[go: up one dir, main page]

JPH0624781A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH0624781A
JPH0624781A JP18008792A JP18008792A JPH0624781A JP H0624781 A JPH0624781 A JP H0624781A JP 18008792 A JP18008792 A JP 18008792A JP 18008792 A JP18008792 A JP 18008792A JP H0624781 A JPH0624781 A JP H0624781A
Authority
JP
Japan
Prior art keywords
base material
optical fiber
preform
porous
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18008792A
Other languages
Japanese (ja)
Inventor
Tsugio Sato
継男 佐藤
Takeshi Yagi
健 八木
Takayuki Morikawa
孝行 森川
Kazuaki Yoshida
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18008792A priority Critical patent/JPH0624781A/en
Publication of JPH0624781A publication Critical patent/JPH0624781A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To provide a method for producing optical fiber preform capable of efficiently producing the optical fiber preform free from deformation caused by drawing. CONSTITUTION:The method for producing optical fiber preform by passing a porous matrix comprising the powder of quartz through a sintering furnace to sinter the porous matrix is characterized by holding both the ends of the porous matrix for the fixation of the porous matrix and subsequently sintering the porous matrix, while transferring the sintering furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大型の光ファイバ用母
材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a large preform for optical fibers.

【0002】[0002]

【従来の技術】現在、光ファイバ用母材の製造方法とし
ては、CVD法、OVD法、PCVD法、およびVAD
法が実用化されている。このうち、シリカ粉末を堆積さ
せることにより多孔質母材を製造する方法は、OVD法
およびVAD法である。
2. Description of the Related Art At present, as a method of manufacturing a base material for an optical fiber, a CVD method, an OVD method, a PCVD method, and a VAD
The method has been put to practical use. Among these, the method of manufacturing the porous base material by depositing silica powder is the OVD method or the VAD method.

【0003】上記多孔質母材を製造する他の方法として
は、例えば特願平60−210539号においてMSP
(Mechanical Shaped Preform )法が提案されている。
また、最近では、コアもしくはコアと一部のクラッドか
らなるコア用シリカロッドの外周にシリカ系粉末を成形
して多孔質母材を製造する方法も提案されている。具体
的には、特願平4−55572号には、主原料としてシ
リカ系粉末を用い、これに水とバインダーを配合して可
塑化し、この材料を真空押出機により押出成形する方法
が開示されている。また、特願平2−224732号に
は、シリカ系粉末を水に分散させてスラリーとし、これ
を吸水性の鋳型に注入して鋳型にスラリーの水分を吸収
させて成形する方法が開示されている。さらに、特願平
3−126723号には、造粒したシリカ系粉末をゴム
型に充填して静水圧加圧成形する方法が開示されてい
る。ところで、このような方法においては、大型の多孔
質母材を低コストで製造することができるという利点は
あるものの、この多孔質母材を焼結して光ファイバ用母
材にすることが難しいという問題がある。
Another method for producing the above-mentioned porous base material is MSP in Japanese Patent Application No. 60-210539.
(Mechanical Shaped Preform) method has been proposed.
Further, recently, a method has been proposed in which silica-based powder is molded on the outer periphery of a core or a silica rod for core consisting of a core and a part of clad to produce a porous base material. Specifically, Japanese Patent Application No. 4-55572 discloses a method in which silica powder is used as a main raw material, water and a binder are mixed with the powder to plasticize it, and this material is extrusion-molded by a vacuum extruder. ing. Further, Japanese Patent Application No. 2-224732 discloses a method in which silica-based powder is dispersed in water to form a slurry, and the slurry is injected into a water-absorbing mold so that the mold absorbs the water content of the slurry and is molded. There is. Furthermore, Japanese Patent Application No. 3-126723 discloses a method of filling granulated silica-based powder in a rubber mold and performing isostatic pressing. By the way, although such a method has an advantage that a large-sized porous preform can be manufactured at low cost, it is difficult to sinter this porous preform to obtain a preform for optical fibers. There is a problem.

【0004】従来、多孔質母材の焼結は、図3に示す装
置において行われる。例えば、VAD法で作製した多孔
質母材30(ファイバ長100km用の母材であって2.
7kg)を焼結する場合、多孔質母材30を支持した上部
支持棒31の端部をチャック32で把持し、チャック3
2と螺合した駆動モータ34により駆動軸33を回転さ
せることにより多孔質母材30を炉心管35内に徐々に
引き下げる。このとき、多孔質母材30は、炉心管35
の外側に配置された加熱手段36で加熱されている領域
を通過することにより焼結される。なお、通常炉心管3
5内部は所定の雰囲気に調節されており、加熱手段36
は焼結温度が1400〜1600℃となるように調節さ
れている。
Conventionally, the sintering of the porous base material is carried out in the apparatus shown in FIG. For example, a porous preform 30 manufactured by the VAD method (a preform for a fiber length of 100 km, which is 2.
7 kg), the end portion of the upper support rod 31 supporting the porous base material 30 is grasped by the chuck 32, and the chuck 3
By rotating the drive shaft 33 by the drive motor 34 screwed with 2, the porous preform 30 is gradually pulled down into the core tube 35. At this time, the porous base material 30 is the core tube 35.
The powder is sintered by passing through a region heated by a heating means 36 arranged outside. In addition, the normal core tube 3
The inside of 5 is adjusted to a predetermined atmosphere, and the heating means 36
Is adjusted so that the sintering temperature is 1400 to 1600 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、比較的
大型の多孔質母材を従来の方法で焼結する、すなわち多
孔質母材を一方の端部(図3において上端部)のみで把
持して焼結すると、焼結中に多孔質母材が自重により延
伸されて変形する。この変形が著しくなると焼結中に多
孔質母材が溶断してしまう。特に、上述した加圧成形を
行う方法により得られた多孔質母材は、比較的大きい粒
径を有する粒子で構成されているため、焼結温度を高く
する必要がある。このため、焼結中の多孔質母材の延伸
による変形がより一層大きくなる。
However, a relatively large porous base material is sintered by a conventional method, that is, the porous base material is held only at one end (upper end in FIG. 3). When sintered, the porous base material is stretched and deformed by its own weight during the sintering. If this deformation becomes significant, the porous base material will melt during sintering. In particular, since the porous base material obtained by the above-mentioned method of performing pressure molding is composed of particles having a relatively large particle diameter, it is necessary to raise the sintering temperature. Therefore, the deformation due to the stretching of the porous base material during sintering is further increased.

【0006】そして、このように変形した光ファイバ用
母材に線引き加工を施して光ファイバを作製すると、外
径変動が生じた光ファイバが得られる。このような光フ
ァイバは、所望とする光学的特性を発揮できない。
When an optical fiber is manufactured by subjecting the thus deformed base material for an optical fiber to a drawing process, an optical fiber having an outer diameter variation is obtained. Such an optical fiber cannot exhibit desired optical characteristics.

【0007】上述した光ファイバ用母材の焼結時におけ
る変形は、さらに熱加工を施すことにより修正すること
も不可能でないかもしれないが、製造工程が煩雑にな
り、しかも製造コストが高くなる問題がある。
The above-mentioned deformation during sintering of the optical fiber preform may not be impossible to correct by further heat processing, but the manufacturing process becomes complicated and the manufacturing cost increases. There's a problem.

【0008】本発明はかかる点に鑑みてなされたもので
あり、延伸による変形のない光ファイバ用母材を効率よ
く得ることができる光ファイバ用母材の製造方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing an optical fiber preform that can efficiently obtain an optical fiber preform that is not deformed by stretching. .

【0009】[0009]

【課題を解決するための手段】本発明は、石英系粉末か
らなる多孔質母材を焼結炉内に通すことにより多孔質母
材を焼結して光ファイバ用母材を製造する方法におい
て、前記多孔質母材の両端部を把持し、前記多孔質母材
を固定して、かつ前記焼結炉を移動させながら多孔質母
材を焼結して光ファイバ用母材を得ることを特徴とする
光ファイバ用母材の製造方法を提供する。
The present invention provides a method for producing an optical fiber preform by sintering the porous preform by passing it through a sintering furnace. , Holding both ends of the porous preform, fixing the porous preform, and sintering the porous preform while moving the sintering furnace to obtain a preform for optical fibers. Provided is a method for producing a characteristic preform for an optical fiber.

【0010】ここで、石英系粉末としては、粒径が0.
5〜20μm程度であるシリカ粉末等を用いることが好
ましい。
The quartz-based powder has a particle size of 0.
It is preferable to use silica powder or the like having a particle size of about 5 to 20 μm.

【0011】多孔質母材としては、VAD法、OVD法
により石英系粉末を堆積させてなる多孔質母材、石英系
粉末を前述した各種成形法により成形してなる多孔質母
材等種々の多孔質母材を用いることができる。また、多
孔質母材には、あらかじめ作製したコア用ロッドの外周
にクラッド用のシリカ粉末を前述した各種方法により形
成してなるもの、さらには、あらかじめコアとクラッド
の一部を一体に成形したロッドの外周にクラッド用のシ
リカ粉末を形成してなるものも含む。
As the porous base material, various materials such as a porous base material obtained by depositing a silica powder by the VAD method or the OVD method, a porous base material formed by forming the silica powder by the above-described various forming methods, and the like can be used. A porous matrix can be used. In addition, the porous base material is obtained by forming silica powder for clad on the outer periphery of a rod for core prepared in advance by the above-mentioned various methods, and further, integrally molding a part of the core and the clad in advance. It also includes one formed by forming silica powder for cladding on the outer circumference of the rod.

【0012】多孔質母材の両端部を把持する場合、多孔
質母材の両端部を直接把持してもよいし、あらかじめコ
アロッドに支持棒を取り付け、その支持棒を把持しても
よい。
When both ends of the porous base material are gripped, both ends of the porous base material may be directly gripped, or a support rod may be attached to the core rod in advance and the support rod may be gripped.

【0013】焼結炉を移動させる方法としては、ねじを
切った駆動軸に焼結炉の支持部を螺合させ、駆動軸を回
転させることにより移動させる方法等を採用することが
できる。
As a method of moving the sintering furnace, there can be adopted a method of screwing a supporting portion of the sintering furnace to a threaded driving shaft and rotating the driving shaft to move the sintering furnace.

【0014】なお、焼結は、通常多孔質母材を光ファイ
バ用母材に焼結する場合に使用される条件、例えば、不
活性ガス雰囲気中で行う。また、多孔質母材を均質に焼
結するために、多孔質母材を回転させることが好まし
い。
The sintering is carried out under the conditions usually used for sintering a porous preform into an optical fiber preform, for example, in an inert gas atmosphere. Further, in order to uniformly sinter the porous base material, it is preferable to rotate the porous base material.

【0015】[0015]

【作用】本発明の光ファイバ用母材の製造方法によれ
ば、多孔質母材の両端を把持し固定して、しかも焼結炉
を移動させて焼結を行うので、多孔質母材が焼結中に延
伸して変形することを確実に防止できる。
According to the method for producing a base material for an optical fiber of the present invention, both ends of the porous base material are gripped and fixed, and further, the sintering furnace is moved to perform the sintering. It is possible to reliably prevent stretching and deformation during sintering.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照して具体
的に説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

【0017】実施例 まず、VAD法によりクラッド/コア比が3であり、外
径16.8mm、長さ1mである図1に示すコアロッド1
0を作製した。このコアロッド10の両端に石英製であ
り、外径25mm、長さ300mmの上部ダミー棒11と下
部ダミー棒12を融着接続した。上部ダミー棒11の先
端には、直径8mmの貫通穴11aが形成されている。
Example First, the core rod 1 shown in FIG. 1 having a clad / core ratio of 3 by the VAD method, an outer diameter of 16.8 mm and a length of 1 m.
0 was produced. An upper dummy rod 11 and a lower dummy rod 12, which are made of quartz and have an outer diameter of 25 mm and a length of 300 mm, are fusion-bonded to both ends of the core rod 10. A through hole 11a having a diameter of 8 mm is formed at the tip of the upper dummy rod 11.

【0018】一方、平均粒径が8μmのシリカ粉末10
0重量部に対してバインダーとしてポリビニルアルコー
ル(信越化学社製、PA−05)3重量部、および溶媒
として純水67重量部を混合してスラリーを作製し、こ
のスラリーをスプレードライ法により造粒して平均粒径
100μmの造粒粉末を得た。
On the other hand, silica powder 10 having an average particle size of 8 μm
3 parts by weight of polyvinyl alcohol (PA-05 manufactured by Shin-Etsu Chemical Co., Ltd.) as a binder and 67 parts by weight of pure water as a solvent were mixed with 0 part by weight to prepare a slurry, and the slurry was granulated by a spray drying method. Thus, a granulated powder having an average particle size of 100 μm was obtained.

【0019】この造粒粉末を用いて静水圧加圧装置で、
外径82mm、長さ1mの多孔質母材1を作製した。次い
で、この多孔質母材を110℃で12時間乾燥した後、
大気中において500℃で5時間加熱して脱脂処理を施
した。その後、下部ダミー棒12の端部に石英製であ
り、外径25mm、長さ1mの下部支持棒13を取り付け
た。
Using this granulated powder in a hydrostatic pressure device,
A porous base material 1 having an outer diameter of 82 mm and a length of 1 m was produced. Then, after drying the porous base material at 110 ° C. for 12 hours,
Degreasing treatment was performed by heating in air at 500 ° C. for 5 hours. Then, a lower support rod 13 made of quartz and having an outer diameter of 25 mm and a length of 1 m was attached to the end of the lower dummy rod 12.

【0020】一方の端部に下部支持棒13、他方の端部
に上部ダミー棒11を有する多孔質母材1を図2(A)
に示す焼結装置に取り付けた。図2(A)中15は基台
を示す。基台15上には、支持台16および下部チャッ
ク17が載置されている。支持台16の上面には母材移
動用軸18が取り付けられており、支持台16の中央部
には焼結炉移動用軸19が取り付けられている。母材移
動用軸18には母材移動用モータ20が接続されてお
り、焼結炉移動用軸19には焼結炉移動用モータ21が
接続されている。母材移動用軸18には雄ねじが切って
あり、この雄ねじは上部チャックアーム22に切ってあ
る雌ねじと螺合している。また、焼結炉移動用軸19に
も雄ねじが切ってあり、この雄ねじは焼結炉用アーム2
3に切ってある雌ねじと螺合している。
FIG. 2A shows a porous base material 1 having a lower support rod 13 at one end and an upper dummy rod 11 at the other end.
It was attached to the sintering apparatus shown in. Reference numeral 15 in FIG. 2 (A) indicates a base. A support 16 and a lower chuck 17 are placed on the base 15. A base material moving shaft 18 is attached to the upper surface of the support 16, and a sintering furnace moving shaft 19 is attached to the center of the support 16. A base material moving motor 20 is connected to the base material moving shaft 18, and a sintering furnace moving motor 21 is connected to the sintering furnace moving shaft 19. A male screw is threaded on the base material moving shaft 18, and this male screw is screwed with a female screw threaded on the upper chuck arm 22. Further, the shaft 19 for moving the sintering furnace is also externally threaded, and this external screw is used for the sintering furnace arm 2.
It is screwed with the female screw cut in 3.

【0021】上部チャックアーム22には上部チャック
24が連結されており、この上部チャック24は下部チ
ャック17の真上に位置するようにして設置されてい
る。上部チャック24と下部チャック17により多孔質
母材1が固定されるようになっている。また、多孔質母
材1が内挿されるように炉心管25が位置合わせされて
設置されている。さらに、焼結炉用アーム23には、中
央に貫通穴を有する焼結炉26が連結されており、その
貫通穴に炉心管25が内挿されるようにして位置合わせ
されている。
An upper chuck 24 is connected to the upper chuck arm 22, and the upper chuck 24 is installed right above the lower chuck 17. The porous base material 1 is fixed by the upper chuck 24 and the lower chuck 17. Further, the core tube 25 is aligned and installed so that the porous base material 1 is inserted. Further, a sintering furnace 26 having a through hole in the center is connected to the sintering furnace arm 23, and the furnace core tube 25 is positioned so as to be inserted into the through hole.

【0022】まず、図2(B)に示すように、多孔質母
材1の上部ダミー棒11と嵌合し、かつ共通の貫通穴を
有する石英製の上部支持棒14で上部チャック24を把
持した。多孔質母材1の上部ダミー棒11を上部支持棒
14に嵌合させ、かつ貫通穴11aに石英製のピン30
を差し込んで固定した。母材移動用モータ20により母
材移動用軸18を回転させ、多孔質母材1を下降させて
下部支持棒12を下部チャック17で把持した。このと
き、防塵のために多孔質母材1を炉心管25内に保持し
た。次いで、炉心管25内にHeガスを通流し、多孔質
母材1を回転させ、さらに、焼結炉移動用モータ21に
より焼結炉移動用軸19を回転させて焼結炉26を毎分
3mmで上昇させた。このようにして、多孔質母材1を1
600℃で下方から焼結して光ファイバ用母材を作製し
た。得られた光ファイバ用母材は、重量8.5kgであ
り、延伸による変形がまったくなかった。
First, as shown in FIG. 2 (B), the upper chuck 24 is held by the upper support rod 14 made of quartz, which is fitted with the upper dummy rod 11 of the porous base material 1 and has a common through hole. did. The upper dummy rod 11 of the porous base material 1 is fitted to the upper support rod 14, and the pin 30 made of quartz is inserted into the through hole 11a.
It was inserted and fixed. The base material moving shaft 20 was rotated by the base material moving motor 20, the porous base material 1 was lowered, and the lower support rod 12 was gripped by the lower chuck 17. At this time, the porous base material 1 was held in the core tube 25 for dust prevention. Then, He gas is passed through the furnace core tube 25 to rotate the porous base material 1, and further, the sintering furnace moving shaft 19 is rotated by the sintering furnace moving motor 21 to move the sintering furnace 26 every minute. Raised at 3mm. In this way, the porous base material 1
A base material for an optical fiber was produced by sintering from below at 600 ° C. The obtained optical fiber preform had a weight of 8.5 kg and was not deformed by stretching at all.

【0023】比較例 実施例と同様にして多孔質母材を作製した。なお、この
多孔質母材には脱脂処理後に下部支持棒を取り付けなか
った。
Comparative Example A porous base material was prepared in the same manner as in the example. The lower support rod was not attached to this porous base material after the degreasing treatment.

【0024】この多孔質母材を図3に示す装置のチャッ
ク32で把持し、炉心管35内にHeガスを通流し、多
孔質母材を回転させ、さらに、駆動モータ34により駆
動軸33を回転させて多孔質母材を毎分4mmで下降させ
た。このようにして、多孔質母材を1600℃で下方か
ら焼結して光ファイバ用母材を作製した。得られた光フ
ァイバ用母材は、自重による延伸により変形しており略
瓢箪形状であり、実用に耐えられないものであった。
The porous base material is held by the chuck 32 of the apparatus shown in FIG. 3, He gas is passed through the core tube 35 to rotate the porous base material, and the drive motor 34 drives the drive shaft 33. The porous base material was rotated and lowered at 4 mm / min. In this manner, the porous preform was sintered at 1600 ° C. from below to produce a preform for optical fibers. The obtained base material for optical fiber was deformed by stretching due to its own weight and had a substantially gourd shape, which was not suitable for practical use.

【0025】本実施例においては、静水圧加圧成形によ
り得られた多孔質母材を光ファイバ用母材に焼結する場
合について説明したが、本発明はその他の方法により得
られた多孔質母材を光ファイバ用母材に焼結する場合に
も適用できる。
In the present embodiment, the case where the porous preform obtained by isostatic pressing is sintered into the preform for optical fiber has been described, but the present invention is not limited to the porous preform obtained by other methods. It can also be applied to the case of sintering a base material into an optical fiber base material.

【0026】[0026]

【発明の効果】以上説明した如く本発明の光ファイバ用
母材の製造方法は、長手方向に変形のない光ファイバ用
母材を効率よく得ることができる。
As described above, the method for manufacturing an optical fiber preform according to the present invention can efficiently obtain an optical fiber preform that is not deformed in the longitudinal direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】多孔質母材を示す概略図。FIG. 1 is a schematic view showing a porous base material.

【図2】(A)は本発明の光ファイバ用母材の製造方法
において使用される装置を示す概略図。(B)は(A)
の一部詳細図。
FIG. 2A is a schematic view showing an apparatus used in the method for producing a preform for optical fibers of the present invention. (B) is (A)
Partial detail view.

【図3】従来の光ファイバ用母材の製造方法において使
用される装置を示す概略図。
FIG. 3 is a schematic view showing an apparatus used in a conventional method for manufacturing a base material for an optical fiber.

【符号の説明】[Explanation of symbols]

10…コアロッド、11…上部ダミー棒、11a…貫通
穴、12…下部ダミー棒、13…下部支持棒、14…上
部支持棒、15…基台、16…支持台、17…下部チャ
ック、18…母材移動用軸、19…焼結炉移動用軸、2
0…母材移動用モータ、21…焼結炉移動用モータ、2
2…上部チャックアーム、23…焼結炉用アーム、24
…上部チャック、25…炉心管、26…焼結炉、30…
ピン。
10 ... Core rod, 11 ... Upper dummy rod, 11a ... Through hole, 12 ... Lower dummy rod, 13 ... Lower support rod, 14 ... Upper support rod, 15 ... Base, 16 ... Support base, 17 ... Lower chuck, 18 ... Base material moving shaft, 19 ... Sintering furnace moving shaft, 2
0 ... Motor for moving base material, 21 ... Motor for moving sintering furnace, 2
2 ... Upper chuck arm, 23 ... Sintering furnace arm, 24
... upper chuck, 25 ... core tube, 26 ... sintering furnace, 30 ...
pin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 和昭 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kazuaki Yoshida 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 石英系粉末からなる多孔質母材を焼結炉
内に通すことにより多孔質母材を焼結して光ファイバ用
母材を製造する方法において、前記多孔質母材の両端部
を把持し、前記多孔質母材を固定して、かつ前記焼結炉
を移動させながら多孔質母材を焼結して光ファイバ用母
材を得ることを特徴とする光ファイバ用母材の製造方
法。
1. A method for producing an optical fiber preform by passing a porous preform made of quartz-based powder through a sintering furnace to produce an optical fiber preform, wherein both ends of the porous preform are provided. Holding part, fixing the porous preform, and sintering the porous preform while moving the sintering furnace to obtain the preform for optical fiber. Manufacturing method.
JP18008792A 1992-07-07 1992-07-07 Production of optical fiber preform Pending JPH0624781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18008792A JPH0624781A (en) 1992-07-07 1992-07-07 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18008792A JPH0624781A (en) 1992-07-07 1992-07-07 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH0624781A true JPH0624781A (en) 1994-02-01

Family

ID=16077225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18008792A Pending JPH0624781A (en) 1992-07-07 1992-07-07 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH0624781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187179A1 (en) * 2020-03-17 2021-09-23 古河電気工業株式会社 Multicore fiber, multicore fiber ribbon, multicore fiber production method and multicore fiber processing method
CN116409925A (en) * 2023-04-10 2023-07-11 安徽长荣光纤光缆科技有限公司 Optical fiber drawing perform standard value automatic calibration device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187179A1 (en) * 2020-03-17 2021-09-23 古河電気工業株式会社 Multicore fiber, multicore fiber ribbon, multicore fiber production method and multicore fiber processing method
CN115136046A (en) * 2020-03-17 2022-09-30 古河电气工业株式会社 Multi-core optical fiber, multi-core optical fiber ribbon, method for manufacturing multi-core optical fiber, and method for processing multi-core optical fiber
US12174412B2 (en) 2020-03-17 2024-12-24 Furukawa Electric Co., Ltd. Multi-core fiber, multi-core fiber ribbon, method of manufacturing multi-core fiber, and method of processing multi-core fiber
CN116409925A (en) * 2023-04-10 2023-07-11 安徽长荣光纤光缆科技有限公司 Optical fiber drawing perform standard value automatic calibration device

Similar Documents

Publication Publication Date Title
DE69815853T2 (en) DEVICE AND METHOD FOR SHELLING A PREFORMING ROD FOR OPTICAL FIBERS AND METHOD FOR DRAWING OPTICAL FIBERS
US5578106A (en) Method for making optical fiber preforms by collapsing a hollow glass tube upon a glass rod
JPH08208242A (en) Quartz glass manufacturing method
JP2524010B2 (en) How to deform a hollow body without tools
JPH0624781A (en) Production of optical fiber preform
JP2003327440A (en) Method for manufacturing preform for optical fiber
JP2001089166A (en) Production of tube type silica glass
US6510711B2 (en) Apparatus and method for sintering a sol-gel tube using a furnace having a rotating cap
US5215564A (en) Process for the production of an optical waveguide preform
US5429653A (en) Method of partially introverting a multiple layer tube to form an optical fiber preform
JPH0680436A (en) Production of porous optical fiber preform
JPH0648757A (en) Production of preformed material for optical fiber
JP3376422B2 (en) Glass jacket tube manufacturing apparatus and optical fiber manufacturing method
JP3151358B2 (en) Manufacturing method of optical fiber preform
JP3485673B2 (en) Dehydration and sintering device for porous preform for optical fiber
JPH06166531A (en) Production of preform for optical fiber
JPS62202832A (en) Production device for optical fiber parent material
JPH04154642A (en) Method for producing and fabricating preform
JP3625632B2 (en) Drawing method of glass base material for optical fiber
JPH03228844A (en) Working method for matrix for optical fiber
JPH06247733A (en) Production of constant-polarization optical fiber preform
JPH0650514Y2 (en) Optical fiber base material molding equipment
JP2784385B2 (en) Equipment for manufacturing jacket tubes for optical fibers
JPH06183768A (en) Production of optical fiber porous preform
JPS5948771B2 (en) Optical fiber manufacturing method