JPH06241780A - Scanning tunneling microscope, atomic force microscope, and machining device using them - Google Patents
Scanning tunneling microscope, atomic force microscope, and machining device using themInfo
- Publication number
- JPH06241780A JPH06241780A JP4611093A JP4611093A JPH06241780A JP H06241780 A JPH06241780 A JP H06241780A JP 4611093 A JP4611093 A JP 4611093A JP 4611093 A JP4611093 A JP 4611093A JP H06241780 A JPH06241780 A JP H06241780A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- sample
- cantilever
- electrode
- microscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005641 tunneling Effects 0.000 title claims description 6
- 238000003754 machining Methods 0.000 title 1
- 239000000523 sample Substances 0.000 claims abstract description 78
- 238000012545 processing Methods 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 17
- 238000006073 displacement reaction Methods 0.000 description 21
- 238000001514 detection method Methods 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- WVBBLATZSOLERT-UHFFFAOYSA-N gold tungsten Chemical compound [W].[Au] WVBBLATZSOLERT-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は走査型トンネル顕微鏡
(以下、STMと略す)や原子間力顕微鏡(以下、AF
Mと略す)等の走査型プローブ顕微鏡(以下、SPMと
略す)及びそれらを用いた加工装置に関するものであ
る。BACKGROUND OF THE INVENTION The present invention relates to a scanning tunneling microscope (hereinafter abbreviated as STM) and an atomic force microscope (hereinafter AF).
The present invention relates to a scanning probe microscope (hereinafter abbreviated as M) (hereinafter abbreviated as SPM) and a processing apparatus using them.
【0002】[0002]
【従来の技術】近年、導体の表面原子の電子構造を直接
観測できるSTMがジー・ビーニッヒらにより開発(フ
ェルベティカ フィジィカ アクタ,55,726(1
982).)されて以来、先端の尖った探針を走査する
ことにより様々な情報を得るSPM装置や、更に基板に
電気的、化学的あるいは物理的作用を及ぼす事を目的と
したSPMを応用した微細加工技術の研究開発が行われ
ている。更に、半導体加工技術やマイクロメカニクス技
術により、例えば薄膜で形成した梁の上に探針を作製し
たコンパクトなSPM装置などが開発されている。2. Description of the Related Art In recent years, an STM capable of directly observing the electronic structure of surface atoms of a conductor has been developed by Gie Winig et al. (Fervetica Physika Actor, 55, 726 (1
982). ), SPM device that obtains various information by scanning a probe with a sharp tip, and microfabrication using SPM for the purpose of exerting electrical, chemical or physical action on the substrate. Research and development of technology is being conducted. Furthermore, a semiconductor processing technology and a micromechanics technology have been used to develop, for example, a compact SPM device in which a probe is formed on a beam formed of a thin film.
【0003】この梁の駆動方法としては、例えば、梁を
圧電バイモルフ構造とした圧電型や、梁自体あるいは梁
に形成された電極と基板上に形成された電極とに電圧を
印加することにより静電引力を働かせて梁を変位させる
静電型とがある。As a method of driving the beam, for example, a piezoelectric type in which the beam has a piezoelectric bimorph structure, or a voltage is applied to the beam itself or an electrode formed on the beam and an electrode formed on a substrate to perform static There is an electrostatic type that displaces a beam by applying an electric attraction force.
【0004】[0004]
【発明が解決しようとする課題】上記の静電型は、梁と
対向電極との間のクーロン引力により梁を動かすために
構造が簡単である特徴を有する。しかしながらクーロン
引力では梁と対向電極の軸(Z軸)について一方向のみ
にしか動かすことができない。即ち、梁本来のZ軸の自
由度の内、対向電極方向(例えば+Z方向)のみの変位
しか得られない。このため、従来は対向電極に、あるバ
イアスVB を与えて梁をある程度変位させた状態を基準
として、VB ±△Vボルトの電圧を印加することによ
り、探針の±Z変位を得ていた。この場合においても梁
本来の有するZ軸の自由度の内、片側方向の自由度のみ
しか利用することができないため、Z軸変位についてダ
イナミックレンジを大きくできないという欠点があっ
た。The above electrostatic type has a characteristic that the structure is simple because the beam is moved by the Coulomb attractive force between the beam and the counter electrode. However, Coulomb attraction can move the beam and the counter electrode only in one direction about the axis (Z axis). That is, only the displacement in the counter electrode direction (for example, + Z direction) can be obtained within the original Z-axis degree of freedom of the beam. Therefore, conventionally, a ± V displacement of the probe is obtained by applying a voltage of V B ± ΔV volt with reference to a state where a certain bias V B is applied to the counter electrode to displace the beam to some extent. It was Even in this case, there is a drawback that the dynamic range of the Z-axis displacement cannot be increased because only one of the Z-axis degrees of freedom that the beam originally has can be used.
【0005】このダイナミックレンジは、梁の長さを大
きくすることにより容易に大きくできるものであるが、
装置の集積化、高速化に不利である。This dynamic range can be easily increased by increasing the length of the beam.
It is disadvantageous for device integration and speedup.
【0006】また、梁のZ軸変位量は、梁と対向電極と
に印加する電圧の2乗に比例するため、電圧に対して非
線形で制御性が良くない欠点があった。これらの欠点
は、例えば、試料と探針間に流れるトンネル電流を一定
に保ちながらSTM観察するとき、試料表面に深い凹状
の領域や高い凸状の領域を有する場合に梁の変位が足り
ず、正確な凹凸状態を観察することができなかったり、
急峻な表面形状変化に探針を追従させることができず装
置の高速化の妨げの一因となっていた。Further, since the Z-axis displacement amount of the beam is proportional to the square of the voltage applied to the beam and the counter electrode, there is a drawback that it is non-linear with respect to the voltage and the controllability is poor. These drawbacks are, for example, when the STM observation is performed while keeping the tunnel current flowing between the sample and the probe constant, when the sample surface has a deep concave region or a high convex region, the beam displacement is insufficient. It is not possible to observe the exact unevenness,
The probe cannot follow the abrupt surface shape change, which has been a cause of hindering the speeding up of the device.
【0007】また、前記対向電極と梁間の電気容量の変
化量を凹凸に換算するAFM測定の際には、特に電気容
量の小さい領域(例えば、深い凹状の領域)における変
化量に対する分解能が低下し正確な表面形状を得られな
かった。Further, in the AFM measurement for converting the amount of change in the electric capacity between the counter electrode and the beam into the unevenness, the resolution for the amount of change is reduced particularly in a region having a small electric capacitance (for example, a deep concave region). The exact surface shape could not be obtained.
【0008】本発明は、上記従来技術が有する欠点に鑑
みなされたものであり、測定のダイナミックレンジが広
く、また制御性を向上した走査型トンネル顕微鏡や原子
間力顕微鏡等の走査型プローブ顕微鏡及びそれらを用い
た加工装置を提供することを目的とする。The present invention has been made in view of the drawbacks of the above-mentioned prior art, and has a wide dynamic range of measurement and improved controllability. A scanning probe microscope such as a scanning tunnel microscope or an atomic force microscope, An object is to provide a processing device using them.
【0009】[0009]
【課題を解決するための手段及び作用】上記目的を達成
するために成された本発明は、第一に、導電性の梁状構
造物に設けられた探針を試料表面に接近させて走査する
走査型トンネル顕微鏡において、静電駆動用電極が、走
査面に垂直な方向で梁状構造物を挟むように、梁状構造
物の両側に少なくともそれぞれ1つ以上設けられている
ことを特徴とする走査型トンネル顕微鏡であり、第二
に、導電性の梁状構造物に設けられた探針を試料表面に
接触させて走査する原子間力顕微鏡において、梁状構造
物との電気容量を検知するための電極が、走査面に垂直
な方向で梁状構造物を挟むように、梁状構造物の両側に
少なくともそれぞれ1つ以上設けられていることを特徴
とする原子間力顕微鏡であり、第三に、前記探針が設け
られた導電性の梁状構造物を、複数個有することを特徴
とする上記第一又は第二の顕微鏡であり、第四に、上記
第一〜第三いずれかに記載の顕微鏡のうち、すくなくと
も2種類の顕微鏡を一つの装置とした複合顕微鏡であ
り、第五に、上記第一〜第四いずれかに記載の顕微鏡
を、試料表面の加工に用いることを特徴とする加工装置
である。Means for Solving the Problems and Actions The present invention, which has been made to achieve the above-mentioned object, firstly, a probe provided on a conductive beam-like structure is made to approach a sample surface for scanning. In the scanning tunneling microscope, at least one electrostatic drive electrode is provided on each side of the beam-shaped structure so as to sandwich the beam-shaped structure in a direction perpendicular to the scanning surface. Second, it is a scanning tunneling microscope that detects the capacitance of a beam-like structure in an atomic force microscope that scans by contacting the probe provided on a conductive beam-like structure with the sample surface. The atomic force microscope is characterized in that at least one electrode is provided on each side of the beam-like structure so as to sandwich the beam-like structure in a direction perpendicular to the scanning plane. Third, a conductive beam-like shape provided with the probe. It is the said 1st or 2nd microscope characterized by having a plurality of structures, and 4thly, among the microscopes in any one of the said 1st-3rd, at least 2 types of microscopes are one apparatus. Fifthly, there is provided a processing apparatus characterized by using the microscope described in any one of the first to fourth above for processing a sample surface.
【0010】本発明第一によれば、静電駆動用電極にバ
イアスをかけることなく、走査面に垂直な軸(Z軸)の
±両方向に梁状構造物を駆動できる。即ち、導電性の梁
状構造物に対して+Z方向の電極と梁状構造物との間に
電圧を印加することにより+Z変位を得、−Z方向の電
極と梁状構造物との間に電圧を印加することにより−Z
変位を得るものである。According to the first aspect of the present invention, it is possible to drive the beam-shaped structure in both ± directions of the axis (Z axis) perpendicular to the scanning surface without applying a bias to the electrostatic drive electrode. That is, + Z displacement is obtained by applying a voltage between the electrode in the + Z direction and the beam-like structure to the conductive beam-like structure, and between the electrode in the −Z direction and the beam-like structure. -Z by applying voltage
The displacement is obtained.
【0011】これにより、梁状構造物のZ軸の自由度を
フルに利用することができ測定のダイナミックレンジが
広がる。また、それぞれの電極に同時に電圧を印加する
ことにより、梁状構造物の位置制御性を向上でき、より
高速かつ信頼性の高い表面観察に寄与する。As a result, the Z-axis freedom of the beam-like structure can be fully utilized and the dynamic range of measurement is expanded. Further, by simultaneously applying a voltage to each electrode, the position controllability of the beam-like structure can be improved, which contributes to faster and more reliable surface observation.
【0012】本発明第二によれば、AFM測定時におけ
る梁状構造物との距離の短い方の電極、即ち、静電容量
の大きい方を選んで、その静電容量変化を観測してZ変
位とすることにより、試料表面の凹凸にかかわらず高い
分解能を確保することが可能となる。According to the second aspect of the present invention, the electrode having a shorter distance from the beam-like structure at the time of AFM measurement, that is, the one having a larger capacitance is selected, and the change in capacitance is observed and Z By making the displacement, it becomes possible to secure high resolution regardless of the unevenness of the sample surface.
【0013】[0013]
【実施例】以下、実施例を示し本発明を具体的に説明す
る。EXAMPLES The present invention will be described in detail below with reference to examples.
【0014】実施例1 本実施例では、本発明の静電駆動型STM装置につい
て、図1を用いて説明する。 Embodiment 1 In this embodiment, an electrostatic drive type STM device of the present invention will be described with reference to FIG.
【0015】図1は本実施例で作製した装置と試料とを
模式的に示した概念図である。本装置においては、絶縁
性基板101表面に、導電性膜からなる静電駆動用電極
102、絶縁スペーサー103、導電性片持ち梁10
4、薄い絶縁膜105、トンネル電流用配線106、絶
縁スペーサー107、高剛性導電体からなる静電駆動用
電極108を順次形成後、片持ち梁104の先端部に探
針109を形成した。この時、電極102と片持ち梁1
04とが形成する電気容量と、電極108と片持ち梁1
04とが形成する電気容量とが等しくなるように作製し
た。FIG. 1 is a conceptual diagram schematically showing the device and sample prepared in this example. In this device, the electrostatic drive electrode 102 made of a conductive film, the insulating spacer 103, and the conductive cantilever 10 are provided on the surface of the insulating substrate 101.
4. The thin insulating film 105, the tunnel current wiring 106, the insulating spacer 107, and the electrostatic drive electrode 108 made of a high-rigidity conductor were sequentially formed, and then the probe 109 was formed at the tip of the cantilever 104. At this time, the electrode 102 and the cantilever 1
04 and the electric capacity formed by the electrode 108 and the cantilever 1.
It was manufactured so that the electric capacity formed by 04 is equal to the electric capacity formed by 04.
【0016】試料110の表面観察は、トンネル電流検
出ユニット112で、試料110と探針109とに流れ
るトンネル電流を検出しながら、導電性の試料110に
探針109を不図示の距離(Z方向)制御機構によって
近付けた。探針109に流れる電流が10pAで一定と
なったところで、基板101と試料110との距離(Z
方向)が変化しないように固定し、基板101を試料面
に対して平行にXY走査した。この時、片持ち梁駆動ユ
ニット111により、トンネル電流を10pAに一定に
保つように、電極102・片持ち梁104間、あるい
は、電極108・片持ち梁104間に印加する電圧をそ
れぞれ調整した。つまり、試料表面に凸部があるときは
電極102・片持ち梁104間に電圧を印加して探針1
09を基板101側へ、また、凹部があるときは電極1
08・片持ち梁104間に電圧を印加して試料110側
へ、それぞれ変位させることにより、試料表面と探針と
の距離を一定に保った。この片持ち梁を駆動する電圧値
を前記XY走査した位置に合わせてプロットすることに
より、試料の表面形状とした。The surface of the sample 110 is observed by the tunnel current detection unit 112 while detecting the tunnel current flowing between the sample 110 and the probe 109, and the probe 109 is placed on the conductive sample 110 at a distance (not shown) (Z direction). ) It was approached by the control mechanism. When the current flowing through the probe 109 became constant at 10 pA, the distance between the substrate 101 and the sample 110 (Z
(Direction) was fixed so as not to change, and the substrate 101 was scanned in XY parallel to the sample surface. At this time, the voltage applied between the electrode 102 and the cantilever 104 or between the electrode 108 and the cantilever 104 was adjusted by the cantilever driving unit 111 so as to keep the tunnel current constant at 10 pA. That is, when there is a convex portion on the sample surface, a voltage is applied between the electrode 102 and the cantilever 104 to apply the probe 1
09 to the substrate 101 side, and if there is a recess, electrode 1
The voltage between 08 and the cantilever 104 was applied to displace each to the sample 110 side, thereby keeping the distance between the sample surface and the probe constant. The surface shape of the sample was obtained by plotting the voltage value for driving the cantilever beam in accordance with the XY-scanned position.
【0017】また、電極108を有しない静電型STM
において、片持ち梁駆動ユニット111により電極10
2にバイアスVB を与えて片持ち梁をある程度変位させ
た状態を基準として、VB ±△Vボルトの電圧を印加す
ることにより片持ち梁を変位させて同一の試料に対して
同様にSTM観察を行ったところ、前記本発明によるS
TM観察では観測されていた試料表面の比較的大きな凹
凸が殆ど観測されなかった。An electrostatic STM having no electrode 108
At the cantilever drive unit 111,
A bias V B is applied to 2 to displace the cantilever beam to some extent, and the voltage of V B ± ΔV is applied to displace the cantilever beam. Upon observation, S according to the present invention
In TM observation, relatively large irregularities on the surface of the sample, which had been observed, were hardly observed.
【0018】ここで、本発明の特徴について図2及び図
3を用いてさらに説明する。従来技術である、電極10
2と片持ち梁104とから構成される静電駆動型片持ち
梁の動作は、図2に示されるように電極と片持ち梁とに
印加する電圧の極性に拘らず、対向電極側へのみ変位す
る。この際の変位量は印加電圧の2乗に比例することが
知られている。しかしながら図1に示したような本発明
の構成により、図3に示されるように、電極102また
は電極108と片持ち梁104とに電圧印加することに
より、片持ち梁104はそれぞれの対向電極側へ変位す
るために梁先端の稼動範囲が広がる。図3では印加電圧
をプラス側しか示していないがマイナス印加でも同様の
結果が得られる。The features of the present invention will be further described with reference to FIGS. 2 and 3. Electrode 10 which is a conventional technique
The operation of the electrostatic drive type cantilever composed of 2 and the cantilever 104 is performed only on the counter electrode side regardless of the polarity of the voltage applied to the electrode and the cantilever as shown in FIG. Displace. It is known that the displacement amount at this time is proportional to the square of the applied voltage. However, with the configuration of the present invention as shown in FIG. 1, as shown in FIG. 3, by applying a voltage to the electrode 102 or the electrode 108 and the cantilever 104, the cantilever 104 is moved to the opposite electrode side. The working range of the beam tip widens due to the displacement to. In FIG. 3, the applied voltage is shown only on the positive side, but the same result can be obtained by applying the negative voltage.
【0019】実施例2 図1に示した本発明の構成の静電型STM装置におい
て、片持ち梁のZ軸変位の位置制御性を向上した例を説
明する。 Embodiment 2 An example in which the position controllability of the Z-axis displacement of the cantilever is improved in the electrostatic STM device having the structure of the present invention shown in FIG. 1 will be described.
【0020】実施例1と同様に、トンネル電流を一定に
保つように電極102と電極108とに印加する電圧
を、片持ち梁駆動ユニット111により調整しながら試
料表面をXYに走査した。As in Example 1, the sample surface was scanned in XY while adjusting the voltage applied to the electrodes 102 and 108 by the cantilever drive unit 111 so as to keep the tunnel current constant.
【0021】ここで、電極102と片持ち梁104へ電
圧(V1)を印加すると共に、電極108と片持ち梁1
04へ電圧(V2)を印加した時の梁先端部の変位につ
いて説明する。Here, a voltage (V1) is applied to the electrode 102 and the cantilever 104, and at the same time, the electrode 108 and the cantilever 1 are applied.
The displacement of the tip of the beam when a voltage (V2) is applied to 04 will be described.
【0022】図3からわかる様に、V1=V2では梁は
変位しない。しかし、V1≠V2の電圧を同時に印加す
る事により、梁は両側から引っ張られるため、振動等の
外力による影響を受けにくくなり、梁の位置制御性が向
上する。As can be seen from FIG. 3, the beam is not displaced when V1 = V2. However, since the beam is pulled from both sides by simultaneously applying the voltage of V1 ≠ V2, the beam is less likely to be affected by external force such as vibration, and the position controllability of the beam is improved.
【0023】このように、トンネル電流を一定に保つよ
うに、電圧V1、及びV2(V1≠V2)を同時に印加
することにより、梁の位置制御性が向上し、より高速且
つ信頼性の高い表面観察が可能となる。As described above, by simultaneously applying the voltages V1 and V2 (V1 ≠ V2) so as to keep the tunnel current constant, the position controllability of the beam is improved, and the surface is faster and more reliable. Observation becomes possible.
【0024】実施例3 本実施例では、本発明の静電容量型AFM装置について
図4を用いて説明する。 Embodiment 3 In this embodiment, a capacitance type AFM device of the present invention will be described with reference to FIG.
【0025】図4は本実施例で作製した装置と試料とを
模式的に示した概念図である。本装置においては、絶縁
性基板201表面に、導電性膜からなる電気容量検知用
電極202、絶縁スペーサー203、導電性片持ち梁2
04、絶縁スペーサー205、高剛性導電体からなる電
気容量検知用電極206を順次形成後、片持ち梁204
の先端部に探針207を形成した。FIG. 4 is a conceptual diagram schematically showing the device and sample prepared in this example. In this device, on the surface of the insulating substrate 201, the capacitance detecting electrode 202 formed of a conductive film, the insulating spacer 203, and the conductive cantilever 2 are provided.
04, the insulating spacer 205, and the capacitance detection electrode 206 made of a high-rigidity conductor in this order, and then the cantilever beam 204.
A probe 207 was formed at the tip of the.
【0026】試料208の表面観察は、静電容量検出ユ
ニット209で、試料208と探針207とが一定の弱
い圧力で接した状態で基板201と試料208との距離
が変化しないように、不図示の距離(Z方向)制御機構
によって固定し、基板201を試料面に対して平行にX
Y走査した。この時、片持ち梁204は試料208表面
の凹凸に従ってZ方向に上下するので、電極202・片
持ち梁204間、及び、電極206・片持ち梁204間
に発生する電気容量の変化を静電容量検出ユニット20
9で検出した。この片持ち梁204の変位に伴う静電容
量の変化を前記XY走査した位置に合わせてプロットす
ることにより、試料の表面形状とした。ここで、電極2
02・片持ち梁204間及び電極206・片持ち梁20
4間の静電容量を独立して観測し、静電容量の大きい方
を選んで、その変化量をZ変位に随時換算することによ
り、試料の凹凸(Z軸上のプラスマイナス変位)にかか
わらず、電極206を有しない従来装置と比較して高い
分解能を確保することが可能であった。The surface of the sample 208 is observed by the electrostatic capacitance detection unit 209 so that the distance between the substrate 201 and the sample 208 does not change in a state where the sample 208 and the probe 207 are in contact with each other with a constant weak pressure. The substrate 201 is fixed by the illustrated distance (Z direction) control mechanism, and the substrate 201 is made parallel to the sample surface by X
Y-scanned. At this time, since the cantilever 204 moves up and down in the Z direction according to the unevenness of the surface of the sample 208, the change in the capacitance generated between the electrode 202 and the cantilever 204 and between the electrode 206 and the cantilever 204 is electrostatically changed. Capacity detection unit 20
It was detected at 9. The change in the capacitance due to the displacement of the cantilever 204 was plotted in accordance with the XY scanning position to obtain the surface shape of the sample. Where the electrode 2
02 / cantilever 204 and electrode 206 / cantilever 20
Regardless of the unevenness of the sample (plus or minus displacement on the Z axis), the capacitance between 4 can be observed independently, the one with the larger capacitance is selected, and the amount of change is converted to Z displacement at any time. Therefore, it was possible to secure a high resolution as compared with the conventional device which does not have the electrode 206.
【0027】実施例4 実施例1で説明した本発明の静電容量型STM装置を、
STM/AFM装置として使用した例を説明する。装置
は実施例1と同様に図1に示した構成で良い。但し、1
11は片持ち梁駆動機能と静電容量検出機能を併有する
ユニットである。この様な装置は、実施例1に示した測
定法によりSTMとして、また、実施例3に示した測定
法によりAFMとして使用することが可能である。ここ
で、STM測定したあるいはAFM測定した同一試料の
同一領域を、STMモード及びAFMモードで観測する
ことにより、表面形状と導電性分布との両方の情報を混
同することなく調べることが可能である。 Embodiment 4 The electrostatic capacity type STM device of the present invention described in Embodiment 1 is
An example of use as an STM / AFM device will be described. The apparatus may have the configuration shown in FIG. 1 as in the first embodiment. However, 1
A unit 11 has both a cantilever driving function and a capacitance detecting function. Such an apparatus can be used as an STM by the measuring method shown in Example 1 and as an AFM by the measuring method shown in Example 3. Here, by observing the same region of the same sample subjected to the STM measurement or the AFM measurement in the STM mode and the AFM mode, it is possible to investigate without confusing information on both the surface shape and the conductivity distribution. .
【0028】実施例5 本実施例では、探針が設けられた導電性の梁状構造物を
複数個有する本発明のマルチSTM装置について説明す
る。図5は、基本的には、実施例1で示したSTM構成
(図1参照)を同一基板内に3つ形成した例である。基
板としてシリコンウエハーを用い、半導体プロセス技術
により作製することにより、容易に、かつ、ばらつき無
く複数個のSTM構成を形成可能である。また、並べ方
も直線状以外にも、マトリクス状など2次元配列するこ
とが容易である。本実施例において、それぞれの片持ち
梁が独立して駆動することが可能であり、即ち、同時に
複数のSTM観察が可能となった。本構成においても、
実施例4と同様にSTM/AFM複合機として用いるこ
とも可能である。 Embodiment 5 In this embodiment, a multi STM apparatus of the present invention having a plurality of conductive beam-like structures provided with a probe will be described. FIG. 5 basically shows an example in which three STM configurations (see FIG. 1) shown in the first embodiment are formed in the same substrate. By using a silicon wafer as a substrate and manufacturing it by a semiconductor process technique, a plurality of STM structures can be easily formed without variation. In addition to the linear arrangement, it is easy to arrange in a two-dimensional array such as a matrix. In this embodiment, each cantilever can be driven independently, that is, a plurality of STM observations can be performed at the same time. Even in this configuration,
It is also possible to use it as an STM / AFM composite machine as in the fourth embodiment.
【0029】実施例6 実施例1で示した静電駆動型STM装置(図1参照)
と、試料として金(Au)を表面に堆積したシリコンウ
エハーとを、真空排気したチャンバー内に設置し、チャ
ンバー内の真空度が約1×10-4Torrとなるように
6フッ化タングステン(WF6 )ガスを導入した。この
状態で試料表面のSTM観察を行ったところ、探針走査
部分に対応してタングステン金表面に堆積した。この様
なSTM構成による試料表面への選択堆積あるいはエッ
チングなどの加工においても、本発明の装置はZ軸変位
量が大きいため、より深いエッチングや厚い堆積が可能
となり有効であった。 Embodiment 6 The electrostatically driven STM device shown in Embodiment 1 (see FIG. 1)
And a silicon wafer having gold (Au) deposited on its surface as a sample are placed in a vacuum-evacuated chamber, and tungsten hexafluoride (WF) is provided so that the degree of vacuum in the chamber is about 1 × 10 −4 Torr. 6 ) Gas was introduced. When STM observation of the sample surface was performed in this state, it was deposited on the tungsten gold surface corresponding to the probe scanning portion. Even in the processing such as selective deposition or etching on the sample surface by such an STM structure, the device of the present invention has a large Z-axis displacement amount, so that deeper etching and thick deposition are possible and effective.
【0030】[0030]
【発明の効果】以下説明したように、本発明は以下の効
果を奏する。 (1)静電駆動型STM装置は、梁状構造物が本来有す
るZ軸の自由度をフルに利用することができ、測定のダ
イナミックレンジが広がり、より正確な表面凹凸状態を
観察することができる。また、梁状構造物のZ方向の両
側に設けられた電極に同時に電圧印加することにより、
梁の位置制御性を向上でき、より急峻な表面形状変化に
も探針を追従させることができるため、より高速かつ信
頼性の高い表面観察が可能となった。 (2)静電容量型AFM装置は、梁状構造物のZ方向の
両側に設けられた電極と梁状構造物との静電容量を独立
して検出でき、静電容量の大きい側の変化量をZ変位に
換算して、試料表面の凹凸形状を観察することにより、
高い分解能を確保することができる。 (3)装置の小型化、集積化が容易になり、簡便且つ高
性能な静電型STM/AFM複合機が得られた。As described below, the present invention has the following effects. (1) The electrostatic drive type STM device can fully utilize the Z-axis degree of freedom originally possessed by the beam-like structure, expands the dynamic range of measurement, and enables more accurate observation of surface irregularities. it can. Further, by simultaneously applying a voltage to the electrodes provided on both sides of the beam-shaped structure in the Z direction,
Since the position controllability of the beam can be improved and the probe can follow the steep surface shape change, faster and more reliable surface observation becomes possible. (2) The capacitance type AFM device can independently detect the capacitance between the beam-like structure and the electrodes provided on both sides of the beam-like structure in the Z direction, and the change on the side where the capacitance is large. By converting the amount into Z displacement and observing the uneven shape of the sample surface,
High resolution can be secured. (3) A compact and high-performance electrostatic STM / AFM multifunction machine is obtained because the apparatus can be downsized and integrated easily.
【図1】本発明の静電駆動型STMの一実施例を示す概
念図である。FIG. 1 is a conceptual diagram showing an embodiment of an electrostatic drive type STM of the present invention.
【図2】従来装置における静電変位型片持ち梁の変位特
性を説明するための図である。FIG. 2 is a diagram for explaining displacement characteristics of an electrostatic displacement type cantilever in a conventional device.
【図3】本発明における静電変位型片持ち梁の変位特性
を説明するための図である。FIG. 3 is a diagram for explaining displacement characteristics of the electrostatic displacement type cantilever in the present invention.
【図4】本発明の静電容量検知型AFMの一実施例を示
す概念図である。FIG. 4 is a conceptual diagram showing an embodiment of a capacitance detection type AFM of the present invention.
【図5】本発明の静電駆動型マルチSTMの一例を示す
概念図である。FIG. 5 is a conceptual diagram showing an example of an electrostatically driven multi-STM of the present invention.
101 絶縁性基板 102 第1の静電駆動用電極 103 絶縁スペーサー 104 導電性片持ち梁 105 絶縁膜 106 トンネル電流用配線 107 絶縁スペーサー 108 第2の静電駆動用電極 109 探針 110 試料 111 片持ち梁駆動ユニット 112 トンネル電流検出ユニット 201 絶縁性基板 202 第1の電気容量検知用電極 203 絶縁スペーサー 204 導電性片持ち梁 205 絶縁スペーサー 206 第2の電気容量検知用電極居K 207 探針 208 試料 209 静電容量検出ユニット 101 Insulating Substrate 102 First Electrostatic Driving Electrode 103 Insulating Spacer 104 Conductive Cantilever Beam 105 Insulating Film 106 Tunnel Current Wiring 107 Insulating Spacer 108 Second Electrostatic Driving Electrode 109 Probe 110 Sample 111 Cantilever Beam drive unit 112 Tunnel current detection unit 201 Insulating substrate 202 First capacitance detection electrode 203 Insulation spacer 204 Conductive cantilever 205 Insulation spacer 206 Second capacitance detection electrode K 207 Probe 208 Sample 209 Capacitance detection unit
フロントページの続き (72)発明者 柳沢 芳浩 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 島田 康弘 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内Front page continuation (72) Inventor Yoshihiro Yanagisawa 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yasuhiro Shimada 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.
Claims (5)
試料表面に接近させて走査する走査型トンネル顕微鏡に
おいて、静電駆動用電極が、走査面に垂直な方向で梁状
構造物を挟むように、梁状構造物の両側に少なくともそ
れぞれ1つ以上設けられていることを特徴とする走査型
トンネル顕微鏡。1. A scanning tunneling microscope in which a probe provided on a conductive beam-shaped structure is moved closer to the sample surface for scanning, and the electrostatic drive electrode has a beam-shaped structure in a direction perpendicular to the scanning surface. A scanning tunneling microscope, characterized in that at least one is provided on each side of a beam-like structure so as to sandwich an object.
試料表面に接触させて走査する原子間力顕微鏡におい
て、梁状構造物との電気容量を検知するための電極が、
走査面に垂直な方向で梁状構造物を挟むように、梁状構
造物の両側に少なくともそれぞれ1つ以上設けられてい
ることを特徴とする原子間力顕微鏡。2. In an atomic force microscope in which a probe provided on a conductive beam-like structure is brought into contact with a sample surface for scanning, an electrode for detecting an electric capacitance with the beam-like structure is
An atomic force microscope characterized in that at least one or more are provided on both sides of the beam-like structure so as to sandwich the beam-like structure in a direction perpendicular to the scanning plane.
物を、複数個有することを特徴とする請求項1又は2記
載の顕微鏡。3. The microscope according to claim 1, further comprising a plurality of conductive beam-shaped structures provided with the probe.
うち、少なくとも2種類の顕微鏡を一つの装置とした複
合顕微鏡。4. A compound microscope according to claim 1, wherein at least two types of microscopes are used as a single device.
を、試料表面の加工に用いることを特徴とする加工装
置。5. A processing apparatus, wherein the microscope according to any one of claims 1 to 4 is used for processing a sample surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4611093A JPH06241780A (en) | 1993-02-12 | 1993-02-12 | Scanning tunneling microscope, atomic force microscope, and machining device using them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4611093A JPH06241780A (en) | 1993-02-12 | 1993-02-12 | Scanning tunneling microscope, atomic force microscope, and machining device using them |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06241780A true JPH06241780A (en) | 1994-09-02 |
Family
ID=12737862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4611093A Withdrawn JPH06241780A (en) | 1993-02-12 | 1993-02-12 | Scanning tunneling microscope, atomic force microscope, and machining device using them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06241780A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0770847A3 (en) * | 1995-10-27 | 1997-11-05 | Forschungszentrum Jülich Gmbh | Method and device for measuring the distance between a gauge and a measuring surface |
JP2003097909A (en) * | 2001-09-25 | 2003-04-03 | Canon Inc | Device for distinguishing surface characteristic, heating device, image forming device and method for distinguishing surface characteristic |
JP2009526230A (en) * | 2006-02-08 | 2009-07-16 | ヒシトロン・インコーポレイテッド | Operable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy |
-
1993
- 1993-02-12 JP JP4611093A patent/JPH06241780A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0770847A3 (en) * | 1995-10-27 | 1997-11-05 | Forschungszentrum Jülich Gmbh | Method and device for measuring the distance between a gauge and a measuring surface |
JP2003097909A (en) * | 2001-09-25 | 2003-04-03 | Canon Inc | Device for distinguishing surface characteristic, heating device, image forming device and method for distinguishing surface characteristic |
JP2009526230A (en) * | 2006-02-08 | 2009-07-16 | ヒシトロン・インコーポレイテッド | Operable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy |
US8453498B2 (en) | 2006-02-08 | 2013-06-04 | Hysitron, Inc. | Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0584233B1 (en) | Submicron tip structure with opposed tips | |
JP3576677B2 (en) | Electrostatic actuator, probe using the actuator, scanning probe microscope, processing device, recording / reproducing device | |
JP3450349B2 (en) | Cantilever probe | |
EP0518618B1 (en) | Scanning tunneling microscope with cantilever type displacement element | |
EP0404799A1 (en) | Integrated scanning tunneling microscope. | |
JPH06273155A (en) | Scanning probe microscope and atomic species identification method | |
JP4511544B2 (en) | Scanning probe microscope | |
JPH05250734A (en) | Information processor | |
JP3069923B2 (en) | Cantilever probe, atomic force microscope, information recording / reproducing device | |
US5751686A (en) | Scanning probe tip covered with an electrical resistance to limit recording/reproducing current | |
Akiyama et al. | Atomic force microscopy using an integrated comb-shape electrostatic actuator for high-speed feedback motion | |
JPH06241780A (en) | Scanning tunneling microscope, atomic force microscope, and machining device using them | |
JP3076467B2 (en) | Surface matching method and tunnel microscope and recording / reproducing apparatus using the same | |
JP2001108605A (en) | Cantilever for scanning-type probe microscope and its manufacturing method, and scaning-type probe microscope and surface charge-measuring microscope | |
US5793040A (en) | Information processing aparatus effecting probe position control with electrostatic force | |
JP3226424B2 (en) | Scanning probe microscope, processing apparatus and information processing apparatus using the microscope | |
JPH0763548A (en) | Cantilever type probe, and scanning tunneling microscope having it and information processing device having it | |
JPH06258072A (en) | Piezoelectric element thin film evaluating apparatus, interatomic force microscope | |
JPH0852673A (en) | Superminiaturized gripper with probe | |
JPH06273111A (en) | Scanning probe microscope and work device using it | |
Yi et al. | A micro active probe device compatible with SOI-CMOS technologies | |
JP3234722B2 (en) | Arc-shaped warped lever type actuator, method of driving the actuator, and information processing apparatus using information input / output probe | |
JPH06317404A (en) | Cantilever type actuator, scanning probe microscope using it, and information processor | |
Chui et al. | A novel dual-axial AFM cantilever with independent piezoresistive sensors for simultaneous detection of lateral and vertical forces | |
JPH06258017A (en) | Microdisplacement element, and multidisplacement element, tunnel current detector and information processor employing it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000509 |