは14.3mgの可塑剤溶出量があつた。Example 1. Plasticizer DEHP (di-2-ethylhexyl phthalate) 50
3mm inner diameter and outer diameter 3.
A 5 mm tube was molded. After cutting this tube to a length of 300 mm, set it in the bell jar type plasma processing device,
The outer surface of the tube was plasma-treated for 5 minutes by applying a high frequency discharge of 13.56 MHZ and 100 W in an atmosphere of carbon monoxide of 0.3 Torr. After the treatment, divide the tube into two equal parts in the lengthwise direction, and install one of them in the tube inner surface plasma treatment device shown in Fig. 2, and in a carbon monoxide atmosphere of 0.3 Torr, discharge output 100
A plasma treatment was performed by applying pulsed high-frequency discharge (frequency 13.56 MHZ) for 10 minutes at a discharge time of 100 milliseconds and a discharge stop time of 200 milliseconds. No abnormality was found in the appearance of the treated tube. The plastic elution amount of the tube which was also subjected to the inner surface treatment and that of the tube having only the outer surface treatment were compared by the n-hexane extraction method. As a result, the amount of plasticizer eluted was 0.1 mg for the tube with inner surface treatment and 14.3 mg for the tube without inner surface treatment.
n−ヘキサン抽出量測定法: 100mlの円筒形抽出容器に試料チューブを入れ、50mlの
n−ヘキサンと接触させ、37℃で2時間振とう後、n−
ヘキサン中に移行した可塑剤の量をガスクロマトグラフ
イにより定量分析した。n-Hexane extraction amount measurement method: Put a sample tube in a 100 ml cylindrical extraction container, contact with 50 ml of n-hexane, shake at 37 ° C for 2 hours, and then n-
The amount of plasticizer transferred into hexane was quantitatively analyzed by gas chromatography.
比較例1. 実施例1で用いたのと同一のチューブを、同一条件でチ
ューブ外表面をプラズマ処理した後、第2図に示したチ
ューブ内面プラズマ処理装置内に設置した(試料長150m
m)。一酸化炭素0.3Torrの雰囲気で、放電出力100Wの
連続した高周波放電を印加し、プラズマ処理した。処理
時間5分間の場合、可塑剤溶出量は0.7mgあつた。処理
時間15分間の場合、チューブが部分的に熱変形を起こ
し、またその端部に樹脂の分解したあとがみられ、変色
していた。Comparative Example 1. The same tube as that used in Example 1 was placed in the tube inner surface plasma processing apparatus shown in FIG. 2 after the outer surface of the tube was plasma-treated under the same conditions (sample length 150 m
m). A continuous high frequency discharge having a discharge output of 100 W was applied in an atmosphere of carbon monoxide of 0.3 Torr for plasma treatment. When the treatment time was 5 minutes, the elution amount of the plasticizer was 0.7 mg. When the treatment time was 15 minutes, the tube was partially thermally deformed, and after the resin was decomposed at the end, the tube was discolored.
実施例2. 厚さ0.25mm,内径2mm,長さ150mmのポリエチレンチュ
ーブを第2図に示したチューブ内面プラズマ処理装置内
に設置し、0.01Torrまで減圧後、アリルアミン5cm3/m
in,窒素5cm3/minを流し、系内を0.25Torrに維持し、
80Wの出力を1秒,15Wの出力を3秒の間隔で高周波
放電を印加した。10分間処理後、試料をとり出し、内面
を切り開いて観察したところ、うす茶色の硬質な重合膜
が均質に堆積されていた。水滴を置き接触角を測定した
ところ、約42度となりチューブ内面が親水性表面に改質
されていることが確認された。また処理面にセロテープ
を貼り、はがしたが、テープへの重合膜の移行はなくチ
ューブ内面と重合膜の密着性の優れていることがわかつ
た。Example 2. A polyethylene tube with a thickness of 0.25 mm, an inner diameter of 2 mm, and a length of 150 mm was installed in the tube inner surface plasma processing apparatus shown in Fig. 2 and the pressure was reduced to 0.01 Torr, then allylamine 5 cm 3 / m
In, flow nitrogen 5 cm 3 / min, maintain the system at 0.25 Torr,
A high frequency discharge was applied at 80 W output for 1 second and 15 W output for 3 seconds. After the treatment for 10 minutes, the sample was taken out, the inner surface was cut open and observed, and a light brown hard polymer film was uniformly deposited. When a contact angle was measured by placing a water drop, it was found to be about 42 degrees, and it was confirmed that the inner surface of the tube was modified to be a hydrophilic surface. Although a cellophane tape was attached to the treated surface and peeled off, it was found that there was no migration of the polymer film to the tape and the adhesion between the inner surface of the tube and the polymer film was excellent.
比較例2. 連続放電を用いた以外は、実施例2と同じ手順に従い、
チューブの内面処理を行なつた。80Wの連続放電を10
分間行なつた場合、チューブ内面は、薄い茶色とうす茶
色の重合膜が不均質に分布していた。また15Wで10分
間の連続放電を行なつた場合、うす黄色の重合膜が生成
し、セロテープと接触させると、重合膜がテープに接着
し、チューブからはく離した。Comparative example 2. Following the same procedure as in Example 2, except using continuous discharge,
The inner surface of the tube was treated. 80W continuous discharge 10
When it was carried out for a minute, a light brown and light brown polymer film was unevenly distributed on the inner surface of the tube. In addition, when continuous discharge was performed at 15 W for 10 minutes, a pale yellow polymer film was formed, and when contacted with cellophane tape, the polymer film adhered to the tape and was peeled from the tube.
「発明の効果」 本発明は、従来困難であつた絶縁性材料よりなるチュー
ブ内面のプラズマ処理方法に関し、チューブとほぼ内接
する円筒状反応器を用い、パルス化した高周波放電を印
加することで、多孔質性チューブを含む、チューブ内面
の均質なプラズマ処理を可能にした。特に内径の細い、
長さの長いチューブにもパルスによる放電制御で適切な
プラズマ処理を行うことが可能となつた。"Effects of the Invention" The present invention relates to a plasma treatment method for an inner surface of a tube made of an insulating material, which has been difficult in the past, and uses a cylindrical reactor almost inscribed with the tube to apply a pulsed high frequency discharge, It enabled homogeneous plasma treatment of the inner surface of the tube, including the porous tube. Especially with a small inner diameter,
It has become possible to perform appropriate plasma treatment on long tubes by controlling the discharge with a pulse.
第1図(a),(b),(c)は、本発明で用いられるパルス化
した高周波放電の出力波形の例を示している。 縦軸に放電出力,横軸に時間をとつている。第2図は、
本発明で用いられるチューブ内面プラズマ処理のための
装置の1例を示す概略図である。1は試料チューブ,2
は円筒状反応器,3は電極,4は整合器,5は高周波電
源を示している。FIGS. 1 (a), (b) and (c) show examples of output waveforms of pulsed high frequency discharge used in the present invention. The vertical axis shows discharge output and the horizontal axis shows time. Figure 2 shows
1 is a schematic view showing an example of an apparatus for plasma treatment on the inner surface of a tube used in the present invention. 1 is a sample tube, 2
Is a cylindrical reactor, 3 is an electrode, 4 is a matching unit, and 5 is a high frequency power source.
Claims (4)
器中に、ほぼ内接して置き、減圧下で処理ガス導入後、
外部電源よりパルス化した高周波出力を前記反応器の外
部から印加してチューブ内部をプラズマ化することを特
徴とするチューブの内面プラズマ処理方法。1. A tube made of an insulating material is placed substantially inscribed in a cylindrical reactor, and after introducing a processing gas under reduced pressure,
A method for plasma treatment on the inner surface of a tube, characterized in that a high-frequency output pulsed from an external power source is applied from outside the reactor to turn the inside of the tube into plasma.
止よりなり、かつ放電時間と放電停止時間がいずれも0.
1ミリ秒から10秒の間にあることを特徴とする特許請
求の範囲第1項記載のチューブの内面プラズマ処理方
法。2. A pulsed high-frequency output consists of discharge and discharge stop, and both discharge time and discharge stop time are 0.
The inner surface plasma processing method for a tube according to claim 1, wherein the inner surface plasma treatment is performed for 1 millisecond to 10 seconds.
低い放電出力よりなり、かつ高い放電出力時間と低い放
電出力時間がいずれも0.1ミリ秒から10秒の間にあるこ
とを特徴とする特許請求の範囲第1項記載のチューブの
内面プラズマ処理方法。3. A patent characterized in that the pulsed high-frequency output is composed of a high discharge output and a low discharge output, and both the high discharge output time and the low discharge output time are between 0.1 milliseconds and 10 seconds. The inner surface plasma processing method for a tube according to claim 1.
下であり、長さが100mm以上であることを特徴とする特
許請求の範囲第2項又は第3項記載のチューブの内面プ
ラズマ処理方法。4. The inner surface plasma treatment method for a tube according to claim 2 or 3, wherein the tube made of an insulating material has an inner diameter of 6 mm or less and a length of 100 mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61036211A JPH0625271B2 (en) | 1986-02-20 | 1986-02-20 | Method for plasma treatment on inner surface of tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61036211A JPH0625271B2 (en) | 1986-02-20 | 1986-02-20 | Method for plasma treatment on inner surface of tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62195028A JPS62195028A (en) | 1987-08-27 |
JPH0625271B2 true JPH0625271B2 (en) | 1994-04-06 |
Family
ID=12463418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61036211A Expired - Lifetime JPH0625271B2 (en) | 1986-02-20 | 1986-02-20 | Method for plasma treatment on inner surface of tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0625271B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4967763A (en) * | 1989-03-13 | 1990-11-06 | Becton, Dickinson And Company | Platelet stable blood collection assembly |
US5318806A (en) * | 1992-10-02 | 1994-06-07 | Becton, Dickinson And Company | Tube having regions of different surface chemistry and method therefor |
US20060070677A1 (en) * | 2004-09-28 | 2006-04-06 | Tokai Rubber Industries, Ltd. | Hose with sealing layer, direct-connect assembly including the same, and method of manufacturing the same |
JP4608511B2 (en) * | 2007-02-09 | 2011-01-12 | 国立大学法人東京工業大学 | Surface treatment equipment |
WO2011091842A1 (en) | 2010-01-26 | 2011-08-04 | Leibniz-Institut Für Plasmaforschung Und Technologie E. V. | Device and method for dry-cleaning, activating, coating, modifying, and biologically decontaminating the inner walls of hoses, pipes, and other hollow bodies |
US9192040B2 (en) | 2010-01-26 | 2015-11-17 | Leibniz-Institut Fuer Plasmaforschung Und Technologie E.V., Inp Greifswald | Device and method for generating an electrical discharge in hollow bodies |
JP5785650B2 (en) * | 2013-11-26 | 2015-09-30 | 泉工業株式会社 | Container inner wall processing method and container inner wall processing apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55155034A (en) * | 1979-05-21 | 1980-12-03 | Shin Etsu Chem Co Ltd | Plasma treatment of surface of polyvinyl chloride resin molded article |
JPS5940850A (en) * | 1982-08-30 | 1984-03-06 | 株式会社島津製作所 | Method and apparatus for treating plasma on the inner surface of tubular body |
JPS60258234A (en) * | 1984-06-06 | 1985-12-20 | Sumitomo Bakelite Co Ltd | Plasma treatment of plastic pipe on its inner surface and device therefor |
JPS62143939A (en) * | 1985-12-19 | 1987-06-27 | Sumitomo Bakelite Co Ltd | Plasma treatment of inner surface of plastic tube |
-
1986
- 1986-02-20 JP JP61036211A patent/JPH0625271B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62195028A (en) | 1987-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5229172A (en) | Modification of polymeric surface by graft polymerization | |
KR950000931A (en) | How to restrict objects from sticking to receivers during deposition | |
EP0104608B1 (en) | Chemically modified surface for large molecule attachment | |
EP0363982A3 (en) | Dry etching method | |
EP0178071B1 (en) | Moisture sensor and process for producing same | |
JPH0625271B2 (en) | Method for plasma treatment on inner surface of tube | |
Yokoyama et al. | Preparation of a single bipolar membrane by plasma-induced graft polymerization | |
JPS63118060A (en) | Method and apparatus for thermal and chemical teratment of processed article | |
JPH0215171A (en) | Atmospheric pressure plasma reaction method | |
JPS62235339A (en) | Modification of plastic surface | |
JP3356776B2 (en) | Adhesion method of fluoropolymer film to the object | |
JPH03241739A (en) | Atmospheric pressure plasma reaction method | |
JP2002020514A (en) | Method for modifying surface of fluororesin | |
Kawakami et al. | Immobilization of glucose oxidase on polymer membranes treated by low‐temperature plasma | |
JPS61238962A (en) | Method and apparatus for forming film | |
JPS61149486A (en) | Surface treatment and plasma reaction vessel | |
JP2542750B2 (en) | Surface energy control method for plastics | |
Mozetič et al. | Atomic oxygen concentration in a flowing post-discharge reactor | |
JPS6320300B2 (en) | ||
JPS60114577A (en) | Chemical treating device | |
Hsiue et al. | Preparation of glucose oxidase membrane for the application of glucose sensor by plasma activation | |
RU2664925C1 (en) | Method of functionalization of polylactide product surface | |
JPH0560493B2 (en) | ||
JPH0323296A (en) | Production of substrate for depositing thin diamond film | |
JPH08176328A (en) | Treatment of surface of plastic substrate |