JPH06244402A - Solid-state image pickup device and manufacture thereof - Google Patents
Solid-state image pickup device and manufacture thereofInfo
- Publication number
- JPH06244402A JPH06244402A JP5026555A JP2655593A JPH06244402A JP H06244402 A JPH06244402 A JP H06244402A JP 5026555 A JP5026555 A JP 5026555A JP 2655593 A JP2655593 A JP 2655593A JP H06244402 A JPH06244402 A JP H06244402A
- Authority
- JP
- Japan
- Prior art keywords
- metal wiring
- gate electrode
- transfer
- layer metal
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000002184 metal Substances 0.000 claims abstract description 68
- 229910052751 metal Inorganic materials 0.000 claims abstract description 68
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 13
- 238000003384 imaging method Methods 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 5
- 239000011574 phosphorus Substances 0.000 abstract description 5
- 229910018125 Al-Si Inorganic materials 0.000 abstract description 3
- 229910018520 Al—Si Inorganic materials 0.000 abstract description 3
- 238000009413 insulation Methods 0.000 abstract 5
- 238000002513 implantation Methods 0.000 abstract 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 12
- 229920005591 polysilicon Polymers 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- -1 CF 4 Chemical compound 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 229910008599 TiW Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、固体撮像装置に関
し、より詳しくは、全画素読み出し型の固体撮像装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, and more particularly to an all-pixel readout type solid-state image pickup device.
【0002】[0002]
【従来の技術】従来、FIT(フレーム・インターライ
ン・トランスファー)動作等の高速転送が可能な全画素
読み出し型の固体撮像装置として、特開平4−1155
73で開示されているように、3層のゲート電極上に金
属電極でシャントしたことを特徴とする固体撮像装置が
知られている。2. Description of the Related Art Conventionally, as an all-pixel-reading type solid-state image pickup device capable of high-speed transfer such as FIT (frame interline transfer) operation, there has been disclosed in Japanese Patent Laid-Open No. 4-1155
As disclosed in No. 73, there is known a solid-state imaging device characterized in that three layers of gate electrodes are shunted with metal electrodes.
【0003】以下、上述した従来の全画素読み出し型固
体撮像装置を、図5〜図7に基づいて説明する。The above-mentioned conventional all-pixel readout type solid-state image pickup device will be described below with reference to FIGS.
【0004】図5(a)に、上記固体撮像装置の平面図
を示す。すなわち、この固体撮像装置は、光電変換部5
00と、該光電変換部で発生した電荷信号を読み込ん
で、垂直方向に転送する転送部501とから主に構成さ
れ、転送部501は、1層目ゲート電極53、2層目ゲ
ート電極55、3層目ゲート電極56と、これらのゲー
ト電極とコンタクト穴58を介して電気的に接続され、
垂直方向に沿って形成された金属配線59とから構成さ
れている。ここで1層目ゲート電極53と接続された金
属配線59に第1相転送クロックパルスφ1が印加さ
れ、2層目ゲート電極55と接続された金属配線59に
第2相転送クロックパルスφ2 が印加され、3層目ゲー
ト電極56と接続された金属配線59に第3相転送クロ
ックパルスφ3が印加され、これら3相の転送クロック
パルスが印加された金属配線は、水平方向に繰り返し形
成されている。FIG. 5A shows a plan view of the solid-state image pickup device. That is, the solid-state image pickup device includes the photoelectric conversion unit 5
00 and a transfer unit 501 that reads in a charge signal generated in the photoelectric conversion unit and transfers it in the vertical direction. The transfer unit 501 includes a first-layer gate electrode 53, a second-layer gate electrode 55, The third-layer gate electrode 56 is electrically connected to these gate electrodes through contact holes 58,
It is composed of a metal wiring 59 formed along the vertical direction. Wherein the first phase transfer clock pulses phi 1 to the metal wiring 59 connected to the 1-layer gate electrode 53 is applied, 2 a second phase layer conductive wiring 59 connected to the gate electrode 55 transfer clock pulses phi 2 Is applied, and the third-phase transfer clock pulse φ 3 is applied to the metal wiring 59 connected to the third-layer gate electrode 56, and the metal wiring to which these three-phase transfer clock pulses are applied is repeatedly formed in the horizontal direction. Has been done.
【0005】次に、図5(b)に、図5(a)でのC−
C’断面図を示す。この断面図において、51は半導体
基板、52はゲート絶縁膜、53は1層目ゲート電極、
54は絶縁膜、55は2層目ゲート電極、56は3層目
ゲート電極、57は絶縁膜、58はコンタクト穴、59
は金属配線を示している。Next, as shown in FIG. 5B, C- in FIG.
A C'cross section is shown. In this sectional view, 51 is a semiconductor substrate, 52 is a gate insulating film, 53 is a first-layer gate electrode,
54 is an insulating film, 55 is a second layer gate electrode, 56 is a third layer gate electrode, 57 is an insulating film, 58 is a contact hole, 59
Indicates metal wiring.
【0006】次に、上記従来の固体撮像装置の製造方法
について図6及び図7に基づき説明する。図6に、各パ
ターン平面形状を、図7に、各製造工程での断面図を示
す。まず、半導体基板51にN型の転送部を形成した後
(図示せず)、半導体基板51上に、ゲート絶縁膜52
を形成し、リン等のN型不純物を含むポリシリコン膜を
堆積し、1層目ゲート電極パターン(図6(a))を用
いて、1層目ゲート電極53を形成する(図7
(a))。Next, a method of manufacturing the above conventional solid-state image pickup device will be described with reference to FIGS. FIG. 6 shows each pattern plane shape, and FIG. 7 shows sectional views in each manufacturing process. First, after an N-type transfer portion is formed on the semiconductor substrate 51 (not shown), the gate insulating film 52 is formed on the semiconductor substrate 51.
Is formed, a polysilicon film containing an N-type impurity such as phosphorus is deposited, and a first-layer gate electrode pattern (FIG. 6A) is used to form a first-layer gate electrode 53 (FIG. 7).
(A)).
【0007】次に、熱酸化等により絶縁膜54を形成し
(図7(b))、リン等のN型不純物を含むポリシリコ
ン膜を堆積し、2層目ゲート電極パターン(図6
(b))を用いて、2層目ゲート電極55を形成する
(図7(c))。Next, an insulating film 54 is formed by thermal oxidation or the like (FIG. 7B), a polysilicon film containing N-type impurities such as phosphorus is deposited, and a second-layer gate electrode pattern (FIG. 6) is formed.
The second-layer gate electrode 55 is formed by using (b)) (FIG. 7C).
【0008】次に、熱酸化等により絶縁膜54を形成し
(図7(d))、リン等のN型不純物を含むポリシリコ
ン膜を堆積し、3層目ゲート電極パターン(図6
(c))を用いて、3層目ゲート電極56を形成する
(図7(e))。Next, an insulating film 54 is formed by thermal oxidation or the like (FIG. 7D), a polysilicon film containing N-type impurities such as phosphorus is deposited, and a third-layer gate electrode pattern (FIG. 6) is formed.
The third-layer gate electrode 56 is formed by using (c)) (FIG. 7E).
【0009】次に、熱酸化等により絶縁膜54を形成し
た後、絶縁膜57を形成し(図7(f))、コンタクト
穴パターン(図6(d))を用いて、コンタクト穴58
を、1層目ゲート電極53上に形成する(図7
(g))。この時、同時に2層目ゲート電極55、及び
3層目ゲート電極56上にもコンタクト穴58が形成さ
れる(図示せず)。Next, after forming an insulating film 54 by thermal oxidation or the like, an insulating film 57 is formed (FIG. 7F), and a contact hole 58 is formed by using a contact hole pattern (FIG. 6D).
Is formed on the first-layer gate electrode 53 (FIG. 7).
(G)). At this time, contact holes 58 are also formed on the second-layer gate electrode 55 and the third-layer gate electrode 56 at the same time (not shown).
【0010】さらに、金属配線材料を堆積した後、金属
配線パターン(図6(e))を用いて、金属配線59を
形成する(図7(h))。Further, after the metal wiring material is deposited, the metal wiring 59 is formed by using the metal wiring pattern (FIG. 6 (e)) (FIG. 7 (h)).
【0011】以上、説明したようにして、3層のゲート
電極を金属配線でシャントした全画素読み出し型の固体
撮像装置が、これまで実現されてきた。As described above, an all-pixel readout type solid-state image pickup device in which three layers of gate electrodes are shunted with metal wiring has been realized so far.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、上記全
画素読み出し型固体撮像装置の構造では、ゲート電極
が、3層のポリシリコン膜より構成され、ゲート電極同
志が重なりを有する構造となるため、固体撮像装置の構
造上、段差が大きくなり、ゲート電極形成後に平坦化工
程を行っても段差低減は充分でなく、後工程でのオンチ
ップカラーフィルター形成工程や、オンチップマイクロ
レンズ形成工程は、通常、樹脂を塗布する工程があるた
め、これらの形成工程が困難になり、その結果、カラー
フィルターの形成バラツキによる色ムラや、マイクロレ
ンズの形成不良による感度の低下、画素面内での感度の
ムラ等を引き起こすといった問題点があった。However, in the structure of the above-mentioned all-pixel readout type solid-state image pickup device, the gate electrode is composed of three layers of polysilicon film, and the gate electrodes have an overlapping structure. Due to the structure of the image pickup device, the step becomes large, and even if a flattening process is performed after the gate electrode is formed, the step is not sufficiently reduced, and the on-chip color filter forming process and the on-chip microlens forming process in the subsequent process are usually performed. Since there is a step of applying a resin, these forming steps become difficult, and as a result, color unevenness due to color filter formation unevenness, sensitivity deterioration due to microlens formation failure, and sensitivity unevenness within the pixel surface There was a problem that caused such as.
【0013】さらに、これらのゲート電極の形成工程で
は、より後工程で形成されるゲート電極のゲート絶縁膜
の膜ベリが発生するので、3相のゲート電極特性が、す
べて異なってくるため、転送不良を生ずるといった問題
点があった。Further, in the step of forming these gate electrodes, since the film thickness of the gate insulating film of the gate electrode formed in a later step occurs, the characteristics of the three-phase gate electrodes are all different, so that the transfer There was a problem of causing defects.
【0014】そこで、本発明の目的は、上記問題点を解
決するものである。Therefore, an object of the present invention is to solve the above problems.
【0015】[0015]
【課題を解決するための手段】本発明は、上記目的を達
成するため、光電変換部と、該光電変換部で発生した電
荷信号を転送する少なくとも2組の独立した転送電極
と、該転送電極と接続された金属配線とを有する固体撮
像装置において、上記転送電極は、互いに重ならないよ
うに配設され、上記転送電極の内、少なくとも1組の上
記転送電極と接続された上記金属配線が、上記光電変換
部を除き上記転送電極上の略全面を覆うと共に、上記転
送電極への転送クロック印加、及び遮光の働きを兼備し
ていることを特徴とするものである。In order to achieve the above object, the present invention provides a photoelectric conversion section, at least two sets of independent transfer electrodes for transferring charge signals generated in the photoelectric conversion section, and the transfer electrode. In the solid-state imaging device having a metal wire connected to the transfer electrode, the transfer electrodes are arranged so as not to overlap each other, and the metal wire connected to at least one set of the transfer electrodes among the transfer electrodes, It is characterized in that it covers substantially the entire surface of the transfer electrode except for the photoelectric conversion portion, and has the functions of applying a transfer clock to the transfer electrode and shielding light.
【0016】また、本発明は、上記の固体撮像装置の製
造方法において、半導体基板上に、ゲート絶縁膜と、ゲ
ート電極膜とを形成し、上記転送電極を同時に形成する
工程と、上記転送電極上に、絶縁膜を形成する工程と、
上記転送電極上の上記絶縁膜の所望の領域を除去する工
程と、上記絶縁膜上に、上記金属配線を形成する工程と
を含むことを特徴とするものである。Further, according to the present invention, in the above-mentioned method for manufacturing a solid-state image pickup device, a step of forming a gate insulating film and a gate electrode film on a semiconductor substrate and simultaneously forming the transfer electrode, and the transfer electrode. A step of forming an insulating film on the top,
The method is characterized by including a step of removing a desired region of the insulating film on the transfer electrode and a step of forming the metal wiring on the insulating film.
【0017】[0017]
【作用】本発明によれば、固体撮像装置の平坦化を容易
にすることができるため、後工程のオンチップカラーフ
ィルター形成、あるいは、オンチップマイクロレンズ形
成を容易に行うことができる。その結果、色ムラ、感度
の低下、感度のムラを抑えることができる。According to the present invention, since it is possible to easily flatten the solid-state image pickup device, it is possible to easily form an on-chip color filter or an on-chip microlens in a subsequent step. As a result, it is possible to suppress color unevenness, sensitivity deterioration, and sensitivity unevenness.
【0018】また、本発明によれば、ゲート電極が1層
で形成されているため、3相のゲート電極特性を同一に
することができる。Further, according to the present invention, since the gate electrode is formed of one layer, the characteristics of the three-phase gate electrode can be made the same.
【0019】[0019]
【実施例】以下、本発明に係る全画素読み出し型の固体
撮像装置の一実施例を、図1〜図3に基づいて説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an all-pixel readout type solid-state image pickup device according to the present invention will be described below with reference to FIGS.
【0020】図1(a)に、本実施例での全画素読み出
し型の固体撮像装置の平面図を示す。すなわち、この固
体撮像装置は、光電変換部100と、該光電変換部で発
生した電荷信号を読み込んで、垂直方向に転送する転送
部101とから主に構成され、転送部101の電極は、
島状に配設された2相分のゲート電極3a,3bと水平
方向に沿って配設された1相分のゲート電極3cとから
構成された1層のゲート電極と、ゲート電極3bと第1
コンタクト穴5を介して電気的に接続され、光電変換部
100を覆わないように網目状に形成された1層目金属
配線6と、ゲート電極3aと第2コンタクト穴8を介し
て電気的に接続され、垂直方向に沿って形成された2層
目金属配線9とから構成されている。上記構造の固体撮
像装置を、例えば、1/3インチ41万画素CCDエリ
アセンサに適用した場合、第1コンタクト穴5、及び、
第2コンタクト穴8の大きさは、オーミックコンタクト
を得るため、0.8μm×0.8μm程度が望ましく、
これらのコンタクト穴が形成される島状のゲート電極3
a,3bの大きさは、3.0μm(水平方向)×2.0
μm(垂直方向)程度が望ましく、さらに、1層目金属
配線6と2層目金属配線9とのショートを避けるため
に、第2コンタクト穴8の周囲の1層目金属配線6を窓
状に除去しておく必要があり、その大きさは、アライメ
ントマージンを考慮して1.8μm(水平方向)×1.
4μm(垂直方向)程度が望ましい。また、ゲート電極
3aと接続された2層目金属配線9に第1相転送クロッ
クパルスφ1 が印加され、ゲート電極3bに接続された
1層目金属配線6に第2相転送クロックパルスφ2 が印
加され、水平方向に沿って形成されたゲート電極3cに
第3相転送クロックパルスφ3 が印加されることによ
り、転送動作が可能となる。なお、ゲート電極3cは水
平方向の画素領域端において、金属配線と接続されてい
ることが望ましい。FIG. 1A is a plan view of the all-pixel readout type solid-state image pickup device according to this embodiment. That is, this solid-state imaging device is mainly configured by a photoelectric conversion unit 100 and a transfer unit 101 that reads a charge signal generated in the photoelectric conversion unit and transfers the charge signal in the vertical direction. The electrodes of the transfer unit 101 are
A one-layer gate electrode composed of two-phase gate electrodes 3a and 3b arranged in an island shape and one-phase gate electrode 3c arranged in the horizontal direction; 1
The first-layer metal wiring 6 electrically connected through the contact hole 5 and formed in a mesh shape so as not to cover the photoelectric conversion unit 100, and electrically through the gate electrode 3a and the second contact hole 8. The second layer metal wiring 9 is connected and is formed along the vertical direction. When the solid-state imaging device having the above structure is applied to, for example, a 1/3 inch 410,000 pixel CCD area sensor, the first contact hole 5 and
The size of the second contact hole 8 is preferably about 0.8 μm × 0.8 μm in order to obtain an ohmic contact,
Island-shaped gate electrode 3 in which these contact holes are formed
The size of a and 3b is 3.0 μm (horizontal direction) x 2.0
About μm (vertical direction) is desirable, and in order to avoid a short circuit between the first-layer metal wiring 6 and the second-layer metal wiring 9, the first-layer metal wiring 6 around the second contact hole 8 has a window shape. It must be removed, and its size is 1.8 μm (horizontal direction) × 1.
About 4 μm (vertical direction) is desirable. The first phase transfer clock pulses phi 1 is applied to the second layer metal wiring 9 that is connected to the gate electrode 3a, second phase for a first layer metal wiring 6 connected to the gate electrode 3b transfer clock pulses phi 2 Is applied and the third-phase transfer clock pulse φ 3 is applied to the gate electrode 3c formed along the horizontal direction, whereby the transfer operation becomes possible. The gate electrode 3c is preferably connected to the metal wiring at the end of the pixel region in the horizontal direction.
【0021】次に、図1(b)に、図1(a)で示した
固体撮像装置のA−A’断面図を示す。この断面図にお
いて、1は半導体基板、2はゲート絶縁膜、3a,3
b,3cはゲート電極、4は絶縁膜、5は第1コンタク
ト穴、6は1層目金属配線、7は絶縁膜、8は第2コン
タクト穴、9は2層目金属配線を示している。ここで、
1層目金属配線6は、第1コンタクト穴5を介してゲー
ト電極3bと接続され、2層目金属配線9は、コンタク
ト穴8を介してゲート電極3aと接続されている。Next, FIG. 1B is a sectional view taken along the line AA 'of the solid-state image pickup device shown in FIG. In this sectional view, 1 is a semiconductor substrate, 2 is a gate insulating film, 3a, 3
b and 3c are gate electrodes, 4 is an insulating film, 5 is a first contact hole, 6 is a first layer metal wiring, 7 is an insulating film, 8 is a second contact hole, and 9 is a second layer metal wiring. . here,
The first-layer metal wiring 6 is connected to the gate electrode 3b through the first contact hole 5, and the second-layer metal wiring 9 is connected to the gate electrode 3a through the contact hole 8.
【0022】次に、上記固体撮像装置の製造方法につい
て図2及び図3に基づき説明する。図2に、各パターン
平面形状を、図3に、各製造工程での断面図を示す。Next, a method of manufacturing the above solid-state image pickup device will be described with reference to FIGS. FIG. 2 shows each pattern plane shape, and FIG. 3 shows sectional views in each manufacturing process.
【0023】まず、半導体基板1にN型の転送部をリン
のイオン注入等により形成した後(図示せず)、半導体
基板1上に、酸化膜と窒化膜の複合膜であるゲート絶縁
膜2を酸化膜厚換算で、50〜100nm程度形成し、
CVD法によりポリシリコン膜を膜厚300〜600n
m堆積する。この時のポリシリコン膜の成膜条件は、モ
ノシランの流量100〜200cc/min、成膜温度
550〜700℃、成膜時間は30〜70分が適当であ
る。その後、上記ポリシリコン膜の低抵抗化のため、ホ
スフィンやオキシ塩化リンを用いて900〜1000℃
の温度で熱処理を行い、この熱処理により、ポリシリコ
ン膜のシート抵抗値は、20Ω/□程度になる。その
後、ゲート電極パターン(図2(a))を用いて、フォ
ト、エッチングを行い、ゲート電極3a,3b,3cを
形成する(図3(a))。First, an N-type transfer portion is formed on the semiconductor substrate 1 by ion implantation of phosphorus (not shown), and then the gate insulating film 2 which is a composite film of an oxide film and a nitride film is formed on the semiconductor substrate 1. Is formed to have an oxide film thickness of about 50 to 100 nm,
A polysilicon film having a thickness of 300 to 600 n is formed by the CVD method.
m. At this time, suitable conditions for forming the polysilicon film are a flow rate of monosilane of 100 to 200 cc / min, a film forming temperature of 550 to 700 ° C., and a film forming time of 30 to 70 minutes. Then, in order to reduce the resistance of the polysilicon film, phosphine or phosphorus oxychloride is used to 900 to 1000 ° C.
The heat treatment is performed at the temperature of, and the sheet resistance of the polysilicon film becomes about 20Ω / □ by this heat treatment. Then, photo and etching are performed using the gate electrode pattern (FIG. 2A) to form the gate electrodes 3a, 3b, 3c (FIG. 3A).
【0024】上記ゲート電極3a,3b,3cは、3相
のゲート電極となるため、これらのゲート電極の間隔
は、転送劣化を抑えるため、小さい方が好ましい。この
間隔は、通常、0.3μm 以下であることが望ましい
が、素子特性に応じて、多少大きくしても良い。なお、
このように微細な隙間を形成するには、i線フォト技
術、あるいは、i線フォト技術と位相シフト技術との組
み合わせ技術によるのが望ましい。Since the gate electrodes 3a, 3b, 3c are three-phase gate electrodes, it is preferable that the distance between these gate electrodes is small in order to suppress transfer deterioration. It is usually desirable that the distance be 0.3 μm or less, but it may be increased to some extent depending on the element characteristics. In addition,
In order to form such a minute gap, it is desirable to use an i-line photo technique or a technique combining the i-line photo technique and the phase shift technique.
【0025】また、上記ゲート電極3a,3b,3c
は、ポリシリコン膜から構成されているが、画素領域の
増大等により、ゲート電極パターンが水平方向に長くな
った場合には、上記ポリシリコン膜の抵抗のため、パル
ス波形なまりが発生することがある。この場合には、上
記ポリシリコン膜の低抵抗化をドーピング条件の変更に
より行ったり、上記ポリシリコン膜上にW等の金属をス
パッタしたり、WSi等のシリサイドを堆積して、低抵
抗化を図ることも可能である。Further, the gate electrodes 3a, 3b, 3c
Is composed of a polysilicon film. However, when the gate electrode pattern becomes long in the horizontal direction due to an increase in the pixel area or the like, pulse waveform rounding may occur due to the resistance of the polysilicon film. is there. In this case, the resistance of the polysilicon film is reduced by changing the doping conditions, the metal such as W is sputtered on the polysilicon film, or the silicide such as WSi is deposited to reduce the resistance. It is also possible to plan.
【0026】次に、ゲート電極3a,3b,3c上に、
900〜1000℃の温度、窒素、酸素、水素雰囲気で
の熱酸化により、絶縁膜4を膜厚1500〜3000Å
に形成する(図3(b))。絶縁膜4の他の形成方法と
して、CVD法による方法でも良く、ゲート電極3a,
3b,3c間の隙間は、平坦化のため、絶縁膜4で埋ま
る方が良い。Next, on the gate electrodes 3a, 3b, 3c,
The insulating film 4 has a film thickness of 1500 to 3000 Å by thermal oxidation in the atmosphere of nitrogen, oxygen and hydrogen at a temperature of 900 to 1000 ° C.
To be formed (FIG. 3B). As another method of forming the insulating film 4, a CVD method may be used, and the gate electrode 3a,
The gap between 3b and 3c is preferably filled with the insulating film 4 for flattening.
【0027】次に、第1コンタクト穴パターン(図2
(b))を用いて、フォト・エッチングを行い、ゲート
電極3b上に、第1コンタクト穴5を形成する(図3
(c))。このコンタクト穴のエッチングは、平行平板
型プラズマエッチング装置により、RFパワー500〜
1000Wで、ガス種アルゴン、CF4、CHF3等によ
り行うのがよい。Next, the first contact hole pattern (see FIG.
Using (b), photo etching is performed to form the first contact hole 5 on the gate electrode 3b (FIG. 3).
(C)). The contact hole is etched by RF power of 500 to 500 with a parallel plate type plasma etching apparatus.
It is preferable to use 1000 W and use argon, CF 4 , CHF 3 or the like as a gas species.
【0028】次に、CVD法により、WSixの1層目
金属膜を膜厚200〜1000nmに絶縁膜4上に形成
し、1層目金属配線パターン(図2(c))を用いて、
フォト、エッチングを行い、1層目金属配線6を形成す
る(図3(d))。この1層目金属膜のエッチングは、
平行平板型プラズマエッチング装置により、RFパワー
100〜200Wで、ガス種SF6、O2等により行うの
がよい。また、この1層目金属膜として、TiW,Ti
N,Al−Si,Al等を用いてもよい。また、1層目
金属配線パターン(図2(c))は、配線としての機能
するばかりでなく、スミアの発生を抑える遮光膜として
も機能するため、後工程にて第2コンタクト穴を形成す
る近傍の領域を除いて、ゲート電極をすべて覆う様なパ
ターンである。Next, a first-layer metal film of WSix is formed on the insulating film 4 to a film thickness of 200 to 1000 nm by the CVD method, and the first-layer metal wiring pattern (FIG. 2C) is used.
Photo and etching are performed to form the first layer metal wiring 6 (FIG. 3D). The etching of the first metal film is
It is preferable to use a parallel plate type plasma etching apparatus with an RF power of 100 to 200 W and gas species SF 6 , O 2 and the like. Further, as the first layer metal film, TiW, Ti
N, Al-Si, Al or the like may be used. In addition, the first-layer metal wiring pattern (FIG. 2C) functions not only as a wiring but also as a light-shielding film that suppresses the occurrence of smear, so that the second contact hole is formed in a later step. The pattern covers the entire gate electrode except the neighboring region.
【0029】次に、CVD法により、1層目金属配線6
上に絶縁膜7を膜厚200〜700nmに形成する(図
3(e))。なお、この絶縁膜7は、BPSG(ボロン
・リン・シリケート・ガラス)の様に、平坦化可能な絶
縁膜でも良い。Next, the first layer metal wiring 6 is formed by the CVD method.
An insulating film 7 is formed thereon to a film thickness of 200 to 700 nm (FIG. 3E). The insulating film 7 may be a flattenable insulating film such as BPSG (boron phosphorus silicate glass).
【0030】次に、第2コンタクト穴パターン(図2
(d))を用いて、フォト・エッチングを行い、ゲート
電極3a上に、第2コンタクト穴8を形成する(図3
(f))。このコンタクト穴のエッチングは、平行平板
型プラズマエッチング装置により、RFパワー500〜
1000Wで、ガス種アルゴン、CF4、CHF3等によ
り行うのが良い。Next, the second contact hole pattern (see FIG.
Photoetching is performed using (d) to form the second contact hole 8 on the gate electrode 3a (FIG. 3).
(F)). The contact hole is etched by RF power of 500 to 500 with a parallel plate type plasma etching apparatus.
It is preferable to carry out at 1000 W by using argon, CF 4 , CHF 3 or the like as a gas species.
【0031】次に、Al−Siの2層目金属膜を絶縁膜
7上に形成し、2層目金属配線パターン(図2(e))
を用いて、フォト・エッチングを行い、2層目金属配線
9を形成する(図3(g))。この2層目金属膜とし
て、Al,Al−Si/TiW等を用いても良い。ま
た、この2層目金属配線9は、スミア防止のため、第2
コンタクト穴形成領域の1層目金属配線6を除去した領
域を覆う方が良い。Next, a second layer metal film of Al--Si is formed on the insulating film 7, and a second layer metal wiring pattern (FIG. 2 (e)).
Is used to perform photo-etching to form the second-layer metal wiring 9 (FIG. 3G). As the second-layer metal film, Al, Al-Si / TiW or the like may be used. Further, the second-layer metal wiring 9 has a second metal wiring 9 for preventing smear.
It is better to cover the area where the first-layer metal wiring 6 is removed in the contact hole formation area.
【0032】以上より、ゲート電極3a,3b,3cよ
りなる転送部上を、ほぼ、平坦にすることができ、ひい
ては、光電変換部上をも平坦にすることができるため、
通常、後工程で行われる2層目金属膜上の平坦化工程
(必ずしも必要でない)が容易になり、その後工程で、
通常、樹脂の塗布工程を伴うオンチップカラーフィルタ
形成工程やオンチップマイクロレンズ形成工程を、塗布
ムラの殆どない状態で行うことができる。From the above, the transfer portion formed of the gate electrodes 3a, 3b and 3c can be made substantially flat, and by extension, the photoelectric conversion portion can also be made flat.
Usually, a flattening step (not necessarily required) on the second-layer metal film which is performed in a later step becomes easier, and in the subsequent step,
Usually, the on-chip color filter forming step and the on-chip microlens forming step that accompany the resin applying step can be performed in a state where there is almost no application unevenness.
【0033】次に、本発明に係る他の実施例を図4に基
づいて説明する。Next, another embodiment according to the present invention will be described with reference to FIG.
【0034】図4(a)に、本実施例での全画素読み出
し型の固体撮像装置の平面図を示す。すなわち、この固
体撮像装置は、光電変換部400と、該光電変換部で発
生した電荷信号を読み込んで、垂直方向に転送する転送
部401とから主に構成され、転送部401の電極は、
島状に配設された2相分のゲート電極43a,43bと
水平方向に沿って配設された1相分のゲート電極43c
とから構成されたゲート電極と、ゲート電極43aと第
1コンタクト穴45を介して電気的に接続され、水平方
向に沿って形成された1層目金属配線46と、ゲート電
極43cと第1コンタクト穴45を介して電気的に接続
され、水平方向に沿って形成された上記1層目金属配線
とは別の1層目金属配線46’と、ゲート電極43bと
第2コンタクト穴48を介して電気的に接続され、垂直
方向に沿って形成された2層目金属配線49とから構成
されている。ここで、ゲート電極43aと接続された1
層目金属配線46に第1相転送クロックパルスφ1が印
加され、ゲート電極43bと接続された2層目金属配線
49に第2相転送クロックパルスφ2が印加され、ゲー
ト電極43cと接続された1層目金属配線46’に第3
相転送クロックパルスφ3が印加され、これら3相の転
送クロックパルスにより、転送動作が可能となる。な
お、上記実施例においては、図1で示した実施例と比較
して、第3相転送クロックパルスφ3が印加されるゲー
ト電極43cについても金属配線でシャントしているた
め、パルス波形なまりを生じにくくなっている。FIG. 4A shows a plan view of the all-pixel readout type solid-state image pickup device in this embodiment. That is, this solid-state imaging device is mainly composed of a photoelectric conversion unit 400 and a transfer unit 401 that reads in a charge signal generated in the photoelectric conversion unit and transfers it in the vertical direction. The electrodes of the transfer unit 401 are:
Two-phase gate electrodes 43a and 43b arranged in an island shape and one-phase gate electrode 43c arranged in the horizontal direction
A first electrode metal wiring 46 which is electrically connected to the gate electrode 43a and the gate electrode 43a through the first contact hole 45 and is formed along the horizontal direction, the gate electrode 43c and the first contact. Via a first-layer metal wiring 46 ′, which is electrically connected through the hole 45 and is formed along the horizontal direction, different from the above-mentioned first-layer metal wiring, the gate electrode 43 b and the second contact hole 48. The second layer metal wiring 49 is electrically connected and is formed along the vertical direction. Here, 1 connected to the gate electrode 43a
The first phase transfer clock pulse φ 1 is applied to the second layer metal wiring 46, and the second phase transfer clock pulse φ 2 is applied to the second layer metal wiring 49 connected to the gate electrode 43b and connected to the gate electrode 43c. Third on the first layer metal wiring 46 '
A phase transfer clock pulse φ 3 is applied, and the transfer operation becomes possible by these three-phase transfer clock pulses. In the above-described embodiment, the gate electrode 43c to which the third-phase transfer clock pulse φ 3 is applied is also shunted by the metal wiring as compared with the embodiment shown in FIG. It is less likely to occur.
【0035】次に、図4(b)に、図4(a)で示した
固体撮像装置のB−B’断面図を示す。この断面図にお
いて、41は半導体基板、42はゲート絶縁膜、43
a,43b,43cはゲート電極、44は絶縁膜、45
は第1コンタクト穴、46,46′は1層目金属配線、
47は絶縁膜、48は第2コンタクト穴、49は2層目
金属配線を示している。ここで、1層目金属配線46,
46′は、第1コンタクト穴45を介してそれぞれ、ゲ
ート電極43a,43cと接続され、2層目金属配線4
9は、第2コンタクト穴48を介してゲート電極43b
と接続されている。Next, FIG. 4B is a sectional view taken along the line BB 'of the solid-state image pickup device shown in FIG. In this cross-sectional view, 41 is a semiconductor substrate, 42 is a gate insulating film, and 43.
a, 43b, 43c are gate electrodes, 44 is an insulating film, 45
Is the first contact hole, 46 and 46 'are the first layer metal wiring,
Reference numeral 47 is an insulating film, 48 is a second contact hole, and 49 is a second layer metal wiring. Here, the first-layer metal wiring 46,
46 'is connected to the gate electrodes 43a and 43c through the first contact holes 45, respectively, and is connected to the second-layer metal wiring 4
9 is the gate electrode 43b through the second contact hole 48
Connected with.
【0036】上記固体撮像装置の製造方法は、図3にお
いて示した方法と同一の方法によるが、ただし、図2で
示した第1コンタクト穴パターン、1層目金属配線パタ
ーン、第2コンタクト穴パターンとは異なるパターンを
用いて製造されることになる。The solid-state image pickup device is manufactured by the same method as that shown in FIG. 3, except that the first contact hole pattern, the first layer metal wiring pattern, and the second contact hole pattern shown in FIG. Will be manufactured using a different pattern.
【0037】なお、本発明は、請求の範囲内において種
々の変更が可能であり、上記実施例に限定されない。The present invention can be variously modified within the scope of the claims and is not limited to the above embodiment.
【0038】[0038]
【発明の効果】以上、詳細に説明したように、本発明に
よれば、素子上の段差を500〜800nm程度減少さ
せ、平坦化を容易にすることができ、オンチップカラー
フィルターやマイクロレンズを容易に、かつ、安定して
形成することができ、その結果、色ムラの低減、感度ム
ラの低減、集光率の向上による感度向上やスミア低減を
実現することができる。As described above in detail, according to the present invention, the step difference on the device can be reduced by about 500 to 800 nm to facilitate the flattening, and the on-chip color filter and the microlens can be formed. It can be formed easily and stably, and as a result, it is possible to reduce color unevenness, reduce sensitivity unevenness, and improve sensitivity and smear by improving the light collection rate.
【0039】また、各ゲート電極の絶縁膜厚が同一であ
るため、各ゲート電極特性が揃うので、転送不良をなく
すことができる。Further, since the insulating film thickness of each gate electrode is the same, the characteristics of each gate electrode are uniform, so that transfer failure can be eliminated.
【0040】また、ゲート電極及び金属配線形成工程の
工程数を減少することができるため、より低コストの固
体撮像装置が得られる。Further, since the number of steps of forming the gate electrode and the metal wiring can be reduced, a lower cost solid-state image pickup device can be obtained.
【0041】さらに、クロックパルス印加用の金属配線
が転送電極すべてを覆っているため、遮光を行うことが
でき、スミアを低減することができる。Further, since the metal wiring for applying the clock pulse covers all the transfer electrodes, light can be shielded and smear can be reduced.
【図1】本発明の一実施例に係る平面構造と断面構造を
示す図である。FIG. 1 is a diagram showing a planar structure and a sectional structure according to an embodiment of the present invention.
【図2】本発明の一実施例に係る平面パターンを示す図
である。FIG. 2 is a diagram showing a plane pattern according to an embodiment of the present invention.
【図3】本発明の一実施例に係る製造工程の断面構造を
示す図である。FIG. 3 is a diagram showing a sectional structure of a manufacturing process according to an embodiment of the present invention.
【図4】本発明の他の実施例に係る平面構造と断面構造
を示す図である。FIG. 4 is a diagram showing a planar structure and a sectional structure according to another embodiment of the present invention.
【図5】従来の技術による固体撮像装置の平面構造と断
面構造を示す図である。FIG. 5 is a diagram showing a planar structure and a cross-sectional structure of a conventional solid-state imaging device.
【図6】従来の技術による平面パターンを示す図であ
る。FIG. 6 is a diagram showing a plane pattern according to a conventional technique.
【図7】従来の技術による製造工程の断面構造を示す図
である。FIG. 7 is a diagram showing a cross-sectional structure of a manufacturing process according to a conventional technique.
1,41 半導体基板 2,42 ゲート絶縁膜 3a,3b,3c,43a,43b,43c ゲート電
極 4,44 絶縁膜 5,45 第1コンタクト穴 6,46,46’ 1層目金属配線 7,47 絶縁膜 8,48 第2コンタクト穴 9,49 2層目金属配線1,41 Semiconductor substrate 2,42 Gate insulating film 3a, 3b, 3c, 43a, 43b, 43c Gate electrode 4,44 Insulating film 5,45 First contact hole 6,46,46 'First layer metal wiring 7,47 Insulating film 8,48 Second contact hole 9,49 Second layer metal wiring
Claims (2)
電荷信号を転送する少なくとも2組の独立した転送電極
と、該転送電極と接続された金属配線とを有する固体撮
像装置において、 上記転送電極は、互いに重ならないように配設され、 上記転送電極の内、少なくとも1組の上記転送電極と接
続された上記金属配線が、上記光電変換部を除き上記転
送電極上の略全面を覆うと共に、上記転送電極への転送
クロック印加、及び、遮光の働きを兼備していることを
特徴とする固体撮像装置。1. A solid-state imaging device comprising a photoelectric conversion unit, at least two sets of independent transfer electrodes for transferring charge signals generated in the photoelectric conversion unit, and a metal wiring connected to the transfer electrodes, The transfer electrodes are arranged so as not to overlap each other, and the metal wiring connected to at least one set of the transfer electrodes of the transfer electrodes covers substantially the entire surface of the transfer electrodes except the photoelectric conversion section. At the same time, a solid-state image pickup device having the functions of applying a transfer clock to the transfer electrodes and shielding light.
法において、 半導体基板上に、ゲート絶縁膜と、ゲート電極膜とを形
成し、上記転送電極を同時に形成する工程と、 上記転送電極上に、絶縁膜を形成する工程と、 上記転送電極上の上記絶縁膜の所望の領域を除去する工
程と、 上記絶縁膜上に、上記金属配線を形成する工程とを含む
ことを特徴とする固体撮像装置の製造方法。2. The method for manufacturing a solid-state imaging device according to claim 1, wherein a gate insulating film and a gate electrode film are formed on a semiconductor substrate, and the transfer electrode is simultaneously formed, and the transfer electrode. A step of forming an insulating film thereon, a step of removing a desired region of the insulating film on the transfer electrode, and a step of forming the metal wiring on the insulating film. Manufacturing method of solid-state imaging device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5026555A JP2878546B2 (en) | 1993-02-16 | 1993-02-16 | Solid-state imaging device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5026555A JP2878546B2 (en) | 1993-02-16 | 1993-02-16 | Solid-state imaging device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06244402A true JPH06244402A (en) | 1994-09-02 |
JP2878546B2 JP2878546B2 (en) | 1999-04-05 |
Family
ID=12196784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5026555A Expired - Fee Related JP2878546B2 (en) | 1993-02-16 | 1993-02-16 | Solid-state imaging device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2878546B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006013176A (en) * | 2004-06-25 | 2006-01-12 | Matsushita Electric Ind Co Ltd | Solid-state image pickup device and camera equipped therewith |
JP2006041369A (en) * | 2004-07-29 | 2006-02-09 | Sony Corp | Solid-state imaging device and manufacturing method thereof |
JP2007035950A (en) * | 2005-07-27 | 2007-02-08 | Sony Corp | Solid-state image pickup device, manufacturing method thereof and camera |
JP2009081402A (en) * | 2007-09-27 | 2009-04-16 | Sony Corp | Solid-state imaging device, method for manufacturing solid-state imaging device, and imaging device |
JP2009176800A (en) * | 2008-01-22 | 2009-08-06 | Sony Corp | Solid state imaging device and its fabrication process |
JP2010098169A (en) * | 2008-10-17 | 2010-04-30 | Sony Corp | Solid-state imaging apparatus, camera, and method of manufacturing the solid-state imaging apparatus |
JP2010183107A (en) * | 2010-05-10 | 2010-08-19 | Sony Corp | Solid-state imaging device and method of manufacturing the same |
US8218043B2 (en) | 2004-09-16 | 2012-07-10 | Sony Corporation | Solid-state imaging device, method of producing the same, and camera |
US8446508B2 (en) | 2005-07-27 | 2013-05-21 | Sony Corporation | Solid state imaging device with optimized locations of internal electrical components |
-
1993
- 1993-02-16 JP JP5026555A patent/JP2878546B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006013176A (en) * | 2004-06-25 | 2006-01-12 | Matsushita Electric Ind Co Ltd | Solid-state image pickup device and camera equipped therewith |
JP2006041369A (en) * | 2004-07-29 | 2006-02-09 | Sony Corp | Solid-state imaging device and manufacturing method thereof |
US8883542B2 (en) | 2004-07-29 | 2014-11-11 | Sony Corporation | Solid-state imaging device, production method and drive method thereof, and camera |
US7667251B2 (en) | 2004-07-29 | 2010-02-23 | Sony Corporation | Solid-state imaging device, production method and drive method thereof, and camera |
US7952125B2 (en) | 2004-07-29 | 2011-05-31 | Sony Corporation | Solid-state imaging device, production method and drive method thereof, and camera |
KR101104439B1 (en) * | 2004-07-29 | 2012-01-12 | 소니 주식회사 | Solid state imaging device, manufacturing method and driving method of solid state imaging device, and camera |
US8149306B2 (en) | 2004-07-29 | 2012-04-03 | Sony Corporation | Solid-state imaging device, production method and drive method thereof, and camera |
US8218043B2 (en) | 2004-09-16 | 2012-07-10 | Sony Corporation | Solid-state imaging device, method of producing the same, and camera |
JP2007035950A (en) * | 2005-07-27 | 2007-02-08 | Sony Corp | Solid-state image pickup device, manufacturing method thereof and camera |
US8643757B2 (en) | 2005-07-27 | 2014-02-04 | Sony Corporation | Method of producing solid state imaging device with optimized locations of internal electrical components |
US8446508B2 (en) | 2005-07-27 | 2013-05-21 | Sony Corporation | Solid state imaging device with optimized locations of internal electrical components |
JP2009081402A (en) * | 2007-09-27 | 2009-04-16 | Sony Corp | Solid-state imaging device, method for manufacturing solid-state imaging device, and imaging device |
JP2009176800A (en) * | 2008-01-22 | 2009-08-06 | Sony Corp | Solid state imaging device and its fabrication process |
JP2010098169A (en) * | 2008-10-17 | 2010-04-30 | Sony Corp | Solid-state imaging apparatus, camera, and method of manufacturing the solid-state imaging apparatus |
JP2010183107A (en) * | 2010-05-10 | 2010-08-19 | Sony Corp | Solid-state imaging device and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2878546B2 (en) | 1999-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7858433B2 (en) | Photoelectric converting film stack type solid-state image pickup device, and method of producing the same | |
JP3988239B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JP2865083B2 (en) | Solid-state imaging device and driving method thereof | |
JP2878546B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JPH07326725A (en) | Method of manufacturing solid-state imaging device | |
JP3003590B2 (en) | Solid-state imaging device and method of manufacturing the same | |
JP4482982B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JP3153647B2 (en) | Method for manufacturing charge transfer device | |
JP2007080941A (en) | Solid-state imaging device and manufacturing method thereof | |
JP4090221B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JP3255116B2 (en) | Solid-state imaging device and method of manufacturing the same | |
JP2003188368A (en) | Manufacturing method for solid-state imaging device | |
JPS6325969A (en) | Solid-state image sensing device | |
KR100266803B1 (en) | Ccd-type solid state image sensor with improved flatness | |
JP4352717B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JP3413977B2 (en) | Solid-state imaging device and method of manufacturing the same | |
JP2009140996A (en) | Solid-state imaging element and its manufacturing method | |
JPH08111521A (en) | Solid state image sensor and fabrication thereof | |
JPH1126738A (en) | Solid-state image sensing device and its manufacture | |
JPH08288490A (en) | Manufacture of solid-state image pickup element | |
JP3733891B2 (en) | Solid-state imaging device and manufacturing method of solid-state imaging device | |
JP2005333089A (en) | Semiconductor device, solid-state image sensor, method for manufacturing semiconductor device, and method for manufacturing solid-state image sensor | |
JP2007049018A (en) | Solid-state imaging device and method for manufacturing solid-state imaging device | |
JP2004363493A (en) | Solid state image sensor and its fabricating process | |
JP2002110959A (en) | Solid-state imaging device and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090122 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100122 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110122 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120122 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |