[go: up one dir, main page]

JPH06242409A - Liquid crystal display unit and manufacture of same - Google Patents

Liquid crystal display unit and manufacture of same

Info

Publication number
JPH06242409A
JPH06242409A JP5026722A JP2672293A JPH06242409A JP H06242409 A JPH06242409 A JP H06242409A JP 5026722 A JP5026722 A JP 5026722A JP 2672293 A JP2672293 A JP 2672293A JP H06242409 A JPH06242409 A JP H06242409A
Authority
JP
Japan
Prior art keywords
liquid crystal
resin
substrate
ferroelectric liquid
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5026722A
Other languages
Japanese (ja)
Inventor
Takao Yamauchi
隆夫 山内
Akio Tanishige
昭男 谷繁
Yoshio Suzuki
淑雄 鈴木
Takayuki Koyama
孝行 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP5026722A priority Critical patent/JPH06242409A/en
Publication of JPH06242409A publication Critical patent/JPH06242409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To make the liquid crystal display unit rigid by orienting and supporting ferroelectric liquid crystal with resin molecules and to obtain uniform orientation by constituting a resin net while holding the affinity of the resin. CONSTITUTION:A polarizing plate 7 is arranged outside the ferroelectric liquid crystal 6 which is homogeneously oriented on the surface of a substrate which has an electric field applying means while clamped by the substrate 1, and charged in porous macromolecular resin 5. The axis of polarization of the polarizing plate 7 is so arranged to develop black when no electric field is applied. This display unit is constituted by mixing the resin 5 and ferroelectric liquid crystal 6 together and charging the mixture between substrates while holding the liquid crystal in a nematic state by raising its temperature. Then the resin 5 is polymerized in an electric or magnetic field. In another way, a liquid crystal cell is formed of a substrate 1 after orientation processing is performed on its internal surface, and the resin 5 and ferroelectric liquid crystal 6 are held in liquid state, injected into the liquid crystal cell, and lowered in temperature to polymerize the resin 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強誘電性液晶を利用した
液晶表示器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display using a ferroelectric liquid crystal.

【0002】[0002]

【従来の技術】従来より強誘電性液晶は特開昭62−1
75712号公報等で表示器に使用できることが提案さ
れており、この場合、単純駆動においてコントラストが
高く、応答性がよいなどの長所がある。
2. Description of the Related Art Conventionally, ferroelectric liquid crystals have been disclosed in JP-A-62-1.
It has been proposed in Japanese Patent No. 75712, etc. that it can be used for a display, and in this case, it has advantages such as high contrast and good responsiveness in simple driving.

【0003】一方、液晶分子をカプセルにした後セルに
組み込むのではなく、三次元ネットワーク的な多孔質の
高分子樹脂に液晶を閉じ込めてカプセル化するものが、
特表昭61−502128号公報、特開昭62−223
1号公報等に示されており、これは古くからの技術であ
るフォーカルコニック組織若しくはウイリアムスドメイ
ン組織等のように光散乱を利用し乍ら、偏光板を不要と
した電界効果型の新しい表示モードとして注目され研究
されるようになった。
On the other hand, instead of encapsulating liquid crystal molecules in a cell and then encapsulating the liquid crystal in a porous polymer resin like a three-dimensional network,
JP-A-61-502128, JP-A-62-223
This is disclosed in Japanese Patent Publication No. 1 and the like. This is a new field-effect type display mode that does not require a polarizing plate by utilizing light scattering like the focal conic structure or the Williams domain structure which is an old technology. It came to be noticed as and was studied.

【0004】[0004]

【発明が解決しようとする課題】ところが強誘電性液晶
は配向特性において双安定性を確実に持たせることが困
難であり、一度配向しても配向が乱れやすく、また極め
て薄い層を得にくいという欠点があった。とりわけ配向
の乱れは、通常のカイラルネマティック液晶であれば基
板に軽い衝撃がある程度では配向ムラは生じず、基板が
橈む程度の加圧に対して加圧が加わっている間は表示品
位が低下するが、加圧力が除去されれば液晶は基本的に
流体であるために復元力があるのに対して、強誘電性液
晶は配向力が弱い上に安定状態が複数あってしかも衝撃
に弱いため、一様な配向が得られにくく、一様な配向が
得られた後も極めてわずかな衝撃で配向異常となって表
示に色が生じたり模様が現れ、しかもそのような呈色や
模様は衝撃や圧力が除去された後も再配向処理を行わな
い限り復元しない。
However, it is difficult for a ferroelectric liquid crystal to have bistability in alignment characteristics, and even if it is once aligned, the alignment tends to be disturbed, and it is difficult to obtain an extremely thin layer. There was a flaw. In particular, the disorder of the alignment does not occur in the normal chiral nematic liquid crystal when the substrate is lightly impacted to some extent, and the display quality deteriorates while the pressure is applied to the extent that the substrate is sluggish. However, when the applied pressure is removed, the liquid crystal has a restoring force because it is basically a fluid, whereas the ferroelectric liquid crystal has weak alignment force and multiple stable states, and it is weak against shock. Therefore, it is difficult to obtain a uniform orientation, and even after the uniform orientation is obtained, an extremely slight impact causes an abnormal orientation, and a color or pattern appears on the display. Even after the impact or pressure is removed, it will not be restored unless a reorientation treatment is performed.

【0005】一方、多孔質の高分子樹脂に液晶を含浸さ
せたものに於ては、液晶分子による光散乱を利用するも
のであるから、白か黒のいずれかが不鮮明な色になり、
コントラストが取れず、また高分子樹脂のためにネマテ
ィック液晶へ印加される電界が分散され急峻性が得られ
ず、応答速度も遅い。
On the other hand, in a porous polymer resin impregnated with liquid crystal, since light scattering by liquid crystal molecules is used, either white or black becomes an unclear color,
The contrast cannot be obtained, the electric field applied to the nematic liquid crystal is dispersed due to the polymer resin, steepness cannot be obtained, and the response speed is slow.

【0006】[0006]

【課題を解決するための手段】本発明は上述の点を考慮
して成されたもので、電界印加手段をもった基板に挾持
され基板表面でホモジニアス配向され多孔質の高分子樹
脂に充填された強誘電性液晶の外側に偏光板を配置した
もので、より好ましくは、偏光板の偏光軸は無電界時に
黒色を呈するように配置したものである。
The present invention has been made in view of the above points, and is sandwiched by a substrate having an electric field applying means, homogeneously oriented on the substrate surface, and filled with a porous polymer resin. A polarizing plate is arranged outside the ferroelectric liquid crystal, and more preferably, the polarizing axis of the polarizing plate is arranged to exhibit black color when no electric field is applied.

【0007】また本発明は、樹脂と強誘電性液晶を混合
する工程、該混合体を昇温して液晶をネマティック状態
に保ち基板間に充填する工程、電場若しくは磁場の中で
前記混合体の樹脂を重合させる工程を含む液晶表示器の
製造方法である。さらに本発明は内面に配向処理を施し
た基板で液晶セルを形成し、樹脂と強誘電性液晶を混合
して、その混合体を流体状に保ち液晶セルに注入する工
程、温度を降下させて前記混合体の樹脂を重合させる工
程を含むことを特徴とする液晶表示器の製造方法であ
る。
The present invention also provides a step of mixing a resin and a ferroelectric liquid crystal, a step of heating the mixture to keep the liquid crystal in a nematic state and filling the space between substrates, an electric field or a magnetic field of the mixture. It is a manufacturing method of a liquid crystal display including a step of polymerizing a resin. Furthermore, the present invention forms a liquid crystal cell with a substrate whose inner surface is subjected to an alignment treatment, mixes a resin and a ferroelectric liquid crystal, injects the mixture into a liquid crystal cell while keeping the mixture in a fluid state, and lowers the temperature. A method for manufacturing a liquid crystal display, comprising a step of polymerizing the resin of the mixture.

【0008】[0008]

【作用】この様な液晶表示器は強誘電性液晶を配向させ
樹脂分子網で支えるので極めて堅牢であり、強誘電性液
晶固有の高速応答性等の特性が損なわれることはない。
また基本的に強誘電性液晶を配向させ樹脂の親和力を保
ちながら樹脂ネットを構成するものであるから製造工程
が安定しており均一な配向が得られる。
In such a liquid crystal display, since the ferroelectric liquid crystal is oriented and supported by the resin molecular network, the liquid crystal display is extremely robust, and characteristics such as high-speed response characteristic of the ferroelectric liquid crystal are not impaired.
Moreover, since the resin net is basically formed by orienting the ferroelectric liquid crystal while maintaining the affinity of the resin, the manufacturing process is stable and uniform alignment can be obtained.

【0009】[0009]

【実施例】図1は本発明実施例の液晶表示器の断面模式
図である。図において1は電界印加手段である電極11
を持った基板で、硝子基板などに酸化インジウム膜など
を低温スパッタリングすることで単位面積当りの抵抗値
20Ω程度のITO膜からなるストライプ状のマトリク
ス電極11を設けたものである。これらの基板1は適宜
スペーサ2を分散し、必要に応じてシール剤3で張り合
わせることによって液晶セルを構成するもので、その両
方の基板により液晶層4は挾持されている。液晶層4は
基板1間に形成された多孔質の高分子樹脂5(樹脂ネッ
ト)に充填された強誘電性液晶6からなっている。そし
てこの強誘電性液晶6は基板1の表面でホモジニアス配
向されており、基板1の外側には偏光板7が配置されて
いる。
1 is a schematic sectional view of a liquid crystal display according to an embodiment of the present invention. In the figure, 1 is an electrode 11 which is an electric field applying means.
This is a substrate having a striped matrix electrode 11 formed of an ITO film having a resistance value of about 20Ω per unit area by low-temperature sputtering an indium oxide film or the like on a glass substrate. These substrates 1 compose a liquid crystal cell by appropriately dispersing spacers 2 and adhering them with a sealant 3 as needed, and a liquid crystal layer 4 is held by both substrates. The liquid crystal layer 4 is composed of a ferroelectric liquid crystal 6 filled in a porous polymer resin 5 (resin net) formed between the substrates 1. The ferroelectric liquid crystal 6 is homogeneously aligned on the surface of the substrate 1, and a polarizing plate 7 is arranged outside the substrate 1.

【0010】このような液晶表示器は例えば、電極を持
つ基板を準備し、紫外線硬化型の高分子樹脂剤としてア
クリルエラストマーとアクリルモノマーの混合体をラジ
カル重合または架橋させ、その後強誘電性液晶を溶媒と
してこれを溶かし、先ほどの基板に塗布し貼り合わせ、
これに紫外線を当てて硬化することによって得ることが
できる。エラストマーやモノマーは単体でも用いること
ができ、エラストマーを単体または混合して用いるとき
は4万ないし5万分子単位のものが利用しやすい。そし
て、架橋は完全に架橋してしまうのより、途中の状態で
液晶中に分散するのがよい。また塗布はゲル状態なので
シール剤は原則として必要がないが、用いても差し支え
ない。
In such a liquid crystal display, for example, a substrate having electrodes is prepared, a mixture of acrylic elastomer and acrylic monomer is radically polymerized or crosslinked as a UV-curable polymer resin agent, and then a ferroelectric liquid crystal is added. Dissolve this as a solvent, apply it to the previous substrate and bond it,
It can be obtained by applying ultraviolet rays to this and curing it. The elastomer or the monomer can be used alone, and when the elastomer is used alone or as a mixture, the one having 40,000 to 50,000 molecular units is easily used. Further, it is preferable that the cross-linking be dispersed in the liquid crystal in the intermediate state, rather than being completely cross-linked. In addition, since the coating is in a gel state, a sealing agent is not required in principle, but it can be used.

【0011】然し乍ら、本発明に係る表示モードで必要
なことは、従来の高分子樹脂にネマティック液晶を含浸
させた光散乱モードと異なり、樹脂が重合した後でも液
晶分子が一様な方向に配向していることである。
However, unlike the light scattering mode in which a nematic liquid crystal is impregnated in a conventional polymer resin, what is required in the display mode according to the present invention is that the liquid crystal molecules are aligned in a uniform direction even after the resin is polymerized. Is what you are doing.

【0012】この為には上述の製造方法よりも、樹脂と
強誘電性液晶を混合する工程と、その混合体を昇温して
液晶をネマティック状態に保ち、基板間に充填する工程
と、電場若しくは磁場の中でその混合体の樹脂を重合さ
せる工程に従うとよい。強誘電性液晶とモノマーまたは
オリゴマーの樹脂を混ぜ合わせ、光重合を行う際に液晶
を配向させたい方向に電界または磁界を印加しながら光
重合を行うとその時の電界または磁界の方向によってい
わゆる強誘電性液晶の初期配向が一様になる。例えば図
2に示す様に光重合のときの印加電圧と重合終了後の液
晶層の光透過率を調べると明らかな因果関係が認められ
る。さらにこの光重合において光重合後の液晶層の厚み
が6〜10μmの場合、光重合前の液晶層の温度を強誘
電性液晶のネマティック液晶への転移温度以上、望まし
くは転移温度以下に保持した状態で重合させるとより好
ましい。この時、ネマティック液晶はN型となっている
が、必要に応じてN型のネマティック液晶を少量添加し
ておいてもよく、電界は例えば光重合後に表示に印加す
る電極により5ボルト程度印加しておく。液晶分子はN
ネマティック状態であるからホモジニアス配向となる
が、方向性が定まらないときには基板内表面を予めラビ
ングしておいてもよい。磁界を用いるときには、基板の
幅方向、即ち基板の両方の端縁に各々S、N極を配置す
ることで、例えば15000ガウスの磁界を印加して光
照射をし重合を行う。液晶の磁化率が負のものを利用す
れば磁界の方向に対して特定の方向に液晶分子が整列す
るので、ネマティック液晶状態に保持しておいて基板面
に垂直な磁界を印加しUV照射を行うことで、基板面に
ラビング等配向処理が施されていなくとも、所定の方向
に液晶を配向させることができる。
For this purpose, a step of mixing the resin and the ferroelectric liquid crystal, a step of raising the temperature of the mixture to keep the liquid crystal in a nematic state, and filling the space between the substrates, rather than the above manufacturing method, Alternatively, a step of polymerizing the resin of the mixture in a magnetic field may be followed. When a ferroelectric liquid crystal and a monomer or oligomer resin are mixed and photopolymerization is performed while applying an electric field or magnetic field in the direction in which the liquid crystal is aligned during photopolymerization, the so-called ferroelectric The initial alignment of the liquid crystal becomes uniform. For example, as shown in FIG. 2, when an applied voltage at the time of photopolymerization and the light transmittance of the liquid crystal layer after completion of the polymerization are examined, a clear causal relationship is recognized. Further, in this photopolymerization, when the thickness of the liquid crystal layer after the photopolymerization is 6 to 10 μm, the temperature of the liquid crystal layer before the photopolymerization is maintained at the transition temperature of the ferroelectric liquid crystal to the nematic liquid crystal or more, preferably the transition temperature or less. It is more preferable to polymerize in the state. At this time, the nematic liquid crystal is N type, but a small amount of N type nematic liquid crystal may be added if necessary, and the electric field is applied by, for example, about 5 V by an electrode applied to the display after photopolymerization. Keep it. Liquid crystal molecule is N
Since it is in a nematic state, it has a homogeneous orientation, but when the directionality is not determined, the inner surface of the substrate may be rubbed in advance. When a magnetic field is used, S and N poles are respectively arranged in the width direction of the substrate, that is, at both edges of the substrate, so that a magnetic field of, for example, 15000 gauss is applied to perform light irradiation and polymerization. If a liquid crystal having a negative magnetic susceptibility is used, the liquid crystal molecules are aligned in a specific direction with respect to the direction of the magnetic field. Therefore, the nematic liquid crystal state is maintained and a magnetic field perpendicular to the substrate surface is applied to perform UV irradiation. By doing so, the liquid crystal can be aligned in a predetermined direction even if the substrate surface is not subjected to alignment treatment such as rubbing.

【0013】この様な製造方法によれば、光重合を行う
際に印加する電界または磁界の強度によって配向性が自
由に制御でき、液晶組成との組み合わせによって強誘電
性液晶の双安定性の度合いを十分に高めることができ、
液晶表示器の中の樹脂のネットワークが緩衝剤として働
くので衝撃などに対する配向の安定性が飛躍的に向上す
る。
According to such a manufacturing method, the orientation can be freely controlled by the strength of the electric field or magnetic field applied during the photopolymerization, and the degree of bistability of the ferroelectric liquid crystal can be controlled by the combination with the liquid crystal composition. Can be raised sufficiently,
Since the resin network in the liquid crystal display acts as a buffering agent, the stability of the alignment against shocks is dramatically improved.

【0014】上述の方法に於て、電界や磁界を液晶分子
の初期配向に積極的に利用したが、表示器として求めら
れる特有の条件である無彩色でのコントラストを向上さ
せることに着目して強誘電性液晶を一様に配向させるよ
り効率的な方法が判明した。即ち、一方の色、例えば黒
色を鮮やかに呈色させれば、他方の色、例えば白色はレ
ターディションによって決定されることに鑑みて成され
たもので、例えば無電界時に黒色を液晶表示器全体にわ
たって均一で濃く表示できるギャップ(液晶層の厚み)
が見いだされれば、レターディションは複屈折異方性Δ
nと厚みdの積であるから、電界印加時に白色を呈する
ような複屈折異方性を持つ液晶を選定すればよいことと
なる。この点に着目して多孔質の高分子樹脂中の液晶分
子の配向を検討したところ、光重合時の電界や磁界の印
加がなくとも、基板内表面にラビングなどの配向処理を
施しておくことで、光重合速度の制御により均一配向が
得られ、液晶層の厚みにより無電界時の黒色の濃さが制
御できることが分かった。図3はこの時の光重合速度と
出来上がった液晶表示器の光透過特性(trans.=
縦軸)を示し、図4は図3に基ずく所定速度(例えば3
5秒)で光重合を行ったときの液晶層の厚みと直交ニコ
ル下の液晶表示器の光透過特性を示す。
In the above-mentioned method, the electric field and the magnetic field were positively utilized for the initial alignment of the liquid crystal molecules, but attention was paid to the improvement of the contrast in achromatic color which is a peculiar condition required for a display device. A more efficient method of uniformly aligning ferroelectric liquid crystals has been found. That is, one color, for example, black is made vivid, and the other color, for example, white is determined in view of the retardation. For example, black is displayed in the entire liquid crystal display when no electric field is applied. Gap (thickness of liquid crystal layer) that can be displayed uniformly and densely over the entire area
Is found, the retardation is the birefringence anisotropy Δ.
Since it is the product of n and the thickness d, it suffices to select a liquid crystal having birefringence anisotropy that exhibits white when an electric field is applied. Focusing on this point, we examined the orientation of liquid crystal molecules in a porous polymer resin, and found that the inner surface of the substrate should be subjected to orientation treatment such as rubbing, even when no electric field or magnetic field is applied during photopolymerization. It was found that uniform alignment can be obtained by controlling the photopolymerization rate, and the darkness of black when no electric field is applied can be controlled by the thickness of the liquid crystal layer. FIG. 3 shows the photopolymerization rate at this time and the light transmission characteristics (trans. =) Of the completed liquid crystal display.
4 shows the vertical axis, and FIG. 4 is based on FIG.
5 shows the thickness of the liquid crystal layer when photopolymerized for 5 seconds) and the light transmission characteristics of the liquid crystal display under the crossed Nicols.

【0015】この様な検討のもと、最も有効な初期配向
の方法は、内面に配向処理を施した基板で液晶セルを形
成し、樹脂と強誘電性液晶を混合する工程と、その混合
体を昇温して流体状に保ち液晶セルに注入する工程と、
温度を降下させて混合体の樹脂を重合させる工程を含む
ことであった。
Based on such studies, the most effective method of initial alignment is to form a liquid crystal cell on a substrate whose inner surface is subjected to alignment treatment, mix the resin and the ferroelectric liquid crystal, and a mixture thereof. Injecting into the liquid crystal cell by heating the liquid to keep it in a fluid state,
Was to lower the temperature to polymerize the resin of the mixture.

【0016】具体的に例示すると、チッソ株式会社の強
誘電性液晶CS1022を1・6ヘキサジオールジアク
リレートに95%混合させ90度に保ったところ液相を
示した。一方電極と配向膜を有する基板を周辺シール剤
により貼合せ、スペーサにより1.4〜2.6μmの
0.2μm単位7種類のギャップを持つ液晶セルを形成
し、液相をしている混合体を液晶セルに注入した。注入
口を封止した後50度まで温度を下げたところ混合体の
液晶はスメクティック相を示した。その状態でUV照射
を行い混合体の樹脂を光重合させた。重合が終わった液
晶層はギップ制御の厚みと考えられ、干渉を利用して液
晶分子の配向を確認した後偏光板を配置したが、無電界
時に黒色を呈するように偏光軸を選択した。これにより
無電界時に黒色の均一な表示面が確認できた。この液晶
表示器はガラス基板が橈む程度の静加重をかけても色ズ
レや模様が観察されるほどの配向不良は生じず、黒色の
均一な表示面が確認できた。次いで電極に交番電界を印
加したところ、電界印加時は色抜けのよい白色となり、
コントラストの高い表示が行えた。上述の液晶に替え
て、同じくチッソ株式会社のCS1023、CS103
0を用いて液晶表示器を形成したが同様の結果が得ら
れ、さらにR、G、Bの3原色ストライプカラーフィル
ターを組み込んだ基板を用いた場合には64色制御可能
な液晶表示器が得られた。
More specifically, a ferroelectric liquid crystal CS1022 manufactured by Chisso Corporation was mixed with 95% of 1.6 hexadiol diacrylate and kept at 90 ° C. to show a liquid phase. On the other hand, a mixture in which a substrate having an electrode and an alignment film is pasted with a peripheral sealant and a spacer forms a liquid crystal cell having 1.4 to 2.6 μm 0.2 μm unit seven kinds of gaps to form a liquid phase. Was injected into the liquid crystal cell. After the inlet was sealed and the temperature was lowered to 50 ° C., the liquid crystal of the mixture showed a smectic phase. In that state, UV irradiation was carried out to photopolymerize the resin of the mixture. It is considered that the liquid crystal layer after the polymerization has a thickness controlled by Gipp control, and the polarizing plate was arranged after confirming the alignment of the liquid crystal molecules by utilizing interference. However, the polarization axis was selected so that it exhibited black color when no electric field was applied. As a result, a black uniform display surface was confirmed when there was no electric field. In this liquid crystal display, even if a static load was applied to the extent that the glass substrate was sluggish, there was no misalignment such that a color shift or a pattern was observed, and a black uniform display surface was confirmed. Next, when an alternating electric field was applied to the electrodes, when the electric field was applied, white with good color removal was obtained.
High contrast display was possible. In place of the above-mentioned liquid crystal, CS1023 and CS103 of Chisso Corporation are also used.
A liquid crystal display was formed by using 0, but similar results were obtained, and when a substrate in which three primary color stripe color filters of R, G and B were incorporated was used, a liquid crystal display capable of controlling 64 colors was obtained. Was given.

【0017】係る液晶表示器の製造方法は、強誘電性液
晶を封入した液晶セルの液晶分子を一様に均一配向さ
せ、その状態で液晶分子配列を壊さないように樹脂ネッ
トを張り巡らしたとも言える。これを図5の状態図で説
明すると、アクリレートと液晶の混合体は液晶が少なく
また高温になるほど液体相を示しやすく、液晶が多く低
温になるほど液晶本来の相を呈しやすい。そこで混合体
の液晶成分をある程度高くし高温に維持すると液体相
(図中A印)を示し、その状態で温度を低下させると液
晶層はスメクティック相に転移する(図中B印)が、こ
の過程で液晶分子は互いに一定方向に整列しやすく、例
えば基板面に配向処理が成されていればその影響を受け
やすい。液晶分子と樹脂分子の相性が良ければ樹脂分子
は液晶分子の整列に沿って整列する。この状態で光重合
を開始すれば樹脂分子は液晶分子の整列を阻害しないで
架橋する。液晶分子の整列が如何に保たれているかは光
重合が終了した後、若しくは開始されてから、直交ニコ
ル等の干渉を利用して表示面を観察すれば、液晶分子の
整列に直交する樹脂分子の架橋などが生じたところで模
様が観測されるので評価は容易である。さらにこれら検
討により、混合体はより液晶の混合割合の低いところで
構成して液晶セルに注入し、一部重合させれば相対的に
樹脂濃度が低下するので、その後スメクティック相に転
移させて重合を再開するとか、液晶分子と親和性のよい
樹脂オリゴマー等の材料を選択して低温低濃度でスメク
ティック相を得られ易くする等の工夫により、一層製造
を容易にすることができる。
According to the method of manufacturing a liquid crystal display, a liquid crystal cell of a liquid crystal cell in which a ferroelectric liquid crystal is sealed is uniformly oriented, and a resin net is stretched around so that the liquid crystal molecule alignment is not broken in that state. I can say. Explaining this in the state diagram of FIG. 5, the mixture of acrylate and liquid crystal tends to exhibit a liquid phase when the amount of liquid crystal is small and the temperature is high, and tends to exhibit the original phase of the liquid crystal when the amount of liquid crystal is high and the temperature is low. Therefore, when the liquid crystal component of the mixture is increased to some extent and maintained at a high temperature, a liquid phase (marked by A in the figure) is exhibited, and when the temperature is lowered in that state, the liquid crystal layer transitions to a smectic phase (marked by B in the figure). In the process, the liquid crystal molecules are easily aligned with each other in a certain direction, and are easily affected by the alignment treatment on the substrate surface. When the compatibility between the liquid crystal molecules and the resin molecules is good, the resin molecules are aligned along the alignment of the liquid crystal molecules. If photopolymerization is started in this state, the resin molecules crosslink without hindering the alignment of liquid crystal molecules. How the alignment of the liquid crystal molecules is maintained can be determined by observing the display surface by using interference such as crossed Nicols after the photopolymerization is completed or after the polymerization is started. The pattern is observed where cross-linking occurs, so evaluation is easy. Further, from these studies, if the mixture is formed at a lower mixing ratio of the liquid crystal and injected into the liquid crystal cell and partially polymerized, the resin concentration relatively decreases, so that the mixture is transferred to the smectic phase and polymerization is performed. The production can be further facilitated by restarting or by selecting a material such as a resin oligomer having a high affinity with the liquid crystal molecules so that a smectic phase can be easily obtained at a low temperature and a low concentration.

【0018】また本発明に係る液晶表示器に於ては、液
晶層が薄くなりがちなので透明電極が全反射すると表示
が観察されなかったり薄膜干渉色が観察される。従って
この場合には透明電極やその下地面をエッチングするな
どして粗面加工すれば、広い視野角はそのまま維持でき
る。そして表示の応答性をより高めるためにはカラーフ
ィルターの有無に係わらず、液晶の固有特性が顕著に現
れればよいから、液晶の含有量を多くすればよい。この
時は高分子樹脂の硬化条件に依存する部分が多くなり、
本発明の長所である堅牢さが損なわれやすいので注意が
必要である。また厚みに関して言えば、個々の領域の液
晶分子を動かす電界の大きさは略一定であるが、液晶層
の厚みによって電圧を大きくしなければならない。さら
に必要に応じて画素毎に例えば特開昭58−70555
号公報の金属−絶縁物−金属素子などの非線形素子が利
用できる。このような非線形素子を画素毎に有した基板
を用いる場合、幅5〜70μmのタンタルまたはタンタ
ルを主成分とする薄膜からなる複数本の信号電極と、そ
の信号電極の表面に設けられた厚さ十数Å〜数千ÅのT
25等の絶縁層と、絶縁層と一定の面積で積層された
クロムまたはアルミニウムの薄膜からなる金属と、その
金属に電気的に接続された例えば330×280mmの
酸化インジウム系薄膜からなる画素電極で構成される。
然し乍ら基本的に強誘電性液晶の特性をそのまま利用す
る本発明にあっては、非線形素子を設けることによって
液晶の厚みに変動が生じることのないように配慮するこ
とが重要である。
Further, in the liquid crystal display according to the present invention, the liquid crystal layer tends to be thin, so that when the transparent electrode is totally reflected, the display is not observed or the thin film interference color is observed. Therefore, in this case, a wide viewing angle can be maintained as it is by roughening the transparent electrode and its underlying surface by etching. In order to further improve the response of display, it is sufficient that the characteristic characteristic of the liquid crystal appears remarkably regardless of the presence / absence of the color filter. At this time, many parts depend on the curing conditions of the polymer resin,
Care must be taken because the robustness, which is an advantage of the present invention, is easily impaired. Regarding the thickness, the magnitude of the electric field that moves the liquid crystal molecules in each region is substantially constant, but the voltage must be increased depending on the thickness of the liquid crystal layer. Furthermore, if necessary, for each pixel, for example, Japanese Patent Laid-Open No. 58-70555 can be used.
Non-linear elements such as the metal-insulator-metal element of the publication can be used. When a substrate having such a non-linear element for each pixel is used, a plurality of signal electrodes made of tantalum having a width of 5 to 70 μm or a thin film containing tantalum as a main component, and a thickness provided on the surface of the signal electrodes Dozens of Å ~ Thousands of Å
an insulating layer such as a 2 O 5, a metal made of a thin film of chromium or aluminum laminated with the insulating layer in a certain area, and an indium oxide thin film of, for example, 330 × 280 mm electrically connected to the metal It is composed of pixel electrodes.
However, in the present invention, which basically uses the characteristics of the ferroelectric liquid crystal as it is, it is important to consider that the thickness of the liquid crystal is not changed by providing the non-linear element.

【0019】[0019]

【発明の効果】以上の如くにより、単純駆動においてコ
ントラストが高く、応答性がよいなどの強誘電性液晶の
特徴をそのまま生かしながら、樹脂ネットを用いても配
向を保つため堅牢な表示器を得ることができ、特に表示
品位がよく、黒地が鮮明なのでコントラストが高く、カ
ラー表示も色鮮やかに行うことができる。またこの様な
堅牢な表示器を再現性よく製造することができた。
As described above, a robust display can be obtained because the orientation is maintained even if a resin net is used, while making the best use of the characteristics of the ferroelectric liquid crystal such as high contrast and good response in simple driving. In particular, the display quality is good, the black background is clear and the contrast is high, and the color display can be performed in vivid colors. In addition, such a robust display could be manufactured with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の液晶表示器の断面模式図であ
る。
FIG. 1 is a schematic sectional view of a liquid crystal display according to an embodiment of the present invention.

【図2】本発明実施例を説明するための特性図である。FIG. 2 is a characteristic diagram for explaining an example of the present invention.

【図3】本発明実施例を説明するための光重合速度と光
透過特性の特性図である。
FIG. 3 is a characteristic diagram of a photopolymerization rate and a light transmission characteristic for explaining an example of the present invention.

【図4】本発明実施例を説明するための液晶層の厚みと
光透過特性の特性図である。
FIG. 4 is a characteristic diagram of a thickness of a liquid crystal layer and a light transmission characteristic for explaining an example of the present invention.

【図5】本発明実施例を説明するための状態図である。FIG. 5 is a state diagram for explaining an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 11 電極 2 スペーサ 3 シール剤 4 液晶層 5 高分子樹脂 6 強誘電性液晶 7 偏光板 1 Substrate 11 Electrode 2 Spacer 3 Sealant 4 Liquid Crystal Layer 5 Polymer Resin 6 Ferroelectric Liquid Crystal 7 Polarizing Plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 淑雄 鳥取県鳥取市南吉方3丁目201番地 鳥取 三洋電機株式会社内 (72)発明者 小山 孝行 鳥取県鳥取市南吉方3丁目201番地 鳥取 三洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Suzuki 3-201 Minamiyoshikata, Tottori City, Tottori Prefecture Santoyo Sanyo Electric Co., Ltd. (72) Inventor Takayuki Koyama 3-201 Minamiyoshikata, Tottori City Tottori Sanyo Denki Within the corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電界印加手段をもった基板に挾持され基
板表面でホモジニアス配向され多孔質の高分子樹脂に充
填された強誘電性液晶と、該強誘電性液晶の外側に配置
された偏光板とを具備したことを特徴とする液晶表示
器。
1. A ferroelectric liquid crystal held between a substrate having an electric field applying means, homogeneously aligned on the surface of the substrate and filled in a porous polymer resin, and a polarizing plate arranged outside the ferroelectric liquid crystal. A liquid crystal display characterized by comprising:
【請求項2】 樹脂と強誘電性液晶を混合する工程と、
該混合体を昇温して液晶をネマティック状態に保ち、基
板間に充填する工程と、電場若しくは磁場の中で前記混
合体の樹脂を重合させる工程とを含むことを特徴とする
液晶表示器の製造方法。
2. A step of mixing a resin and a ferroelectric liquid crystal,
A liquid crystal display characterized by comprising the steps of heating the mixture to keep the liquid crystal in a nematic state and filling between the substrates, and polymerizing the resin of the mixture in an electric field or a magnetic field. Production method.
【請求項3】 内面に配向処理を施した基板で液晶セル
を形成し、樹脂と強誘電性液晶を混合する工程、該混合
体を流体状に保ち液晶セルに注入する工程、温度を降下
させて前記混合体の樹脂を重合させる工程を含むことを
特徴とする液晶表示器の製造方法。
3. A step of forming a liquid crystal cell with a substrate having an inner surface subjected to an alignment treatment, mixing a resin and a ferroelectric liquid crystal, injecting the mixture in a liquid state into the liquid crystal cell, and lowering the temperature. And a step of polymerizing the resin of the mixture.
【請求項4】 電界印加手段をもった基板と、高分子樹
脂の分子間に充填された強誘電性液晶と、強誘電性液晶
の外側に配置され、無電界時に黒色を呈するように偏光
軸が配置された偏光板とを具備したことを特徴とする液
晶表示器。
4. A substrate having an electric field applying means, a ferroelectric liquid crystal filled between molecules of a polymer resin, and a polarization axis which is arranged outside the ferroelectric liquid crystal and exhibits a black color when no electric field is applied. A liquid crystal display, comprising: a polarizing plate in which is disposed.
JP5026722A 1993-02-16 1993-02-16 Liquid crystal display unit and manufacture of same Pending JPH06242409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026722A JPH06242409A (en) 1993-02-16 1993-02-16 Liquid crystal display unit and manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026722A JPH06242409A (en) 1993-02-16 1993-02-16 Liquid crystal display unit and manufacture of same

Publications (1)

Publication Number Publication Date
JPH06242409A true JPH06242409A (en) 1994-09-02

Family

ID=12201229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026722A Pending JPH06242409A (en) 1993-02-16 1993-02-16 Liquid crystal display unit and manufacture of same

Country Status (1)

Country Link
JP (1) JPH06242409A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874829A (en) * 1987-05-22 1989-10-17 Monsanto Company Process for preparing α-methylstyrene-acrylonitrile polymers
US4885825A (en) * 1987-06-18 1989-12-12 Kabushiki Kaisha Tikai-Rika-Denki-Seisakusho Buckle apparatus
US6468844B1 (en) 1997-07-14 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Preparation method of semiconductor device
US6856360B1 (en) 1997-11-28 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device, method of manufacturing the same, and electronic equipment
KR100468593B1 (en) * 1996-11-29 2005-04-25 삼성전자주식회사 Liquid crystal display device manufacturing apparatus and liquid crystal display device manufactured using the same
US7192865B1 (en) 1997-11-27 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for producing the same
US7227603B1 (en) 1993-07-22 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
JP2007240578A (en) * 2006-03-06 2007-09-20 Nippon Hoso Kyokai <Nhk> Liquid crystal light modulation element and manufacturing method thereof
US8212968B2 (en) 1993-07-22 2012-07-03 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874829A (en) * 1987-05-22 1989-10-17 Monsanto Company Process for preparing α-methylstyrene-acrylonitrile polymers
US4885825A (en) * 1987-06-18 1989-12-12 Kabushiki Kaisha Tikai-Rika-Denki-Seisakusho Buckle apparatus
US8212968B2 (en) 1993-07-22 2012-07-03 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US7227603B1 (en) 1993-07-22 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8396690B2 (en) 1993-07-22 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8243233B2 (en) 1993-07-22 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US7561246B2 (en) 1993-07-22 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
KR100468593B1 (en) * 1996-11-29 2005-04-25 삼성전자주식회사 Liquid crystal display device manufacturing apparatus and liquid crystal display device manufactured using the same
US6468844B1 (en) 1997-07-14 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Preparation method of semiconductor device
US7192865B1 (en) 1997-11-27 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for producing the same
US7202497B2 (en) 1997-11-27 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6856360B1 (en) 1997-11-28 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device, method of manufacturing the same, and electronic equipment
US7403238B2 (en) 1997-11-28 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device, method of manufacturing the same, and electronic equipment
JP2007240578A (en) * 2006-03-06 2007-09-20 Nippon Hoso Kyokai <Nhk> Liquid crystal light modulation element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0634685B1 (en) Liquid crystal display device and method for producing the same
JP2930496B2 (en) Liquid crystal display device and method of manufacturing the same
JP3596722B2 (en) Optical device, liquid crystal display device, and method of manufacturing optical device
EP0854377B1 (en) Liquid crystal display device and method for producing the same
KR0173803B1 (en) Lcd element and its manufacture
KR100253924B1 (en) Liquid Crystal Display and Manufacturing Method Thereof
JPH1020323A (en) Liquid crystal display device, its production and its driving method
JP2972892B2 (en) Liquid crystal display device
JPH03122615A (en) Liquid crystal display device
JPH06242409A (en) Liquid crystal display unit and manufacture of same
KR100262448B1 (en) Electro-optical device and method for forming the same
JP2780680B2 (en) Liquid crystal display device and manufacturing method thereof
JP2937684B2 (en) Liquid crystal display device and method of manufacturing the same
JP3110289B2 (en) LCD panel
JP2004177775A (en) Liquid crystal display panel and method of manufacturing the same
JP3404467B2 (en) Liquid crystal display
JP3113553B2 (en) Liquid crystal display panel and method of manufacturing the same
JP2880354B2 (en) Liquid crystal display device and method of manufacturing the same
JP3215677B2 (en) Method for manufacturing liquid crystal electro-optical device
JP2809980B2 (en) Liquid crystal display device and method of manufacturing the same
JP3152587B2 (en) Liquid crystal panel manufacturing method
JP3054005B2 (en) Liquid crystal display device and method of manufacturing the same
JP3215255B2 (en) Liquid crystal electro-optical device
JPH0651351A (en) Electric field double refraction control type liquid crystal element and its production
WO1996017273A1 (en) Liquid crystal display element and method of manufacturing the same