[go: up one dir, main page]

JPH06235650A - Heat resistance type air flow rate measuring device - Google Patents

Heat resistance type air flow rate measuring device

Info

Publication number
JPH06235650A
JPH06235650A JP5020973A JP2097393A JPH06235650A JP H06235650 A JPH06235650 A JP H06235650A JP 5020973 A JP5020973 A JP 5020973A JP 2097393 A JP2097393 A JP 2097393A JP H06235650 A JPH06235650 A JP H06235650A
Authority
JP
Japan
Prior art keywords
air flow
flow rate
measuring device
type air
resistance type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5020973A
Other languages
Japanese (ja)
Inventor
Mamoru Tsuda
守 津田
Tadao Suzuki
忠雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5020973A priority Critical patent/JPH06235650A/en
Publication of JPH06235650A publication Critical patent/JPH06235650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve the electric wave interference resistance characteristics and thermal shock durability of an electrical heating resistance type air flow rate measuring device adopting resin body. CONSTITUTION:An electromagnetic shield pipe 15 consisting of alumina or brass is inserted (one-piece molding) into a resin body 11 and external electric wave arriving at an intake air flow rate detection part, etc., is mode to escape to the ground, thus drastically improving the electric wave resistance characteristics and thermal shock durability of an electical heating resistance type air flow rate measuring device adopting the resin body 11 by a simple method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐電波障害を防止する
に好適な発熱抵抗式空気流量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating resistance type air flow rate measuring device suitable for preventing radio wave interference.

【0002】[0002]

【従来の技術】内燃機関の吸入空気量を計測する発熱抵
抗式空気流量測定装置においては、その吸入空気通路を
有するボディの軽量化を図るため、ボデイを合成樹脂に
より形成することが提案されている。
2. Description of the Related Art In an exothermic resistance type air flow rate measuring device for measuring an intake air amount of an internal combustion engine, it has been proposed to form a body with a synthetic resin in order to reduce the weight of a body having the intake air passage. There is.

【0003】ところで、上記ボディを樹脂化する場合に
は、外部からのノイズの侵入を防止するため、耐電波障
害対策を講じる必要がある。そのため、従来は電磁シー
ルド管をボディ内に挿入して発熱抵抗体の周囲を覆うこ
とによって対応していた。
By the way, when the above-mentioned body is made of resin, it is necessary to take measures against electromagnetic interference in order to prevent noise from entering from the outside. Therefore, conventionally, an electromagnetic shield tube is inserted into the body to cover the periphery of the heating resistor.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
では樹脂と電磁シールド管との線膨張係数の違いにより
樹脂の一部に亀裂を生じるという問題があった。
However, the above-mentioned conventional technique has a problem that a crack is generated in a part of the resin due to a difference in linear expansion coefficient between the resin and the electromagnetic shield tube.

【0005】本発明の目的は、耐電波障害特性と熱衝撃
耐久性の向上を図ることができる発熱抵抗式空気流量測
定装置を提供することにある。
An object of the present invention is to provide a heating resistance type air flow rate measuring device capable of improving the resistance to radio interference and the durability against thermal shock.

【0006】[0006]

【課題を解決するための手段】上記目的は、樹脂で構成
された吸入空気通路のボディ内部に空気流量測定用の発
熱抵抗体が配置され、前記ボディの外壁には、前記発熱
抵抗体の駆動回路が取付けてあり前記発熱抵抗体が吸入
空気を通す孔付き電磁シールド管で覆われ、この電磁シ
ールド管は、深絞り加工による管体で一端周縁にフラン
ジが一体形成され、このフランジが前記駆動回路の導電
性ベースと前記ボディ外壁との間に固定,介在した形
で、前記電磁シールド管が前記ボディ内部に組み込ま
れ、この電磁シールド管が前記フランジ及び前記ベース
を介してアースされている発熱抵抗式空気流量測定装置
において、前記電磁シールド管の材質を線膨張係数が樹
脂の0.5〜1.5倍以内,ヤング率が10倍以内とする
ことによって達成される。
The above object is to provide a heating resistor for measuring an air flow rate inside a body of an intake air passage made of resin, and to drive the heating resistor on an outer wall of the body. A circuit is attached, and the heating resistor is covered with an electromagnetic shield tube with a hole through which the intake air passes. This electromagnetic shield tube is a deep-drawing tube body with a flange integrally formed on one end periphery, and this flange is the drive The electromagnetic shield tube is incorporated inside the body in a fixed and intervening manner between the conductive base of the circuit and the outer wall of the body, and the electromagnetic shield tube is grounded through the flange and the base. In the resistance type air flow measuring device, it is achieved by setting the material of the electromagnetic shield tube to have a coefficient of linear expansion within 0.5 to 1.5 times that of resin and Young's modulus within 10 times. .

【0007】[0007]

【作用】電磁シールド管の材質として例えばアルミ又は
黄銅板を使用することにより熱衝撃試験による樹脂部の
亀裂を防止することができる。尚アルミの場合は比重も
軽く軽量化が可能となる。
By using, for example, aluminum or brass plate as the material of the electromagnetic shield tube, it is possible to prevent cracking of the resin portion due to the thermal shock test. In the case of aluminum, the specific gravity is also light and the weight can be reduced.

【0008】[0008]

【実施例】以下、本発明の実施例を図1〜図7により説
明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0009】図1から図6は本発明の代表的な実施例を
示すもので、1はアルミナボビンに白金線を巻線し表面
をガラス材によってコーティングした発熱抵抗体であ
る。この発熱抵抗体1を導電性部材で構成したベース2
の支持部(樹脂成形品)3にインサートされた支持ピン
4に溶接する。尚、吸入空気流量を検出する温度補償用
抵抗体の感温抵抗体5も前記発熱抵抗体1と同一構造で
ある。支持ピン4はアルミワイヤ6を介して駆動回路7
と電気的に接続している。駆動回路7は導電性部材で形
成したシールドベース8に接着剤で固定され、シールド
カバー20で覆われている。シールドベース8はベース
2に接着剤で固定されており電気的にも導通されてい
る。この駆動回路7及び発熱抵抗体1,感温抵抗体5が
溶接された発熱抵抗式空気流量測定装置はバイパス空気
通路9とメイン空気通路10で形成されるボディ11の
バイパス空気通路内に装着される。更に、駆動回路7に
より発熱抵抗体1に一定温度に加熱するための電流が流
される。この加熱温度は吸入空気の量に関係なく発熱抵
抗体1と空気温度の差が一定温度に保たれ空気温度を感
温抵抗体5で補正している。従って、高流量が空気通路
内を流れたときは発熱抵抗体1に高い電流を、低電流が
流れたときは低い電流を流して一定温度を保つものであ
る。発熱抵抗体1を流れる電流と空気流量間には単調増
加関数の関係があり、これにより空気流量を検出するも
のである。以上のように空気流量によっては微弱な電流
を流すため耐電波障害性を向上させておく必要がある。
従って、外部ハーネスと接続する端子12と駆動回路7
間は導電性部材で形成されたワイヤ13で電気的に接続
しており、更にワイヤ13は貫通コンデンサ14を介し
てシールドベース8に接続し、耐電波障害特性を向上さ
せている。
1 to 6 show a typical embodiment of the present invention. Reference numeral 1 is a heating resistor in which a platinum wire is wound around an alumina bobbin and the surface is coated with a glass material. A base 2 in which the heating resistor 1 is made of a conductive material.
It is welded to the support pin 4 inserted in the support portion (resin molded product) 3. The temperature sensing resistor 5, which is a temperature compensating resistor for detecting the intake air flow rate, has the same structure as the heat generating resistor 1. The support pin 4 is connected to the drive circuit 7 via the aluminum wire 6.
Is electrically connected to. The drive circuit 7 is fixed to a shield base 8 formed of a conductive member with an adhesive and covered with a shield cover 20. The shield base 8 is fixed to the base 2 with an adhesive and is electrically connected. The heat generation resistance type air flow rate measuring device in which the drive circuit 7, the heat generating resistor 1 and the temperature sensitive resistor 5 are welded is installed in a bypass air passage of a body 11 formed by a bypass air passage 9 and a main air passage 10. It Further, an electric current for heating the heating resistor 1 to a constant temperature is passed by the drive circuit 7. This heating temperature has a constant temperature difference between the heating resistor 1 and the air temperature regardless of the amount of intake air, and the air temperature is corrected by the temperature sensitive resistor 5. Therefore, when a high flow rate flows in the air passage, a high current is passed through the heating resistor 1, and when a low current flows, a low current is passed to maintain a constant temperature. There is a monotonically increasing function relationship between the current flowing through the heating resistor 1 and the air flow rate, and the air flow rate is detected by this. As described above, it is necessary to improve the resistance to radio interference because a weak current flows depending on the air flow rate.
Therefore, the terminal 12 and the drive circuit 7 connected to the external harness
The spaces are electrically connected by a wire 13 formed of a conductive member, and the wire 13 is connected to the shield base 8 via the feedthrough capacitor 14 to improve the electromagnetic interference resistance.

【0010】今、ボディ11は軽量化を目的として樹脂
を使用している。従来はアルミボディであったため耐電
波障害特性は問題のないレベルであった。しかし樹脂化
することにより対策が必要となった。本実施例では電磁
シールド管15を追加した。電磁シールド管15は図4
〜図6に示す如く薄い金属(SUS)により製作されて
おり円筒部15−aと取付フランジ部15−bを有し深
絞り加工により一体化されている。取付フランジ部は取
付ボルト16により導電性部材で構成したベース2と電
気的導通をとっておりアースへ接続されている。又、取
付フランジ部15−bにはバーリング加工部15−cを
有しこの部にナット17が圧入されている。従って成型
時型へシールド管15をセットするだけで良く、工数低
減に有効である。図6は前記圧入部の詳細断面図であ
る。図7は樹脂ボディを採用時の耐電波障害特性を示す
もので図に示す如くシールド管を設けることにより大幅
に改善することができる。このような構成において高低
温の熱衝撃試験を実施したところ樹脂ボディに亀裂を生
じた。原因は樹脂と電磁シールド管との線膨張係数の違
いによるものであり材質をSUSからアルミ又は黄銅板
に変更することにより解決した。一般に樹脂(P.B.
T)は線膨張係数は20〜90×10=-6cm/cm・℃、
ヤング率は200〜1000kgf/mm2 であり、SU
S,アルミ,黄銅の熱的,機械的性質より、シールド管
の線膨張係数が約18×10-6cm/cm・℃以上,ヤング
率が約10000kgf/mm2 以下であれば問題ないこと
が分かる。
Now, the body 11 is made of resin for the purpose of weight reduction. Conventionally, it was an aluminum body, so its radio interference resistance was at a level without problems. However, the use of resin made it necessary to take measures. In this embodiment, the electromagnetic shield tube 15 is added. The electromagnetic shield tube 15 is shown in FIG.
As shown in FIG. 6, it is made of thin metal (SUS), has a cylindrical portion 15-a and a mounting flange portion 15-b, and is integrated by deep drawing. The mounting flange portion is electrically connected to the base 2 made of a conductive member by a mounting bolt 16 and is connected to the ground. The mounting flange portion 15-b has a burring portion 15-c, and the nut 17 is press-fitted into this portion. Therefore, it suffices to set the shield tube 15 in the mold at the time of molding, which is effective in reducing the number of steps. FIG. 6 is a detailed sectional view of the press-fitting portion. FIG. 7 shows the resistance to radio interference when a resin body is adopted, and can be greatly improved by providing a shield tube as shown in the figure. When a high temperature and low temperature thermal shock test was carried out in such a structure, a crack was generated in the resin body. The cause is due to the difference in linear expansion coefficient between the resin and the electromagnetic shield tube, and it was solved by changing the material from SUS to aluminum or brass plate. Generally, resin (P.B.
T) has a linear expansion coefficient of 20 to 90 × 10 = −6 cm / cm · ° C.,
Young's modulus is 200 to 1000 kgf / mm 2 , and SU
Due to the thermal and mechanical properties of S, aluminum and brass, there is no problem if the coefficient of linear expansion of the shield tube is about 18 × 10 -6 cm / cm · ° C or higher and the Young's modulus is about 10000 kgf / mm 2 or less. I understand.

【0011】[0011]

【発明の効果】本発明によれば、耐電波障害対策及び熱
衝撃耐久性を安価な方法にて確保することができる。
According to the present invention, it is possible to secure measures against radio wave interference and durability against thermal shock by an inexpensive method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す発熱抵抗式空気流量測
定装置の軸方向断面図。
FIG. 1 is an axial sectional view of a heating resistance type air flow rate measuring device showing an embodiment of the present invention.

【図2】図1の径方向断面図。FIG. 2 is a radial cross-sectional view of FIG.

【図3】図1の平面図。FIG. 3 is a plan view of FIG.

【図4】本発明の一実施例を示すシールド管の平面図。FIG. 4 is a plan view of a shield tube showing an embodiment of the present invention.

【図5】図4の断面図。5 is a cross-sectional view of FIG.

【図6】図5のナット圧入部詳細図。FIG. 6 is a detailed view of the nut press-fitting portion of FIG.

【図7】耐電波障害特性図。FIG. 7 is a radio wave interference resistance characteristic diagram.

【符号の説明】[Explanation of symbols]

1…発熱抵抗体、2…ベース、5…感温抵抗体、7…駆
動回路、9…バイパス空気通路、10…メイン空気通
路、11…ボディ、15…電磁シールド管。
DESCRIPTION OF SYMBOLS 1 ... Heating resistor, 2 ... Base, 5 ... Temperature sensitive resistor, 7 ... Drive circuit, 9 ... Bypass air passage, 10 ... Main air passage, 11 ... Body, 15 ... Electromagnetic shield tube.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】樹脂で構成された吸入空気通路のボディ内
部に空気流量測定用の発熱抵抗体が配置され、前記ボデ
ィの外壁には、前記発熱抵抗体の駆動回路が取付けてあ
り前記発熱抵抗体が吸入空気を通す孔付き電磁シールド
管で覆われ、この電磁シールド管は、深絞り加工による
管体で一端周縁にフランジが一体形成され、このフラン
ジが前記駆動回路の導電性ベースと前記ボディ外壁との
間に固定,介在した形で、前記電磁シールド管が前記ボ
ディ内部に組み込まれ、この電磁シールド管が前記フラ
ンジ及び前記ベースを介してアースされている発熱抵抗
式空気流量測定装置において、前記電磁シールド管の材
質を線膨張係数が樹脂の0.5〜1.5倍以内、ヤング率
が10倍以内としたことを特徴とする発熱抵抗式空気流
量測定装置。
1. A heating resistor for measuring an air flow rate is arranged inside a body of an intake air passage made of resin, and a drive circuit for the heating resistor is attached to an outer wall of the body. The body is covered with an electromagnetic shield tube having a hole through which intake air passes, and the electromagnetic shield tube is a tube body formed by deep drawing, and a flange is integrally formed on one end periphery, and the flange is formed on the conductive base of the drive circuit and the body. In a heating resistance type air flow rate measuring device in which the electromagnetic shield tube is incorporated inside the body in a form fixed and interposed between the outer wall and the electromagnetic shield tube is grounded via the flange and the base, A heating resistance type air flow rate measuring device, wherein the material of the electromagnetic shield tube has a coefficient of linear expansion within 0.5 to 1.5 times that of resin and a Young's modulus within 10 times.
【請求項2】特許請求範囲第1項記載の発熱抵抗式空気
流量測定装置において、電磁シールド管の材質として、
線膨張係数が18×10-6cm/cm・℃以上、ヤング率が
10000kgf/mm2 以下としたことを特徴とする発熱
抵抗式空気流量測定装置。
2. The heating resistance type air flow measuring device according to claim 1, wherein the material of the electromagnetic shield tube is:
An exothermic resistance type air flow rate measuring device having a linear expansion coefficient of 18 × 10 −6 cm / cm · ° C. or more and a Young's modulus of 10,000 kgf / mm 2 or less.
【請求項3】特許請求範囲第1項記載の発熱抵抗式空気
流量測定装置において、電磁シールド管の材質としてア
ルミ若しくは黄銅を使用したことを特徴とする発熱抵抗
式空気流量測定装置。
3. A heating resistance type air flow rate measuring device according to claim 1, wherein aluminum or brass is used as a material of the electromagnetic shield tube.
JP5020973A 1993-02-09 1993-02-09 Heat resistance type air flow rate measuring device Pending JPH06235650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5020973A JPH06235650A (en) 1993-02-09 1993-02-09 Heat resistance type air flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5020973A JPH06235650A (en) 1993-02-09 1993-02-09 Heat resistance type air flow rate measuring device

Publications (1)

Publication Number Publication Date
JPH06235650A true JPH06235650A (en) 1994-08-23

Family

ID=12042116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5020973A Pending JPH06235650A (en) 1993-02-09 1993-02-09 Heat resistance type air flow rate measuring device

Country Status (1)

Country Link
JP (1) JPH06235650A (en)

Similar Documents

Publication Publication Date Title
EP0116144B1 (en) Thermal air flow meter
EP0106455B1 (en) Mass airflow sensor
US4833912A (en) Flow measuring apparatus
JPH07294338A (en) Temperature sensor
JP2002512360A (en) Capacitive sensor assembly with antisoot coating
JPH0197817A (en) Thermal aerometer
US4299125A (en) Air quantity metering apparatus
CN1130941A (en) Device for measuring quantity of flowing medium
JPH06235650A (en) Heat resistance type air flow rate measuring device
JP2690660B2 (en) Thermal air flow meter
JPH11183221A (en) Heating resistor type air flow measurement device
JPH06265387A (en) Exothermic resistor type air flow rate measuring instrument
JPH0694496A (en) Air flow measuring device
JP2695577B2 (en) Shield tube and air flow meter for anti-electromagnetic interference of air flow measuring element
JPS58110826A (en) Intake air temperature signal generating device for internal-combustion engine
JPH0530734U (en) Hot wire air flow meter
JP2549121B2 (en) Thermal air flow meter
JPH05264311A (en) Air flow measuring device
JP2007155533A (en) Apparatus for measuring air flow rate
JPH0572012A (en) Heat wire type air flowmeter
JPH08110256A (en) Thermal flow rate-measuring apparatus
JPS63229327A (en) hot wire air flow meter
JPH0611373A (en) Thermal air flow meter
JPS63243429A (en) Engine intake air amount detection device
JP3473133B2 (en) Flowmeter