[go: up one dir, main page]

JPH0623642B2 - Straightness measuring instrument - Google Patents

Straightness measuring instrument

Info

Publication number
JPH0623642B2
JPH0623642B2 JP61081140A JP8114086A JPH0623642B2 JP H0623642 B2 JPH0623642 B2 JP H0623642B2 JP 61081140 A JP61081140 A JP 61081140A JP 8114086 A JP8114086 A JP 8114086A JP H0623642 B2 JPH0623642 B2 JP H0623642B2
Authority
JP
Japan
Prior art keywords
measured
straightness
measuring instrument
meter
straightness measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61081140A
Other languages
Japanese (ja)
Other versions
JPS62238401A (en
Inventor
到 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJITA SEISAKUSHO KK
Original Assignee
FUJITA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJITA SEISAKUSHO KK filed Critical FUJITA SEISAKUSHO KK
Priority to JP61081140A priority Critical patent/JPH0623642B2/en
Publication of JPS62238401A publication Critical patent/JPS62238401A/en
Publication of JPH0623642B2 publication Critical patent/JPH0623642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被測定物の真直度及び平面度を測定する真直
度測定器に関するものである。
TECHNICAL FIELD The present invention relates to a straightness measuring instrument for measuring straightness and flatness of an object to be measured.

[従来の技術] 従来、被測定物の真直度及び平面度を測定する方法とし
てはオートコリメータ法と基準直定規との比較法とが知
られている。
[Prior Art] Conventionally, as a method for measuring the straightness and flatness of an object to be measured, an autocollimator method and a comparison method with a reference straightedge are known.

まず、オートコリメータ法は平行光線のカガミの反射光
による測定であるため高精度の測定が可能であるが、大
がかりな補助設備が必要であり、設置に長時間を要する
上に、2点連鎖法で測定するので測定中の計算が複雑で
ある。現在、測定中の計算はコンピユータを導入するこ
とにより行われているが、それでも正確な測定が終了す
るまでには長時間を要していた。
First of all, the autocollimator method can measure with high accuracy because it is a measurement by reflected light of parallel rays of kagami, but it requires a large amount of auxiliary equipment, requires a long installation time, and is a two-point chain method. Since it is measured at, the calculation during the measurement is complicated. At present, calculation during measurement is performed by introducing a computer, but it still takes a long time to complete accurate measurement.

一方、比較法はオートコリメータ法程の時間を要しない
が、それでも相当の時間がかかる上にその測定時の種々
の条件から精度が落ちることは防げなかつた。例えば、
測定範囲の始点と終点の両端での指針測微器の目盛が零
になるようにブロツクゲージを組合せて高さを換えるの
に時間がかかること、基準直定規使用面上を長手方向に
スタンドを移動させる時、本体が転倒する危険があるこ
と、2個のブロツクゲージの間隔は巻尺で測りながら位
置決めしなければならないこと、使用面上の測定線にセ
ツトするのに時間がかかること、更にオートコリメータ
や特に比較法では被測定物を定盤の上に乗せる必要があ
り、又測定に関わる測定器部分に手をふれる機会が多か
つた。このため、温度変化により測定の狂いが生じた。
On the other hand, the comparison method does not require as much time as the autocollimator method, but it still requires a considerable amount of time, and it is unavoidable that the accuracy is deteriorated due to various conditions during the measurement. For example,
It takes time to combine the block gauges and change the height so that the scales of the pointer micrometer at both the start and end points of the measurement range become zero. When moving it, there is a risk of tipping over, the distance between the two block gauges must be measured while positioning with a tape measure, it takes time to set the measuring line on the surface to be used, and the automatic In the collimator and especially in the comparison method, it is necessary to put the object to be measured on the surface plate, and there are many occasions when the measuring instrument part related to the measurement is touched. For this reason, the measurement changes due to the temperature change.

実開昭61−26111号には、両端にサイドフレーム
を隔設して、サイドフレーム間に摺動ロツドを配設し、
この摺動ロツドを基準としてサイドフレーム下の被測定
物の表面の形状を測定する面歪測定機が開示されてい
る。
In Japanese Utility Model No. 61-26111, side frames are provided at both ends, and sliding rods are provided between the side frames.
A surface strain measuring device is disclosed which measures the surface shape of the object under the side frame with reference to this sliding rod.

しかしながら、上記面歪測定機では、基準となる摺動ロ
ツドの精度と、この摺動ロツドと測定子ヘツドとのズレ
とが、測定精度に直接影響するため、新たに高精度の摺
動ロツドの作成が必要であるし、ズレを無くす工夫が要
求される。
However, in the above-mentioned surface strain measuring machine, the accuracy of the sliding rod that is the reference and the deviation between the sliding rod and the measuring head directly affect the measuring precision. It needs to be created, and a device to eliminate the gap is required.

また、摺動ロツドには基準面が無いため、何を基準とす
るかが難しい。
Further, since the sliding rod has no reference surface, it is difficult to determine what is the reference.

実開昭54−133870号には、支軸の下面を基準に
摺動可能に支持される脚部と支軸を摺動可能に把持する
ダイヤルゲージスライダを有する平坦度測定器が開示さ
れている。
Japanese Utility Model Laid-Open No. 54-133870 discloses a flatness measuring instrument having a leg portion slidably supported on the lower surface of a spindle and a dial gauge slider slidably gripping the spindle. .

しかしながら、脚部は支軸の下面を基準にしているが、
ダイヤルゲージスライダは支軸の上面を基準にしている
ので、支軸及びスライダの誤差あるいは温度変化等がそ
のまま測定誤差に影響するため、高精度で高品質の支軸
及びスライダが必要とされる。
However, the legs are based on the lower surface of the support shaft,
Since the dial gauge slider is based on the upper surface of the support shaft, an error in the support shaft and the slider or a temperature change directly affects the measurement error. Therefore, a highly accurate and high quality support shaft and slider are required.

[発明が解決しようとする課題] 本発明は、前記欠点を除去し、既存の基準直定規を利用
して簡易に構成され、且つ基準直定規の下面の基準面と
被測定物の上面との距離を計って高精度で真直度及び平
面度を測定する真直度測定器を提供する。
[Problems to be Solved by the Invention] The present invention eliminates the above-mentioned drawbacks and is simply configured by using an existing reference straight edge, and includes a lower reference surface of the reference straight edge and an upper surface of the object to be measured. Provided is a straightness measuring device which measures distance and measures straightness and flatness with high accuracy.

[課題を解決するための手段] この課題点を解決するために、本発明の真直度測定器
は、基準直定規と、該基準直定規を基準面を下面として
摺動自在に支持する少なくとも2つの支持脚と、前記基
準直定規を摺動自在に把持するキヤリツジと、該キヤリ
ツジによつて弾性緩衝体を介して前記基準直定規の下面
に圧接されるメータホルダと、該メータホルダに保持さ
れたメータとを備え、前記基準直定規の下面を基準に、
前記支持脚下に置かれた被測定物の上面と前記基準直定
規の下面との距離を、前記キヤリツジの摺動位置に対応
して前記メータにより順次計測して、前記被測定物の真
直度を測定することを特徴とする。
[Means for Solving the Problem] In order to solve this problem, the straightness measuring instrument of the present invention includes a reference straight edge and at least two slidably supporting the reference straight edge with the reference surface as a lower surface. One support leg, a carriage for slidably gripping the reference straightedge, a meter holder pressed against the lower surface of the reference straightedge by an elastic cushioning body by the carriage, and a holder held by the meterholder. Equipped with a meter, based on the lower surface of the standard straightedge,
The distance between the upper surface of the object to be measured placed under the supporting leg and the lower surface of the reference straight edge is sequentially measured by the meter corresponding to the sliding position of the carriage, and the straightness of the object to be measured is measured. It is characterized by measuring.

[実施例] 第1図(a)は従来の比較法による真直度測定を示す説
明図であり、1は被測定物、2は被測定物の上に置かれ
た2個のブロツクゲージ、3は2個のブロツクゲージ2
上に置かれた基準直定規、4は基準直定規の使用面上を
長手方向に摺動できるスタンド、5は被測定物の各測定
点について偏差を読み取る指針測微器である。
[Example] FIG. 1 (a) is an explanatory view showing straightness measurement by a conventional comparison method, in which 1 is an object to be measured, 2 is two block gauges placed on the object to be measured, and 3 is a block gauge. Is 2 block gauges 2
The reference straight edge ruler placed on the upper side, 4 is a stand that can slide in the longitudinal direction on the use surface of the reference straight edge ruler, and 5 is a pointer micrometer for reading the deviation at each measurement point of the measured object.

この構成による真直度測定の手順を第1図(b)の手順
フローチヤートに従つて説明する。
The procedure of straightness measurement by this configuration will be described according to the procedure flow chart of FIG. 1 (b).

まず、ステツプS1で被測定物1を測定のために定盤の
上に移動する。次に、ステツプS2でブロツクゲージ2
を組合せ、ステツプS3でブロツクゲージ2上に基準直
定規3を設置する。第1図(a)で被測定物1の手前か
ら奥に向う一線に沿つて測測定するときは、ステツプS
4でスタンド4を測定線の一端に設置して、ステツプS
5−6で指針測微器5の目盛を零に調整する。ステツプ
S7でスタンド4を測定線の他端に移動させ、ステツプ
S8で指針測微器5の目盛が零かをチエツクする。ここ
では、測定範囲始点と終点の両端で指針測微器5の目盛
が零になるようにブロツクゲージの高さを換えて、ステ
ツプS2〜8を繰り返す。次に、ステツプS9で次の測
定点までの距離を測定して、ステツプS10でスタンド
4を基準直定規3の使用面に沿つて移動させ、ステツプ
S11で所定の間隔であるかをチエツクして、所定の間
隔であればステツプS12で指針測微器5の目盛を読み
取る。ステツプS13で終点までの測定が終了したかを
チエツクしてステツプS9〜13を終了まで繰り返す。
終了後は、ステツプS14で再度両端での指針測微器5
の目盛が零かをチエツクして零でなければステツプS2
からをやりなおす。零であれば真直度の測定は終了しス
テツプS15で被測定物を工作台上に移動して全行程が
終了する。そして、使用面の測点線に沿つて測定した各
測定点の高さ相互差が求める真直度である。尚、平面度
は被測定線各測定点の高さの相互差を基にして計算によ
つて求める。
First, in step S1, the DUT 1 is moved onto the surface plate for measurement. Next, at step S2, the block gauge 2
, And the reference straight ruler 3 is installed on the block gauge 2 in step S3. In FIG. 1 (a), when the measurement is performed along a line extending from the front side to the back side of the DUT 1, the step S is performed.
Install the stand 4 at one end of the measurement line at step 4,
Adjust the scale of the pointer micrometer 5 to zero with 5-6. In step S7, the stand 4 is moved to the other end of the measuring line, and in step S8 it is checked whether the scale of the pointer / micrometer 5 is zero. Here, the height of the block gauge is changed so that the scale of the pointer micrometer 5 becomes zero at both ends of the measurement range start point and end point, and steps S2 to S8 are repeated. Next, in step S9, the distance to the next measurement point is measured, in step S10, the stand 4 is moved along the use surface of the reference straight edge ruler 3, and in step S11 it is checked whether or not the predetermined interval is present. If it is a predetermined interval, the scale of the pointer micrometer 5 is read in step S12. In step S13, it is checked whether or not the measurement up to the end point is completed, and steps S9 to S13 are repeated until the end.
After the end, in step S14, the pointer micrometer 5 at both ends again.
Check if the scale is zero and if it is not zero, step S2
Start over. If it is zero, the straightness measurement is completed, and the object to be measured is moved to the work table in step S15 to complete the entire process. Then, the mutual difference in height of the measurement points measured along the measurement line of the used surface is the calculated straightness. The flatness is obtained by calculation based on the mutual difference of the heights of the respective measurement points on the measured line.

第2図(a)は本発明に係る一実施例の真直度測定器の
斜視図である。真直度測定器20は長手方向Xに移動可
能な2つの支持脚22によつて支持されたアルミナセラ
ミツクス製の基準直定規21と測定部30から構成され
ている。支持脚22の高さは微調整つまみ22aにより
微調整が可能である。測定部30は基準直定規21の上
を長手方向Xに摺動するためのキヤリツジ23と、測定
の基準面を基準直定規21の下面28とするためのメー
タホルダ24と、メータとしての指針測微器25より構
成されている。指針測微器25には零補正つまみ25a
がある。尚、基準直定規21の下部側面27はメータホ
ルダ24の横振れを防ぐために使用される。又、スケー
ル26を基準直定規21の側面に取り付けて支持脚22
及び測定部30の位置決めを便利にしている。真直度測
定器20は第2図(a)示すように被測定物29の上に
設置されるため、被測定物29を定盤の上の置き換える
必要がなく加工ワークを機械のテーブル上で測定が可能
である。又、各部位は一体であつて、一人で持ち運び出
来、設置のための手間がかからない。
FIG. 2 (a) is a perspective view of a straightness measuring instrument according to an embodiment of the present invention. The straightness measuring device 20 is composed of a reference straight ruler 21 made of alumina ceramics supported by two supporting legs 22 movable in the longitudinal direction X, and a measuring section 30. The height of the support leg 22 can be finely adjusted by the fine adjustment knob 22a. The measuring section 30 includes a carriage 23 for sliding on the reference straight edge 21 in the longitudinal direction X, a meter holder 24 for making a reference surface for measurement a lower surface 28 of the reference straight edge 21, and a pointer measuring as a meter. It is composed of a fine instrument 25. The pointer micrometer 25 has a zero correction knob 25a.
There is. The lower side surface 27 of the reference straight edge ruler 21 is used to prevent lateral shake of the meter holder 24. In addition, the scale 26 is attached to the side surface of the reference straight edge ruler 21 to support the support leg 22.
Also, the positioning of the measuring unit 30 is convenient. Since the straightness measuring device 20 is installed on the object to be measured 29 as shown in FIG. 2 (a), it is not necessary to replace the object to be measured 29 on the surface plate, and the work piece is measured on the table of the machine. Is possible. Also, since each part is integrated, it can be carried by one person, and it does not take time and effort for installation.

ここで、測定手順を第2図(b)の手順フローチヤート
に従つて説明する。まずステツプS21で真直度測定器
20の2つの支持脚22が被測定物29の両端、又は測
定しようとする任意の位置に移動固定する。次にステツ
プS22で真直度測定器20が被測定物29に2つの支
持脚22が乗るように設置する。
Here, the measurement procedure will be described according to the procedure flow chart of FIG. First, in step S21, the two support legs 22 of the straightness measuring device 20 are moved and fixed to both ends of the object 29 to be measured or to an arbitrary position to be measured. Next, in step S22, the straightness measuring device 20 is installed so that the two support legs 22 are placed on the object 29 to be measured.

ステツプS23で測定部30を一端に移動して、ステツ
プS24−25で指針測微器25の零補正つまみ25a
を回して指針を零に合わせる。
In step S23, the measuring unit 30 is moved to one end, and in step S24-25, the zero correction knob 25a of the pointer micrometer 25 is moved.
Turn to set the pointer to zero.

ステツプS26で測定部30を他端に移動して、ステツ
プS27−28で指針が零であるかチエツクして零でな
ければ、支持脚22の微調整つまみ22aにより指針が
零になるように調整する。両端で指針が共に零になれ
ば、測定準備完了である。微調整は支持脚先端部に不図
示の偏心部材を取り付けることにより行つたが、他の周
知の方法でも良い。
In step S26, the measuring unit 30 is moved to the other end, and in step S27-28, if the pointer is zero or if it is not zero after checking, the pointer is adjusted to zero by the fine adjustment knob 22a of the support leg 22. To do. When both hands become zero at both ends, the measurement is ready. The fine adjustment was performed by attaching an eccentric member (not shown) to the tips of the supporting legs, but other known methods may be used.

ステツプS29−30で測定部30を基準直定規21上
でX方向の所定距離ずつスケール26を見て移動しなが
ら、ステツプS31で指針値を測定する。測定値がプラ
スであれば、被測定物29の測定点が両端より凸であ
り、測定値がマイナスであれば両端より凹であることを
示す。ステツプS32で終点までの測定が終つたかをチ
エツクしステツプS29〜32を終了まで繰り返す。測
定終了後は再度両端での指針が零であることを確認して
測定の全行程が終了する。ここで、指針の基準になるの
は基準直定規21の下面28であるので被測定点と基準
点との距離が小さく各部位のヒズミ等の影響が少なく精
度の高い測定が出来る。
In step S29-30, while moving the measuring unit 30 on the reference straight edge ruler 21 by looking at the scale 26 by a predetermined distance in the X direction, the pointer value is measured in step S31. If the measurement value is positive, the measurement point of the object 29 to be measured is convex from both ends, and if the measurement value is negative, it is concave from both ends. In step S32, it is checked whether or not the measurement up to the end point has been completed, and steps S29 to S32 are repeated until the end. After the measurement is completed, it is confirmed that the pointers at both ends are zero again, and the whole measurement process is completed. Here, the lower surface 28 of the reference straight edge ruler 21 serves as a reference for the pointer, so that the distance between the point to be measured and the reference point is small, and the influence of flaws and the like on each part is small and highly accurate measurement is possible.

次に第3図、第4図(a),(b)を参照しながら、測
定の基準が基準直定規21の下面28であるための測定
部30の構造を説明する。第3図は測定部30を前面か
ら見た場合の説明図、第4図(a)はキヤリツジ23の
設置説明図、第4図(b)メータホルダ24の設置説明
図である。
Next, referring to FIGS. 3 and 4 (a) and (b), the structure of the measuring unit 30 will be described because the measurement reference is the lower surface 28 of the reference straightedge 21. FIG. 3 is an explanatory view of the measuring unit 30 when viewed from the front, FIG. 4 (a) is an installation explanatory view of the carriage 23, and FIG. 4 (b) is an installation explanatory view of the meter holder 24.

キヤリツジ23は軸32の先に取り付けられたベアリン
グ31によつて基準直定規21に設置されていて、基準
直定規21上を長手方向Xにスムースに移動する。移動
をスムースにするためベアリング31は基準直定規21
に密着しておらずキヤリツジ23に多少の揺れがある。
キヤリツジ23の動き易さを調整するために軸32は偏
心している。ベアリング31は基準直定規21の上下左
右に当るように12個設置されている。
The carriage 23 is installed on the reference straight edge 21 by means of a bearing 31 attached to the tip of the shaft 32, and moves smoothly on the reference straight edge 21 in the longitudinal direction X. The bearing 31 is a standard straight-edge ruler 21 for smooth movement.
There is some swaying in the carriage 23 that is not in close contact with.
The shaft 32 is eccentric to adjust the ease of movement of the carriage 23. Twelve bearings 31 are installed so as to hit the upper, lower, left and right sides of the reference straightedge 21.

メータホルダ24は 、キヤリツジ23とは直接接続さ
れていず、このためキヤリツジ23の前記揺れはメータ
ホルダには伝わらない。メータホルダ24は6つの摩擦
の小さいテフロン樹脂で出来た接触子33によつて基準
直定規21に接触し、キヤリツジ23から4つのバネ3
4で下面と側面を基準直定規21に押し付けられてい
る。そして指針測微器25はメータホスダ24に固定さ
れており、キヤリツジ23とはバネ34以外は切り離さ
れている。
The meter holder 24 is not directly connected to the carriage 23, so that the shaking of the carriage 23 is not transmitted to the meter holder. The meter holder 24 is brought into contact with the reference straight-edge ruler 21 by means of six contacts 33 made of Teflon resin having a small friction, and the carriage 23 to the four springs 3 are contacted.
The lower surface and the side surface are pressed against the reference straight edge ruler 21 at 4. The pointer micrometer 25 is fixed to the meter host 24, and is separated from the carriage 23 except for the spring 34.

ここで、測定部30の移動を考えると、キヤリツジ23
はベアリング31に支えられて基準直定規21上を移動
する。一方、メータホルダ24はバネ34により基準直
定器21の下面28と側面27とを基準として移動し、
キヤリツジ23の揺れはメータホルダ24、いい換えれ
ば指針測微器25には一切影響を与えず、基準直定規2
1の下面28を基準とした高精度の測定が出来る。尚、
手に触れるキヤリツジ23は断熱材で出来ており、メー
タホルダ24への熱の影響を防いでいる。
Here, considering the movement of the measurement unit 30, the carriage 23
Is supported by a bearing 31 and moves on the reference straightedge 21. On the other hand, the meter holder 24 is moved by the spring 34 with reference to the lower surface 28 and the side surface 27 of the reference directing device 21,
The sway of the carriage 23 does not affect the meter holder 24, in other words, the pointer micrometer 25 at all.
Highly accurate measurement can be performed with reference to the lower surface 28 of 1. still,
The carriage 23 that touches the hand is made of a heat insulating material and prevents the meter holder 24 from being affected by heat.

更に、本実施例の真直度測定器20には、次の工夫がさ
れている。第5図(a)は支持脚22上部に設置された
把手51を示している。この把手51を設置することに
より持ち運びを容易にし、基準直定規21に手を触れる
ことを防ぐことが出来る。第55図(b)に示すように
支持脚22の下方先端に腕22aを作つてL字型にし
て、被測定物29の両端まで測定部30が移動するのを
可能にした。又、支持脚22の被測定部29との接点部
52を球の一部にして、測定時の支持脚22の微調整に
よるくるいを防いだ。第5図(c)は真直度測定器20
が転倒するのを防ぐための板54を示している。更に、
この爪53を設け、この先端は指針測微器25の先端が
被測定物29に接する位置を示す様になつている。又、
基準直定規のタワミを補正するため下面の中央部が凹に
なつた曲面にすることも考えられる。尚、基準直定規を
始め各部位の材料は本発明を達成するものであれば、限
定するものではない。次に、本実施例の真直度測定器2
0を使用した第6図の平面度測定装置例を説明する。
Further, the straightness measuring device 20 of this embodiment has the following features. FIG. 5A shows the handle 51 installed on the upper portion of the support leg 22. By installing this handle 51, it is possible to easily carry it and prevent the reference straight ruler 21 from being touched. As shown in FIG. 55 (b), an arm 22 a is formed at the lower end of the support leg 22 to form an L shape, which enables the measuring section 30 to move to both ends of the object 29 to be measured. Further, the contact point portion 52 of the support leg 22 with the measured portion 29 is made a part of a sphere to prevent the wheel from being finely adjusted during the measurement. FIG. 5C shows the straightness measuring device 20.
The plate 54 is shown to prevent the tumbling. Furthermore,
The claw 53 is provided, and the tip of the claw 53 indicates the position where the tip of the pointer micrometer 25 contacts the object to be measured 29. or,
In order to correct the deflection of the standard straightedge, it may be possible to make the lower surface a concave curved surface. The material of each part including the standard straightedge is not limited as long as the invention can be achieved. Next, the straightness measuring device 2 of this embodiment
An example of the flatness measuring device of FIG. 6 using 0 will be described.

ここでは、メータは電気マイクロメータ70であり、測
定部71は長手方向Xに位置制御出力部67からの信号
をケーブル67を通して受けて自在に移動する。又、2
つの支持脚72も長手方向と直角の方向Yへの移動と高
さの微調整とがケーブル67を通した位置制御出力部6
7からの信号を受けて制御される。一方、電気マイクロ
メータ70の出力信号及び測定部71の位置信号はケー
ブル68を通して信号入力部66ら平面度測定制御部6
0にデジタルデータで入力される。平面度測定制御部6
0ではROM62内に格納されたプログラムに従つて、
真直度測定器20の移動を位置制御出力部67を通して
制御しながら、RAM63に被測定物73の各点の測定
値を記憶する。記憶された測定値から平面度を表す種々
の演算処理をして表示装置(以後CRT)64やプリン
タ(以後PRT)65に数値出力及び図面出力が行われ
る。
Here, the meter is the electric micrometer 70, and the measuring unit 71 freely receives the signal from the position control output unit 67 through the cable 67 in the longitudinal direction X. Again 2
The two support legs 72 are also moved in the direction Y perpendicular to the longitudinal direction and finely adjusted in height through the cable 67.
It receives the signal from 7 and is controlled. On the other hand, the output signal of the electric micrometer 70 and the position signal of the measuring unit 71 are transmitted from the signal input unit 66 to the flatness measurement control unit 6 through the cable 68.
It is input to 0 as digital data. Flatness measurement control unit 6
In 0, according to the program stored in the ROM 62,
While controlling the movement of the straightness measuring device 20 through the position control output unit 67, the RAM 63 stores the measured values at each point of the measured object 73. From the stored measured values, various arithmetic processing for expressing the flatness is performed, and numerical values and drawings are output to the display device (hereinafter CRT) 64 and the printer (hereinafter PRT) 65.

第7図に平面度測定プログラムのフローチヤートを示し
た。まず、ステツプS71でキヤリツジ71を長手方向
Xに移動し、左右端で電気マイクロメータ70出力を同
じ値になる様に支持脚72を自動調整する初期値を設定
し、ステツプS72で真直度測定器20を開始位置に設
定する。
The flow chart of the flatness measurement program is shown in FIG. First, in step S71, the carriage 71 is moved in the longitudinal direction X, and an initial value for automatically adjusting the support leg 72 so that the output of the electric micrometer 70 has the same value at the left and right ends is set. In step S72, the straightness measuring instrument is set. Set 20 to the start position.

ステツプS73で測定部71の位置データを入力し、ス
テツプS74で電気マイクロメータ70の読みを入力す
る。ステツプS75でステツプS73で入力した位置デ
ータをアドレスとして、ステツプS74で入力された電
気マイクロメータ70の読みをRAM63に格納する。
ステツプS76で測定部71を一定距離だけ長手方向X
に移動し、ステツプS77で長手方向の測定の終了をチ
エツクし、終了でない場合は、ステツプS73〜77を
繰り返す。
The position data of the measuring unit 71 is input in step S73, and the reading of the electric micrometer 70 is input in step S74. In step S75, the position data input in step S73 is used as an address, and the reading of the electric micrometer 70 input in step S74 is stored in the RAM 63.
In step S76, the measuring unit 71 is moved in the longitudinal direction X by a certain distance.
To check the end of measurement in the longitudinal direction at step S77, and if not, repeat steps S73 to S77.

長手方向Xの測定が終了すると、ステツプS77からス
テツプS78に行き、真直度測定器20の支持脚72を
自動移動して、次の真直度測定位置に移る。ステツプS
79で被測定物73の全エリアを測定終了したかをチエ
ツクし、終了でない場合は、ステツプS73に戻つて、
ステツプS73〜79を繰り返す。
When the measurement in the longitudinal direction X is completed, the process goes from step S77 to step S78 to automatically move the support leg 72 of the straightness measuring device 20 and move to the next straightness measuring position. Step S
At 79, check whether the measurement of all areas of the DUT 73 has been completed, and if not, return to step S73,
Repeat steps S73-79.

全エリアの測定が終了すると、ステツプS79からステ
ツプS80にいつて、平面度を表わす種々の演算処理を
行つて、ステツプS81でCRT64に表示し、ステツ
プS82でPRT65に印刷して平面度測定の終了とな
る。
When the measurement of all areas is completed, from step S79 to step S80, various arithmetic processing for expressing the flatness is performed, and in step S81 the CRT 64 is displayed, and in step S82, it is printed on the PRT 65 and the flatness measurement is completed. Becomes

[発明の効果] 本発明により、既存の基準直定規を利用して簡易に構成
され、且つ基準直定規の下面の基準面と被測定物の上面
との距離を計つて高精度で真直度及び平面度を測定する
真直度測定器を提供できる。
[Effect of the Invention] According to the present invention, the straightness can be configured with high accuracy by using the existing standard straightedge and simply measuring the distance between the reference surface of the lower surface of the standard straightedge and the upper surface of the object to be measured. A straightness measuring device for measuring flatness can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は従来の比較法による真直度測定説明図、 第1図(b)は従来の真直度測定の手順フローチヤー
ト、 第2図(a)は本実施例の真直度測定器の斜視図、 第2図(b)は本実施例の真直度測定の手順フローチヤ
ート、 第3図は測定部を正面から見た説明図、 第4図(a)はキヤリツジの設置説明図、 第4図(b)はメータホルダの設置説明図、 第5図(a)は支持脚の上面略図、 第5図(b)は支持脚の側面略図、 第5図(c)は支持脚の板と爪の説明図、 第6図は本実施例の真直度測定器を使用した平面度測定
装置のブロツク図、 第7図は平面度測定装置の測定プログラムのフローチヤ
ートである。 図中、20……真直度測定器、21……基準直定規、2
2……支持脚、22a……支持脚微調整つまみ、23…
…キヤリツジ、24……メータホルダ、25……指針測
微器、25a……零補正つまみ、26……スケール、2
7……基準直定規の下部側面、28……基準直定規の下
面、29……被測定物、30……測定部である。
FIG. 1 (a) is an explanatory view of straightness measurement by a conventional comparison method, FIG. 1 (b) is a flow chart of a conventional straightness measurement procedure, and FIG. 2 (a) is a straightness measuring instrument of this embodiment. FIG. 2 (b) is a flow chart of the straightness measurement procedure of the present embodiment, FIG. 3 is an explanatory view of the measuring section as seen from the front, and FIG. 4 (a) is an explanatory view of installation of a carriage. 4 (b) is an explanatory view of the installation of the meter holder, FIG. 5 (a) is a schematic top view of the support leg, FIG. 5 (b) is a schematic side view of the support leg, and FIG. 5 (c) is a schematic view of the support leg. FIG. 6 is a block diagram of a flatness measuring device using the straightness measuring device of this embodiment, and FIG. 7 is a flow chart of a measuring program of the flatness measuring device. In the figure, 20 ... Straightness measuring instrument, 21 ... Standard straightedge, 2
2 ... Support leg, 22a ... Support leg fine adjustment knob, 23 ...
... Carriage, 24 ... Meter holder, 25 ... Pointer micrometer, 25a ... Zero correction knob, 26 ... Scale, 2
7: lower side surface of the reference straightedge, 28: lower surface of the reference straightedge, 29: object to be measured, 30: measurement part.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】基準直定規と、 該基準直定規を基準面を下面として摺動自在に支持する
少なくとも2つの支持脚と、 前記基準直定規を摺動自在に把持するキヤリツジと、 該キヤリツジによつて弾性緩衝体を介して前記基準直定
規の下面に圧接されるメータホルダと、 該メータホルダに保持されたメータとを備え、 前記基準直定規の下面を基準に、前記支持脚下に置かれ
た被測定物の上面と前記基準直定規の下面との距離を、
前記キヤリツジの摺動位置に対応して前記メータにより
順次計測して、前記被測定物の真直度を測定することを
特徴とする真直度測定器。
1. A reference straight edge, at least two support legs slidably supporting the reference straight edge with a reference surface as a lower surface, a carriage for slidably gripping the reference straight edge, and the carriage. Therefore, it is provided with a meter holder that is pressed against the lower surface of the reference straight ruler via an elastic cushioning body and a meter held by the meter holder, and is placed under the support leg with the lower surface of the reference straight ruler as a reference. The distance between the upper surface of the measured object and the lower surface of the reference straightedge,
A straightness measuring instrument, characterized in that the straightness of the object to be measured is sequentially measured by the meter corresponding to the sliding position of the carriage.
【請求項2】少なくとも1つの前記支持脚は、上下に微
動可能であることを特徴とする特許請求の範囲第1項記
載の真直度測定器。
2. The straightness measuring device according to claim 1, wherein at least one of the support legs is capable of finely moving up and down.
【請求項3】少なくとも1つの前記支持脚の被測定物上
の支持部の切断面が、ほぼ円の一部であることを特徴と
する特許請求の範囲第2項記載の真直度測定器。
3. The straightness measuring instrument according to claim 2, wherein the cut surface of the support portion on the object to be measured of at least one of the support legs is substantially a part of a circle.
【請求項4】前記支持脚はL字型であつて、前記支持脚
を被測定物上に置いて該被測定物の全巾が測定可能であ
ることを特徴とする特許請求の範囲第1項記載の真直度
測定器。
4. The support leg is L-shaped, and the entire width of the measurement target can be measured by placing the support leg on the object to be measured. The straightness measuring instrument described in the item.
【請求項5】前記メータは指針測微器であることを特徴
とする特許請求の範囲第1項記載の真直度測定器。
5. The straightness measuring instrument according to claim 1, wherein the meter is a pointer micrometer.
【請求項6】前記メータは電気マイクロメータであるこ
とを特徴とする特許請求の範囲第1項記載の真直度測定
器。
6. The straightness measuring instrument according to claim 1, wherein the meter is an electric micrometer.
【請求項7】前記支持脚は、側面に長手方向とほぼ直角
の方向に真直度定器の転倒を防ぐに十分な長さの板を持
つことを特徴とする特許請求の範囲第1項記載の真直度
測定器。
7. The support leg according to claim 1, wherein a side surface of the support leg has a plate having a length sufficient to prevent the straightness meter from falling in a direction substantially perpendicular to the longitudinal direction. Straightness measuring instrument.
【請求項8】前記基準直定規の少なくとも一方の側面に
は、前記支持脚の位置決めをするスケールを取り付けた
ことを特徴とする特許請求の範囲第1項記載の真直度測
定器。
8. The straightness measuring instrument according to claim 1, wherein a scale for positioning the support leg is attached to at least one side surface of the reference straight edge ruler.
【請求項9】前記基準直定規の下面は、前記キヤリツジ
が移動することによつて生ずるタワミを補償するため
に、中央部が凹となるようにつくられていることを特徴
とする特許請求の範囲第1項記載の真直度測定器。
9. The lower surface of the reference straightedge is formed to have a concave central portion in order to compensate for a deflection caused by the movement of the carriage. A straightness measuring instrument according to the first item of the range.
JP61081140A 1986-04-10 1986-04-10 Straightness measuring instrument Expired - Fee Related JPH0623642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081140A JPH0623642B2 (en) 1986-04-10 1986-04-10 Straightness measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081140A JPH0623642B2 (en) 1986-04-10 1986-04-10 Straightness measuring instrument

Publications (2)

Publication Number Publication Date
JPS62238401A JPS62238401A (en) 1987-10-19
JPH0623642B2 true JPH0623642B2 (en) 1994-03-30

Family

ID=13738097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081140A Expired - Fee Related JPH0623642B2 (en) 1986-04-10 1986-04-10 Straightness measuring instrument

Country Status (1)

Country Link
JP (1) JPH0623642B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063055B (en) * 2017-05-08 2023-10-10 莱芜钢铁集团有限公司 Trolley chain plate verticality detection tool and machining process of trolley chain plate
CN118442905B (en) * 2024-07-08 2024-09-13 山东恒诚检测科技有限公司 Soil sampling degree of depth automatic checkout device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861855U (en) * 1971-11-15 1973-08-06
JPS5045293U (en) * 1973-08-24 1975-05-07
JPS54133870U (en) * 1978-03-08 1979-09-17
JPS5722084U (en) * 1980-07-15 1982-02-04
JPS59116501A (en) * 1982-06-30 1984-07-05 Hoya Corp Flatness measuring device and method therefor
JPS6126111U (en) * 1984-07-24 1986-02-17 東京貿易株式会社 Contact head of surface strain measuring machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
味岡成康「精密測定器の機構設計」(昭51−6−1)開発社P149−154

Also Published As

Publication number Publication date
JPS62238401A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
US4663852A (en) Active error compensation in a coordinated measuring machine
JP2005055282A (en) Measuring method and measuring device
EP0254429B1 (en) Metrological apparatus and process
CN114603399B (en) Method for correcting precision of spindle swinging type machine tool
CA1310092C (en) Method for determining position within the measuring volume of a coordinate measuring machine and the like and system therefor
JPH0623642B2 (en) Straightness measuring instrument
US2763934A (en) Gauge apparatus
JPH03156307A (en) Movable device for inspecting corrected surface
US4184262A (en) Device for determining the exact position of two members linearly displaceable relative to each other
JP2987607B2 (en) 3D coordinate measuring machine
CN216668518U (en) Plate and strip thickness measuring device
GB2112942A (en) Measuring instruments
CN207894371U (en) A kind of multi-faceted altimeter of precision workpiece
JPH0660817B2 (en) Straightness measuring method and device
JPS6118692B2 (en)
JP2017129471A (en) Cylinder gauge inspection apparatus and auxiliary unit therefor
JPS63173908A (en) Apparatus for measuring difference in level
KR200498680Y1 (en) Digital gauge
CN222144018U (en) Micro-arc high-precision measuring device for linear guide rail
CN222544654U (en) A measuring device for detecting the accuracy of medical CT machine bed movement
JPH06241701A (en) Excess weld metal height gauge and method for measuring excess weld metal height using it
CN210922554U (en) Large-diameter measuring tool calibrator for measuring workpieces
JPH0240488Y2 (en)
GB1382053A (en) Dimension checking instrument
JP2697134B2 (en) Surface dimension measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees