[go: up one dir, main page]

JPH06235067A - Formation of silicon oxide film - Google Patents

Formation of silicon oxide film

Info

Publication number
JPH06235067A
JPH06235067A JP5044590A JP4459093A JPH06235067A JP H06235067 A JPH06235067 A JP H06235067A JP 5044590 A JP5044590 A JP 5044590A JP 4459093 A JP4459093 A JP 4459093A JP H06235067 A JPH06235067 A JP H06235067A
Authority
JP
Japan
Prior art keywords
film
silicon oxide
oxide film
semiconductor device
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5044590A
Other languages
Japanese (ja)
Other versions
JP3188782B2 (en
Inventor
Motoi Sasaki
基 佐々木
Takashi Nakamura
隆司 中村
Katsutoshi Mine
勝利 峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Silicone Co Ltd filed Critical Dow Corning Toray Silicone Co Ltd
Priority to JP04459093A priority Critical patent/JP3188782B2/en
Priority to US08/187,239 priority patent/US5380555A/en
Priority to TW83100722A priority patent/TW295689B/zh
Priority to KR1019940002644A priority patent/KR100295485B1/en
Priority to DE69423991T priority patent/DE69423991T2/en
Priority to EP94101924A priority patent/EP0610899B1/en
Publication of JPH06235067A publication Critical patent/JPH06235067A/en
Application granted granted Critical
Publication of JP3188782B2 publication Critical patent/JP3188782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Silicon Polymers (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide the ceramic type silicon oxide film which is a thick film, is flat, is free from cracks and pinholes and is insoluble in an org. solvent by heating a base material on which a film mainly consisting of the silicon base resin expressed by specific general formula is formed. CONSTITUTION:The film mainly consisting of the silicon base resin expressed by the general formula: (HR2SiO1/2)x(SiO4/2)1.0 is formed on the surface of the base material. In the formula, R is H, alkyl, aryl; X is 0.1<=X<=2.0. This base material is then heated to convert the film to the ceramic type silicon oxide film. The desired film which is flattened in >=1mu level difference and does not contain silanol groups and alkoxy groups to be the cause for moisture absorption and carbon poison in the formed silicon oxide is formed at the temp. much lower than the m.p. of Al by this method. A tendency to high polymn. is admitted during preservation in a gelatinized or molten state at the time of synthesis if X in the formula is below the lower limit. On the other hand, the sufficient film hardness is not obtainable if X is above the upper limit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基材表面に酸化ケイ素
膜を形成する方法に関し、詳しくは、基材表面に厚膜で
かつクラックおよびピンホールを有しない、有機溶剤に
不溶のセラミック状酸化ケイ素膜を形成する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a silicon oxide film on the surface of a substrate, and more specifically, it is a ceramic film insoluble in organic solvents, which is a thick film on the surface of the substrate and has neither cracks nor pinholes. The present invention relates to a method for forming a silicon oxide film.

【0002】[0002]

【従来の技術】一般に、基材表面を保護するため、基材
表面に保護膜が形成される。特に、電気・電子産業にお
いては、近年の半導体デバイスの高集積化・多層化に伴
い、半導体デバイスの複雑化および半導体デバイス表面
の凹凸が著しくなってきており、半導体デバイスを、機
械的損傷、化学的損傷、静電的損傷、イオン性汚染、非
イオン性汚染および放射線汚染等から保護する目的で、
および半導体デバイス表面の凹凸を平坦化する目的で、
半導体デバイス表面にパッシベーション膜または回路の
多層化に伴い配線間の絶縁および平坦化を目的とした層
間絶縁膜が形成される。
2. Description of the Related Art Generally, in order to protect the surface of a base material, a protective film is formed on the surface of the base material. In particular, in the electric and electronic industries, with the recent high integration and multi-layering of semiconductor devices, the complexity of semiconductor devices and the unevenness of the surface of the semiconductor device have become remarkable. Protection against static, electrostatic, ionic, non-ionic and radiation pollution,
And for the purpose of flattening the unevenness of the semiconductor device surface,
On the surface of a semiconductor device, a passivation film or an interlayer insulating film for the purpose of insulating and flattening between wirings is formed as a circuit is multi-layered.

【0003】半導体デバイス表面に形成されるパッシベ
ーション膜および層間絶縁膜としては酸化ケイ素膜が一
般に用いられる。半導体デバイス表面に酸化ケイ素膜を
形成する方法としては、例えば、CVD(化学気相蒸
着)法およびスピンコート法があり、スピンコート法に
より半導体デバイス表面に酸化ケイ素膜を形成する方法
としては、例えば、無機SOG(スピンオングラス)お
よび有機SOGを用いる方法がある。
A silicon oxide film is generally used as a passivation film and an interlayer insulating film formed on the surface of a semiconductor device. Examples of methods for forming a silicon oxide film on the surface of a semiconductor device include a CVD (Chemical Vapor Deposition) method and a spin coating method. Examples of methods for forming a silicon oxide film on the surface of a semiconductor device by a spin coating method include: Inorganic SOG (spin on glass) and organic SOG are available.

【0004】しかし、無機SOGにより形成された酸化
ケイ素膜は、その膜厚が0.3μmを越えるとクラック
を生じるため、1μm以上の凹凸を有するデバイス基板
の段差を埋めるためには重ね塗りが必要であり、特に、
被膜自体の平坦化能力が乏しいため、被膜形成後エッチ
バックによる平坦化工程が必要であった。
However, since a silicon oxide film formed of inorganic SOG has cracks when its thickness exceeds 0.3 μm, multiple coatings are required to fill the steps of a device substrate having irregularities of 1 μm or more. And, in particular,
Since the flattening ability of the film itself is poor, a flattening step by etching back was necessary after the film formation.

【0005】一方、有機SOGにより形成された酸化ケ
イ素膜は、1回の塗布でクラックを有しない1μm以上
の膜を形成することは可能ではあるが、無機SOGと同
様、被膜自体の平坦化能力が乏しいため、被膜形成後エ
ッチバックによる平坦化工程が必要であった。また、酸
化ケイ素被膜中に多量のシラノール基およびアルコキシ
基が残存するため吸湿性が高く、また酸素プラズマ処理
の際に残存アルコキシ基によるカーボンポイズン(炭素
汚染)の問題が生じ、層間絶縁剤としての電気的信頼性
が劣るという問題があった。
On the other hand, a silicon oxide film formed of an organic SOG can form a film having a crack of 1 μm or more with one coating, but like the inorganic SOG, the flattening ability of the film itself is obtained. However, a flattening process by etching back was necessary after the film formation. In addition, since a large amount of silanol groups and alkoxy groups remain in the silicon oxide film, the hygroscopicity is high, and a problem of carbon poison (carbon contamination) due to the residual alkoxy groups occurs during oxygen plasma treatment, which causes a problem as an interlayer insulating agent. There was a problem of poor electrical reliability.

【0006】このため、無機SOGおよび有機SOGに
より形成された酸化ケイ素被膜の問題点を改良する方法
として、水素シルセスキオキサンにより酸化ケイ素膜を
形成する方法が提案されている(特開平3−18367
5号公報参照)。この方法は、樹脂自体が加熱溶融する
ことにより、段差を平坦化する能力に優れているため、
エッチバック工程を必要としない。またその構造単位中
に有機基を有しないために、酸素プラズマ処理の際のカ
ーボンポイズンの心配がないという利点を有する。
Therefore, a method of forming a silicon oxide film by hydrogen silsesquioxane has been proposed as a method for improving the problems of the silicon oxide film formed by the inorganic SOG and the organic SOG (Japanese Patent Laid-Open No. 3-30083). 18367
(See Japanese Patent Publication No. 5). This method is excellent in the ability to flatten the steps by heating and melting the resin itself,
No etch back process is required. Further, since it does not have an organic group in its structural unit, it has an advantage that there is no fear of carbon poison during oxygen plasma treatment.

【0007】しかし、特開平3−183675号により
提案された酸化ケイ素膜の形成方法では、0.8μm
(8000オングストローム)以上の膜厚を有する酸化
ケイ素膜を形成することができず、このため半導体デバ
イス表面の凹凸、即ち、0.8μm(8000オングス
トローム)以上の段差を有する半導体デバイス表面の凹
凸を完全に平坦化することができないという問題があっ
た。また、この方法により厚膜の酸化ケイ素膜を得よう
とすると、酸化ケイ素膜にクラックおよびピンホールを
生じることがあり、半導体デバイスの信頼性を著しく低
下させるという問題があった。
However, in the method of forming a silicon oxide film proposed by Japanese Patent Laid-Open No. 183675 / 0.8, 0.8 μm
Since it is not possible to form a silicon oxide film having a film thickness of (8000 angstroms) or more, the unevenness of the semiconductor device surface, that is, the unevenness of the semiconductor device surface having a step of 0.8 μm (8000 angstroms) or more is completely removed. There was a problem that it could not be flattened. Further, when a thick silicon oxide film is to be obtained by this method, cracks and pinholes may occur in the silicon oxide film, resulting in a problem that the reliability of the semiconductor device is significantly reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは、加熱溶
融することにより1μm以上の段差を平坦化し、クラッ
クおよびピンホールを有しない酸化ケイ素厚膜を形成
し、かつ形成された酸化ケイ素中に吸湿およびカーボン
ポイズンの原因となるシラノール基およびアルコキシ基
を有しない、有機溶剤に不溶の酸化ケイ素膜を形成する
方法を鋭意検討し、ついに本発明に到達した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have formed a silicon oxide thick film having a level difference of 1 μm or more by heating and melting to form a silicon oxide thick film free from cracks and pinholes, and formed in the formed silicon oxide. Further, the inventors have earnestly studied a method of forming a silicon oxide film insoluble in an organic solvent, which does not have a silanol group and an alkoxy group which cause moisture absorption and carbon poison, and finally arrived at the present invention.

【0009】すなわち、本発明の目的は、基材表面に厚
膜でかつクラックおよびピンホールを有しない、有機溶
剤に不溶のセラミック状酸化ケイ素膜を形成する方法を
提供することにある。
That is, an object of the present invention is to provide a method for forming a ceramic-like silicon oxide film insoluble in an organic solvent, which is a thick film on the surface of a substrate and has neither cracks nor pinholes.

【0010】[0010]

【課題を解決するための手段およびその作用】本発明
は、基材表面に、一般式: (HR2SiO1/2X(SiO4/21.0 (式中、Rは水素原子、アルキル基およびアリール基か
らなる群から選択される基であり、Xは0.1≦X≦
2.0である。)で示されるケイ素樹脂を主剤としてな
る被膜を形成し、次いで該被膜の形成された該基材を加
熱して、該被膜をセラミック状酸化ケイ素膜にすること
を特徴とする酸化ケイ素膜の形成方法に関する。
MEANS FOR SOLVING THE PROBLEMS AND ACTION THEREOF The present invention provides a substrate of the general formula: (HR 2 SiO 1/2 ) X (SiO 4/2 ) 1.0 (wherein R is a hydrogen atom or an alkyl group). Is a group selected from the group consisting of a group and an aryl group, and X is 0.1 ≦ X ≦
It is 2.0. Forming a coating film comprising a silicon resin as a main component, and then heating the substrate having the coating film formed thereon to form a ceramic silicon oxide film. Regarding the method.

【0011】本発明の酸化ケイ素膜の形成方法について
詳細に説明する。
The method for forming the silicon oxide film of the present invention will be described in detail.

【0012】本発明において、基材表面の被膜は、一般
式: (HR2SiO1/2X(SiO4/21.0 で示されるケイ素樹脂を主剤としてなる。上式中、Rは
水素原子、アルキル基およびアリール基からなる群から
選択される基であり、Rのアルキル基として具体的に
は、メチル基,エチル基,プロピル基,ブチル基が例示
され、Rのアリール基としてはフェニル基,トリル基,
キシリル基が例示され、好ましくはRはメチル基または
フェニル基である。また、上式中、Xは0.1≦X≦
2.0であり、好ましくは0.3≦X≦1.0である。
これは、Xが0.1未満であると、これを合成する際に
ケイ素樹脂がゲル化しやすく、また合成時にゲル化しな
くても、溶液状態で保存中に樹脂自体が高分子量化する
傾向がみられるからであり、またXが2.0をこえる
と、酸化ケイ素膜の十分な被膜硬度が得られなかった
り、ケイ素樹脂中の有機基含有量が相対的に大きくなる
ため、被膜形成後の酸素プラズマ処理工程において、十
分なエッチング耐性が得られないからである。
In the present invention, the coating film on the surface of the base material is mainly composed of a silicon resin represented by the general formula: (HR 2 SiO 1/2 ) X (SiO 4/2 ) 1.0 . In the above formula, R is a group selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, and specific examples of the alkyl group of R include a methyl group, an ethyl group, a propyl group and a butyl group, As the aryl group of R, a phenyl group, a tolyl group,
A xylyl group is exemplified, and R is preferably a methyl group or a phenyl group. Further, in the above formula, X is 0.1 ≦ X ≦
2.0, preferably 0.3 ≦ X ≦ 1.0.
This is because when X is less than 0.1, the silicon resin tends to gel during the synthesis, and even if the silicon resin does not gel during the synthesis, the resin itself tends to have a high molecular weight during storage in the solution state. When X exceeds 2.0, sufficient hardness of the silicon oxide film cannot be obtained, or the content of organic groups in the silicon resin becomes relatively large. This is because sufficient etching resistance cannot be obtained in the oxygen plasma treatment process.

【0013】このようなケイ素樹脂の分子量は、特に限
定されないが、該樹脂が加熱時に溶融流動することによ
って、半導体デバイス基板の段差を平坦化するという特
性を示すためには、好ましくは重量平均分子量100,
000以下であり、その粘度および軟化点等の物理特性
は特に限定されないが、好ましくは軟化点が400℃以
下である。
The molecular weight of such a silicon resin is not particularly limited, but in order to exhibit the characteristic that the resin melts and flows during heating to flatten the steps of the semiconductor device substrate, the weight average molecular weight is preferably. 100,
000 or less, and the physical properties such as viscosity and softening point are not particularly limited, but the softening point is preferably 400 ° C. or less.

【0014】また、このようなケイ素樹脂の製造方法は
特に限定されず、その製造方法として例えば、純水をア
ルコールに溶解させ、その溶液にテトラアルコキシシラ
ンとジメチルモノクロロシランの混合液を滴下して該ケ
イ素樹脂を合成する方法および1,1,3,3−テトラ
メチルジシロキサンをアルコールと塩酸の共溶媒に溶解
させ、これにテトラアルコキシシランを滴下して該ケイ
素樹脂を形成する方法が挙げられる。
The method for producing such a silicon resin is not particularly limited. For example, pure water is dissolved in alcohol, and a mixed solution of tetraalkoxysilane and dimethylmonochlorosilane is dropped into the solution. Examples include a method of synthesizing the silicon resin and a method of dissolving 1,1,3,3-tetramethyldisiloxane in a cosolvent of alcohol and hydrochloric acid and dropping tetraalkoxysilane to the solution to form the silicon resin. .

【0015】本発明において、基材表面の被膜は、上記
ケイ素樹脂を主剤としてなるが、その他の成分としては
特に限定されないが、その他の成分として具体的には、
塩化白金酸,白金とアルケンとの錯体,白金とビニルシ
ロキサンとの錯体,塩化白金酸のアルコール溶液等の白
金化合物;塩酸,酢酸等の酸性触媒;メタノール,エタ
ノール等のアルコール;さらには末端シラノールを有す
る低分子シロキサンが例示される。
In the present invention, the coating film on the surface of the base material contains the above-mentioned silicon resin as a main agent, but other components are not particularly limited, but specifically, as other components,
Platinum compounds such as chloroplatinic acid, platinum-alkene complexes, platinum-vinylsiloxane complexes, chloroplatinic acid alcohol solutions; acidic catalysts such as hydrochloric acid and acetic acid; alcohols such as methanol and ethanol; and terminal silanols. Examples of the low molecular weight siloxane have.

【0016】本発明において、基材表面に上記ケイ素樹
脂を主剤としてなる被膜を形成する方法は特に限定され
ず、この方法として具体的には、液状の該ケイ素樹脂ま
たは該ケイ素樹脂を有機溶剤に溶解してなる溶液をスピ
ンコートし、または噴霧し、あるいは該ケイ素樹脂また
は該溶液に基材をディッピングし、次いで必要により溶
剤を除去して、基材表面にケイ素樹脂を主剤としてなる
被膜を形成する方法または室温で固体状の該ケイ素樹脂
を基材上で加熱軟化させて、基材表面にケイ素樹脂を主
剤としてなる被膜を形成する方法が例示される。前者の
方法において、該ケイ素樹脂を溶解するために使用する
有機溶剤は、該ケイ素樹脂を均一に溶解し得るものであ
れば特に限定されないが、このような有機溶剤として具
体的には、メタノール,エタノール等のアルコール系溶
剤;メチルセロソルブ,エチルセロソルブ等のセロソル
ブ系溶剤;メチルエチルケトン,メチルイソブチルケト
ン等のケトン系用溶剤;酢酸ブチル,酢酸イソアミル,
メチルセロソルブアセテート,エチルセロソルブアセテ
ート等のエステル系溶剤;1,1,1,3,3,3−ヘ
キサメチルジシロキサン,1,1,3,3−テトラメチ
ルジシロキサン等の鎖状シロキサン,1,1,3,3,
5,5,7,7−オクタメチルテトラシクロシロキサ
ン,1,3,5,7−テトラメチルテトラシクロシロキ
サン等の環状シロキサン,テトラメチルシラン,ジメチ
ルジエチルシラン等のシラン化合物等のシリコーン系溶
剤が例示され、さらに上記有機溶剤の2種以上を組み合
わせて使用することができる。
In the present invention, the method of forming a coating film containing the above-mentioned silicon resin as the main component on the surface of the substrate is not particularly limited. Specifically, as this method, the liquid silicon resin or the silicon resin in an organic solvent is used. Spin coating or spraying of the dissolved solution, or dipping the base material into the silicon resin or the solution, and then removing the solvent if necessary, forms a film composed mainly of silicon resin on the base material surface. Or a method in which the silicon resin which is solid at room temperature is heated and softened on the base material to form a coating film containing the silicon resin as a main component on the surface of the base material. In the former method, the organic solvent used to dissolve the silicon resin is not particularly limited as long as it can uniformly dissolve the silicon resin, but as such an organic solvent, specifically, methanol, Alcohol solvents such as ethanol; Cellosolve solvents such as methyl cellosolve and ethyl cellosolve; Ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; Butyl acetate, isoamyl acetate,
Ester solvents such as methyl cellosolve acetate and ethyl cellosolve acetate; chain siloxanes such as 1,1,1,3,3,3-hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane, 1, 1, 3, 3,
Examples include cyclic solvents such as 5,5,7,7-octamethyltetracyclosiloxane and 1,3,5,7-tetramethyltetracyclosiloxane, and silicone solvents such as silane compounds such as tetramethylsilane and dimethyldiethylsilane. Further, two or more of the above organic solvents can be used in combination.

【0017】また、本発明において、上記ケイ素樹脂を
主剤としてなる被膜を形成するための基材は特に限定さ
れず、このような基材として具体的には、ガラス基材,
セラミック基材,金属基材,半導体デバイスが例示さ
れ、特に好ましくは半導体デバイスである。このような
半導体デバイスは表面に凹凸を有していてもよく、本発
明の酸化ケイ素膜の形成方法によると、このような半導
体デバイスの表面の凹凸を平坦化することができる。
In the present invention, the base material for forming the coating film containing the above-mentioned silicon resin as a main component is not particularly limited. Specific examples of such a base material include a glass base material,
Examples include ceramic base materials, metal base materials, and semiconductor devices, with semiconductor devices being particularly preferred. Such a semiconductor device may have irregularities on the surface, and the method for forming a silicon oxide film of the present invention can flatten the irregularities on the surface of such a semiconductor device.

【0018】次いで、ケイ素樹脂を主剤としてなる被膜
の形成された基材を、加熱することにより、セラミック
状酸化ケイ素膜を形成することができる。また、本発明
において、該ケイ素樹脂を主剤としてなる被膜の形成さ
れた基材を加熱する温度および加熱時間は特に限定され
ないが、好ましくはケイ素樹脂を主剤としてなる被膜が
溶剤に不溶化する条件、例えば、100℃以上の温度
で、30分以上加熱することが望ましく、さらに好まし
くは形成された酸化ケイ素被膜中にSiH基、シラノー
ル基およびアルコキシ基が殆ど残存しない条件、例え
ば、300℃以上の温度で、30分以上加熱することが
望ましい。
Next, the ceramic-like silicon oxide film can be formed by heating the base material on which a coating film containing silicon resin as a main component is formed. Further, in the present invention, the temperature and the heating time for heating the base material having the coating formed of the silicon resin as the main agent are not particularly limited, but preferably the conditions in which the coating formed of the silicon resin as the main agent is insoluble in a solvent, for example, It is desirable to heat at a temperature of 100 ° C. or higher for 30 minutes or longer, and more preferably under conditions where SiH groups, silanol groups and alkoxy groups hardly remain in the formed silicon oxide film, for example, at a temperature of 300 ° C. or higher. It is desirable to heat for 30 minutes or more.

【0019】本発明の酸化ケイ素膜の形成方法におい
て、セラミック状酸化ケイ素膜を形成することができた
かどうか確認する方法としては、赤外線分光分析器によ
り、基材表面に形成されたケイ素樹脂を主剤としてなる
被膜中のSiH基(910cm-1および2150cm-1
にSiH基に由来するシャープな強い吸収ピーク)、ア
ルコキシ基(2870cm-1にアルコキシ基に由来する
シャープな弱い吸収ピーク)およびシラノール基(35
00cm-1付近にシラノール基に由来するブロードな中
程度の吸収ピーク)のそれぞれの含有量を測定し、次い
で、加熱後の酸化ケイ素膜のそれらを測定して比較する
ことにより確認することができる。また、加熱後の酸化
ケイ素膜を各種有機溶剤に浸漬し、該酸化ケイ素膜が有
機溶剤に対して不溶であるかどかにより確認することが
できる。
In the method for forming a silicon oxide film of the present invention, a method for confirming whether or not the ceramic silicon oxide film can be formed is as follows. The main component is the silicon resin formed on the surface of the substrate by an infrared spectrophotometer. as becomes SiH groups in the film (910 cm -1 and 2150 cm -1
A sharp strong absorption peak derived from SiH group), an alkoxy group (a sharp weak absorption peak derived from an alkoxy group at 2870 cm −1 ) and a silanol group (35
It can be confirmed by measuring the respective contents of broad medium absorption peaks derived from silanol groups near 00 cm −1 and then measuring and comparing them in the silicon oxide film after heating. . Further, it can be confirmed by immersing the heated silicon oxide film in various organic solvents and checking whether the silicon oxide film is insoluble in the organic solvent.

【0020】本発明の酸化ケイ素膜の形成方法による
と、1μm以上の厚膜のセラミック状酸化ケイ素膜をク
ラックおよびピンホールを生じることなく形成すること
ができ、またケイ素樹脂中の有機成分含有量を調節する
ことにより、生成するセラミック状酸化ケイ素膜の内部
ストレスを緩和することができる。さらに、本発明の酸
化ケイ素膜の形成方法によると、アルミニウムの融点よ
りもはるかに低い温度でセラミック状酸化ケイ素膜を形
成することができるため、半導体デバイスの回路配線に
使用されているアルミニウムを溶融劣化することがない
ので、本発明の酸化ケイ素膜の形成方法は、半導体デバ
イス表面のパッシベーション膜および層間絶縁膜の形成
方法として有用であり、得られたセラミック状酸化ケイ
素膜を有する基材表面に、さらに酸化ケイ素膜や有機樹
脂膜を形成することができるので、多層半導体デバイス
の層間絶縁膜の形成方法として有用である。
According to the method for forming a silicon oxide film of the present invention, a ceramic silicon oxide film having a thickness of 1 μm or more can be formed without causing cracks and pinholes, and the content of the organic component in the silicon resin can be increased. The internal stress of the produced ceramic silicon oxide film can be relaxed by adjusting Furthermore, according to the method for forming a silicon oxide film of the present invention, since the ceramic silicon oxide film can be formed at a temperature much lower than the melting point of aluminum, the aluminum used for the circuit wiring of the semiconductor device is melted. Since it does not deteriorate, the method for forming a silicon oxide film of the present invention is useful as a method for forming a passivation film and an interlayer insulating film on a semiconductor device surface, and a substrate surface having the obtained ceramic silicon oxide film is formed. Further, since a silicon oxide film or an organic resin film can be formed, it is useful as a method for forming an interlayer insulating film of a multilayer semiconductor device.

【0021】[0021]

【実施例】本発明を参考例、実施例および比較例により
詳細に説明する。本発明に用いたケイ素樹脂は、次の参
考例によって調製したが、該ケイ素樹脂の合成方法は次
の参考例に限定されない。
The present invention will be described in detail with reference to Reference Examples, Examples and Comparative Examples. The silicon resin used in the present invention was prepared by the following reference examples, but the method for synthesizing the silicon resin is not limited to the following reference examples.

【0022】[0022]

【参考例1】直管付滴下管、蛇管コンデンサおよび温度
計を設けた200ミリリットル−四つ口フラスコに,メ
タノール40gおよび水19.0gを秤量し、氷冷して
液温を2℃以下に下げ、系内にごく少量の流速で窒素を
通じた。この状態で溶液を攪拌しながら、直管付滴下管
より、ジメチルクロロシラン13.2g(0.14モ
ル)と正珪酸メチル60.8g(0.4モル)の混合物
を40分かけて滴下した。途中、発熱により液温は13
℃まで上昇したが、滴下終了時には8℃まで低下した。
さらに氷冷の状態で15分攪拌を続けた後、室温で4時
間攪拌した。反応液は無色透明であった。次いで、反応
液にメチルイソブチルケトン(以下、MIBKと略記す
る。)200ミリリットルを加え、さらに水200ミリ
リットルを加えたところ、2層に相分離した。下層を採
取し、これにMIBK100ミリリットルを加えて振と
うした後相分離させ、上層を採取し、先の上層と合わせ
た。水400ミリリットルを添加して振とうしたところ
乳化状態になったのでジエチルエーテル700ミリリッ
トルを加えて静置し、相分離せしめた(相分離には約1
0時間を要した)。上層を採取し、これに硫酸マグネシ
ウムを加えて6時間放置した。この後、硫酸マグネシウ
ムを濾別し、濾液を回収した(以下、この濾液を濾液A
と呼ぶ。)。濾液Aをアルミ皿上に秤量し、固形分重量
%を測定したところ、6.35%であった。次に濾液A
を125ミリリットル、高密度ポリエチレン製広口瓶に
161.07g秤量し、窒素ブローにより固形分重量%
=30.3%まで濃縮した。この時点で濃縮液からはジ
エチルエーテルあるいはメタノールの臭気を感知するこ
とはできなかった。この濃縮液に所定量のMIBKを加
えて固形分重量%=30.0%まで希釈した(以下、こ
の溶液を溶液Aとよぶ。)。溶液Aをそのままテトラヒ
ドロフランに希釈して固形分重量濃度0.2%の溶液を
調整し、この溶液を、テトラヒドロフランをキャリア溶
媒とするゲルパーミエーションクロマトグラフィーに注
入したところ、溶解成分の数平均分子量は6260、重
量平均分子量は9890、分散度は1.58であった。
この溶解成分は、29Si−核磁気共鳴スペクトル分析の
結果、次の構造式を有するケイ素樹脂であることが確認
された。 [H(CH32SiO1/20.35(SiO4/21.0
Reference Example 1 40 g of methanol and 19.0 g of water were weighed in a 200 ml-four-necked flask equipped with a dropping pipe with a straight pipe, a condensing pipe condenser, and a thermometer, and the liquid temperature was kept at 2 ° C or lower by ice cooling. It was lowered and nitrogen was passed through the system at a very small flow rate. While stirring the solution in this state, a mixture of 13.2 g (0.14 mol) of dimethylchlorosilane and 60.8 g (0.4 mol) of methyl orthosilicate was added dropwise through a dropping pipe with a straight pipe over 40 minutes. On the way, the liquid temperature was 13 due to heat generation.
However, the temperature dropped to 8 ° C at the end of the dropping.
Further, stirring was continued for 15 minutes in an ice-cooled state, and then at room temperature for 4 hours. The reaction solution was colorless and transparent. Then, 200 ml of methyl isobutyl ketone (hereinafter abbreviated as MIBK) was added to the reaction liquid, and 200 ml of water was further added, and the phases were separated into two layers. The lower layer was collected, 100 mL of MIBK was added thereto, and the mixture was shaken and then phase-separated, and the upper layer was collected and combined with the previous upper layer. When 400 ml of water was added and shaken, it became an emulsified state, so 700 ml of diethyl ether was added and allowed to stand, and the phases were separated (about 1 for phase separation).
It took 0 hours). The upper layer was collected, magnesium sulfate was added thereto, and the mixture was left for 6 hours. Thereafter, magnesium sulfate was filtered off, and the filtrate was recovered (hereinafter, this filtrate was referred to as filtrate A
Call. ). The filtrate A was weighed on an aluminum dish and the solid content weight% was measured to be 6.35%. Next, filtrate A
125 ml of it was weighed in a wide-neck bottle made of high-density polyethylene (161.07 g), and blown with nitrogen to obtain a solid content% by weight.
= Concentrated to 30.3%. At this point, no odor of diethyl ether or methanol could be detected from the concentrated liquid. A predetermined amount of MIBK was added to this concentrated solution to dilute it to a solid content weight% = 30.0% (hereinafter, this solution is referred to as solution A). Solution A was directly diluted with tetrahydrofuran to prepare a solution having a solid content weight concentration of 0.2%, and this solution was injected into gel permeation chromatography using tetrahydrofuran as a carrier solvent. 6260, the weight average molecular weight was 9890, and the dispersity was 1.58.
As a result of 29 Si-nuclear magnetic resonance spectrum analysis, this dissolved component was confirmed to be a silicon resin having the following structural formula. [H (CH 3 ) 2 SiO 1/2 ] 0.35 (SiO 4/2 ) 1.0

【0023】また、溶液Aをシリコンウエハ上に滴下
し、空気中室温にて放置して溶剤を乾燥させることによ
り固形分の約1μ厚の被膜を形成させた。この膜をフー
リエ変換型赤外線分光分析器で透過モードにより構造解
析したところ、1100cm-1付近にシロキサン結合に
由来するブロードな強い吸収ピーク、1260cm-1
Si−CH3基に由来するシャープな強い吸収ピーク、
910cm-1および2150cm-1にSiH基に由来す
るシャープな強い吸収ピーク、2870cm-1にアルコ
キシ基に由来するシャープな弱い吸収ピーク、2960
cm-1にC−H基に由来するシャープな中程度の吸収ピ
ーク、3500cm-1付近にシラノール基に由来するブ
ロードな中程度の吸収ピークが観察された。溶液Aを1
25ミリリットルの高密度ポリエチレン製広口瓶中で室
温にて密閉保管したところ、1ヶ月経過した時点で粘度
変化等の視覚的変化は観察されず、数平均分子量は62
60、重量平均分子量は9890、分散度は1.58で
あった。
Further, the solution A was dropped on a silicon wafer and left to stand in air at room temperature to dry the solvent, thereby forming a coating film having a solid content of about 1 μm. Structural analysis of this film by a transmission mode using a Fourier transform infrared spectrophotometer revealed a strong strong absorption peak due to a siloxane bond near 1100 cm −1 and a sharp strong absorption peak due to a Si—CH 3 group at 1260 cm −1. Absorption peak,
910 cm -1 and from SiH groups 2150 cm -1 sharp strong absorption peaks, sharp weak absorption peak derived from the alkoxy group to 2870cm -1, 2960
sharp medium absorption peak derived from C-H groups in cm -1, absorption peaks moderate broad derived from silanol group near 3500 cm -1 was observed. Solution A 1
When sealed and stored at room temperature in a 25 ml wide-bottle made of high-density polyethylene, no visual change such as viscosity change was observed after one month, and the number average molecular weight was 62.
60, the weight average molecular weight was 9890, and the dispersity was 1.58.

【0024】[0024]

【参考例2】直管付滴下管、蛇管コンデンサおよび温度
計を設けた200ミリリットル−四つ口フラスコに、メ
タノール20gおよび水9.5gを秤量し、氷冷して液
温を5℃以下に下げ、系内にごく少量の流速で窒素を通
じた。この状態で溶液を攪拌させながら、直管付滴下管
より、ジメチルクロロシラン18.9g(0.20モ
ル)と正珪酸メチル30.4g(0.2モル)の混合物
を40分かけて滴下した。途中、発熱により液温は13
℃まで上昇したが、滴下終了時には8℃まで低下した。
さらに氷冷の状態で15分攪拌を続けた後、室温で4時
間攪拌した。反応液は無色透明であった。反応液にMI
BKを100ミリリットルを加え、さらに水100ミリ
リットルを加えたところ、2層に相分離した。下層を採
取し、MIBK50ミリリットルを加えて振とうした後
相分離させ、上層を採取し、先の上層と合わせた。水2
00ミリリットルを添加して振とうした後静置したとこ
ろ、速やかに層分離が起こった。さらに水200ミリリ
ットルを加えて水洗し、上層を採取し、これに硫酸マグ
ネシウムを加えて10時間放置した。硫酸マグネシウム
を濾別した後、濾液を一部取り、窒素ブローにより溶剤
を完全に除去したところ、無色透明な高粘稠物が得られ
た。この物質はアセトン、四塩化炭素に可溶であった。
この物質を空気中で数日放置したところ、白色固体に外
観が変化したが、溶解性は変わらなかった。同時に濾液
中の固形分収量が25.6gと計算された。(理論収量
の100%)。残りの濾液を窒素ブローにより一旦固形
分濃度が30%を上回る濃度まで濃縮した後、所定量の
MIBKを加えて固形分濃度30%の溶液を調整した
(以下、この溶液を溶液Bとよぶ。)。溶液Bをそのま
まテトラヒドロフランに希釈して固形分重量濃度0.2
%の溶液を調整し、この溶液を、テトラヒドロフランを
キャリア溶媒とするゲルパーミエーションクロマトグラ
フィーに注入したところ、溶解成分の数平均分子量は4
190、重量平均分子量は8510、分散度は2.03
であった。この溶解成分は、29Si−核磁気共鳴スペク
トル分析の結果、次の構造式を有するケイ素樹脂である
ことが確認された。 [H(CH32SiO1/21.0(SiO4/21.0
[Reference Example 2] 20 g of methanol and 9.5 g of water were weighed in a 200 ml-four-necked flask equipped with a dropping pipe with a straight pipe, a condenser of a spiral tube and a thermometer, and the liquid temperature was lowered to 5 ° C or lower by ice cooling. It was lowered and nitrogen was passed through the system at a very small flow rate. While stirring the solution in this state, a mixture of 18.9 g (0.20 mol) of dimethylchlorosilane and 30.4 g (0.2 mol) of methyl orthosilicate was added dropwise through a dropping pipe with a straight pipe over 40 minutes. On the way, the liquid temperature was 13 due to heat generation.
However, the temperature dropped to 8 ° C at the end of the dropping.
Further, stirring was continued for 15 minutes in an ice-cooled state, and then at room temperature for 4 hours. The reaction solution was colorless and transparent. MI in the reaction solution
When 100 ml of BK was added and 100 ml of water was further added, the phases were separated into two layers. The lower layer was collected, 50 mL of MIBK was added thereto, and the mixture was shaken and then phase-separated. The upper layer was collected and combined with the previous upper layer. Water 2
When 00 ml was added, and the mixture was shaken and then allowed to stand, layer separation occurred immediately. Further, 200 ml of water was added and the mixture was washed with water, the upper layer was collected, magnesium sulfate was added thereto, and the mixture was allowed to stand for 10 hours. After magnesium sulfate was filtered off, a part of the filtrate was taken and the solvent was completely removed by a nitrogen blow to obtain a colorless and transparent highly viscous substance. This substance was soluble in acetone and carbon tetrachloride.
When this material was left in the air for several days, its appearance changed to a white solid, but its solubility did not change. At the same time, the solid yield in the filtrate was calculated to be 25.6 g. (100% of theoretical yield). The remaining filtrate was once concentrated by nitrogen blowing to a concentration of solid content exceeding 30%, and then a predetermined amount of MIBK was added to prepare a solution having a solid content concentration of 30% (hereinafter, this solution is referred to as solution B). ). Solution B is diluted as it is with tetrahydrofuran to obtain a solid content weight concentration of 0.2.
% Solution was prepared, and this solution was injected into gel permeation chromatography using tetrahydrofuran as a carrier solvent. The number average molecular weight of the dissolved component was 4
190, weight average molecular weight 8510, dispersity 2.03
Met. As a result of 29 Si-nuclear magnetic resonance spectrum analysis, this dissolved component was confirmed to be a silicon resin having the following structural formula. [H (CH 3 ) 2 SiO 1/2 ] 1.0 (SiO 4/2 ) 1.0

【0025】また、溶液Bをシリコンウエハ上に滴下
し、空気中室温にて放置して溶剤を乾燥させることによ
り固形分の約1μ厚の被膜を形成させた。この膜をフー
リエ変換型赤外線分光分析器で透過モードにより構造解
析したところ、1100cm-1付近にシロキサン結合に
由来するブロードな強い吸収ピーク、1260cm-1
Si−CH3基に由来するシャープな強い吸収ピーク、
910cm-1および2150cm-1にSiH基に由来す
るシャープな強い吸収ピーク、2870cm-1にアルコ
キシ基に由来するシャープな弱い吸収ピーク、2960
cm-1にC−H基に由来するシャープな中程度の吸収ピ
ーク、3500cm-1付近にシラノール基に由来するブ
ロードな中程度の吸収ピークが観察された。
Further, the solution B was dropped on a silicon wafer and left to stand at room temperature in the air to dry the solvent, thereby forming a coating film having a solid content of about 1 μm. Structural analysis of this film by a transmission mode using a Fourier transform infrared spectrophotometer revealed a strong strong absorption peak due to a siloxane bond near 1100 cm −1 and a sharp strong absorption peak due to a Si—CH 3 group at 1260 cm −1. Absorption peak,
910 cm -1 and from SiH groups 2150 cm -1 sharp strong absorption peaks, sharp weak absorption peak derived from the alkoxy group to 2870cm -1, 2960
sharp medium absorption peak derived from C-H groups in cm -1, absorption peaks moderate broad derived from silanol group near 3500 cm -1 was observed.

【0026】[0026]

【参考例3】直管付滴下管、蛇管コンデンサおよび温度
計を設けた200ミリリットル−四つ口フラスコに、メ
タノール20g、7.4N−塩酸12.1g(塩化水素
=0.07モル)および1,1,3,3−テトラメチル
ジシロキサン4.69g(0.035モル)を秤量し、
氷冷して液温を5℃以下に下げ、系内にごく少量の流速
で窒素を流通させた。この状態で溶液を攪拌させなが
ら、直管付滴下管より、正珪酸メチル30.4g(0.
2モル)の混合物を40分かけて滴下した。途中、発熱
により液温は13℃まで上昇したが、滴下終了時には8
℃まで低下した。さらに氷冷の状態で15分攪拌を続け
た後、室温で4時間攪拌した。反応液は無色透明であっ
た。反応液にMIBK100ミリリットルを加え、さら
に水100ミリリットルを加えたところ、2層に相分離
した。下層を採取し、MIBK50ミリリットルを加え
て振とうした後相分離させ、上層を採取し、先の上層と
合わせた。水200ミリリットルを添加して振とうした
ところ乳化状態になったのでジエチルエーテル200ミ
リリットルを加えて静置し、相分離せしめた(相分離に
は約10時間要した。上層は透明だが、下層は乳濁して
おり、粘稠の高分子様物質が少量懸濁していた)。下層
を除去し、さらに水200ミリリットルを加えて振とう
後静置した。相分離は速やかに起きた。上層を採取し、
これに硫酸マグネシウムを加えて2.5日放置した。硫
酸マグネシウムを濾別した後、濾液を一部取り、窒素ブ
ローにより完全に溶剤を除去したところ、白色固体が得
られた。この固体はアセトンに不溶であった。同時に濾
液中の固形分収量が11.49gと計算された(理論収
量の68.8%)。残りの濾液を窒素ブローにより一旦
固形分濃度30%を若干上回る濃度まで濃縮した後、所
定量のMIBKを加えて固形分濃度を30%とした(以
下、この溶液を溶液Cと呼ぶ。)。溶液Cをそのままテ
トラヒドロフランに希釈して固形分重量濃度0.2%の
溶液を調整し、この溶液を、テトラヒドロフランをキャ
リア溶媒とするゲルパーミエーションクロマトグラフィ
ーに注入したところ、溶解成分の数平均分子量は362
0、重量平均分子量は7050、分散度は1.95であ
った。この溶解成分は、29Si−核磁気共鳴スペクトル
分析の結果、次の構造式を有するケイ素樹脂であること
が確認された。 [H(CH32SiO1/20.35(SiO4/21.0
[Reference Example 3] In a 200 ml-four-necked flask equipped with a dropping pipe with a straight pipe, a spiral condenser and a thermometer, 20 g of methanol, 12.1 g of 7.4N-hydrochloric acid (hydrogen chloride = 0.07 mol) and 1 were added. , 1,3,3-tetramethyldisiloxane 4.69 g (0.035 mol) was weighed,
The liquid temperature was lowered to 5 ° C. or lower by cooling with ice, and nitrogen was passed through the system at a very small flow rate. While stirring the solution in this state, 30.4 g of methyl orthosilicate (0.
(2 mol) was added dropwise over 40 minutes. During the process, the temperature of the liquid rose to 13 ° C due to heat generation, but it was 8
It fell to ℃. Further, stirring was continued for 15 minutes in an ice-cooled state, and then at room temperature for 4 hours. The reaction solution was colorless and transparent. When 100 ml of MIBK was added to the reaction solution and 100 ml of water was further added, phase separation into two layers was performed. The lower layer was collected, 50 mL of MIBK was added thereto, and the mixture was shaken and then phase-separated. The upper layer was collected and combined with the previous upper layer. When 200 ml of water was added and shaken, it became an emulsified state, so 200 ml of diethyl ether was added and allowed to stand, and the phases were separated (it took about 10 hours for phase separation. The upper layer was transparent, but the lower layer was It was milky and had a small amount of viscous macromolecular substance suspended.) The lower layer was removed, 200 ml of water was further added, and the mixture was shaken and allowed to stand. Phase separation occurred quickly. Collect the upper layer,
Magnesium sulfate was added to this and left for 2.5 days. After magnesium sulfate was filtered off, a part of the filtrate was taken and the solvent was completely removed by nitrogen blowing, whereby a white solid was obtained. This solid was insoluble in acetone. At the same time, the solid content yield in the filtrate was calculated to be 11.49 g (68.8% of theoretical yield). The remaining filtrate was once concentrated by nitrogen blowing to a concentration slightly higher than 30% solid content, and then a predetermined amount of MIBK was added to adjust the solid content concentration to 30% (hereinafter, this solution is referred to as solution C). Solution C was directly diluted with tetrahydrofuran to prepare a solution having a solid content weight concentration of 0.2%, and the solution was injected into gel permeation chromatography using tetrahydrofuran as a carrier solvent. 362
0, the weight average molecular weight was 7050, and the dispersity was 1.95. As a result of 29 Si-nuclear magnetic resonance spectrum analysis, this dissolved component was confirmed to be a silicon resin having the following structural formula. [H (CH 3 ) 2 SiO 1/2 ] 0.35 (SiO 4/2 ) 1.0

【0027】また、溶液Cをシリコンウエハ上に滴下
し、空気中室温にて放置して溶剤を乾燥させることによ
り固形分の約1μ厚の被膜を形成させた。この膜をフー
リエ変換型赤外線分光分析器で透過モードにより構造解
析したところ、1100cm-1付近にシロキサン結合に
由来するブロードな強い吸収ピーク、1260cm-1
Si−Me基に由来するシャープな強い吸収ピーク、9
10cm-1および2150cm-1にSiH基に由来する
シャープな強い吸収ピーク、2870cm-1にアルコキ
シ基に由来するシャープな弱い吸収ピーク、2960c
-1付C−H基に由来するシャープな中程度の吸収ピー
ク、3500cm-1付近にシラノール基に由来するブロ
ードな中程度の吸収ピークが観察された。
Further, the solution C was dropped on a silicon wafer and left to stand at room temperature in the air to dry the solvent, thereby forming a film having a solid content of about 1 μm. Structural analysis of this film by a transmission mode using a Fourier transform infrared spectrophotometer revealed a broad strong absorption peak at 1100 cm -1 due to the siloxane bond, and a sharp strong absorption at 1260 cm -1 due to the Si-Me group. Peak, 9
10 cm -1 and from SiH groups 2150 cm -1 sharp strong absorption peaks, sharp weak absorption peak derived from the alkoxy group to 2870cm -1, 2960c
A sharp medium absorption peak derived from the m- 1 attached C-H group was observed at 3500 cm- 1 with a broad medium absorption peak derived from the silanol group.

【0028】[0028]

【実施例1】参考例1で調製した溶液Aを半導体デバイ
ス基板(段差1.0μm)上にスピンコートし、最大厚
さ1.42μmのケイ素樹脂被膜を形成した。被膜形成
後、この半導体デバイス基板を円筒型環状炉に挿入し、
空気中、400℃で1時間加熱し、その後空気中で徐冷
し室温まで冷却した。半導体デバイス基板上に形成され
たセラミック状酸化ケイ素膜の特性を測定したところ、
最大厚さ1.22μmであり、半導体デバイス表面の凹
凸は均一に平坦化されていた。顕微鏡観察の結果、この
酸化ケイ素膜にはクラックおよびピンホールがないこと
が確認された。またフーリエ変換型赤外線分光分析器で
透過モードにより構造解析を行ったところ、酸化ケイ素
膜中のSiH基のピーク(910cm-1および2150
cm-1)、シラノール基のピーク(3500cm-1
近)およびアルコキシ基のピーク(2870cm-1)は
いずれも完全に消失していることが確認された。また、
得られた酸化ケイ素膜は、MIBK、アセトン等の有機
溶剤に対して不溶であることが確認された。
Example 1 The solution A prepared in Reference Example 1 was spin-coated on a semiconductor device substrate (step difference of 1.0 μm) to form a silicon resin film having a maximum thickness of 1.42 μm. After forming the film, this semiconductor device substrate is inserted into a cylindrical annular furnace,
It was heated in air at 400 ° C. for 1 hour, then gradually cooled in air and cooled to room temperature. When the characteristics of the ceramic silicon oxide film formed on the semiconductor device substrate were measured,
The maximum thickness was 1.22 μm, and the unevenness on the surface of the semiconductor device was uniformly flattened. As a result of microscopic observation, it was confirmed that this silicon oxide film had neither cracks nor pinholes. In addition, when structural analysis was performed by a transmission mode with a Fourier transform infrared spectrophotometer, the peaks of SiH groups in the silicon oxide film (910 cm −1 and 2150
cm -1), the peak of the silanol groups (3500 cm -1 vicinity) and peak alkoxy groups (2870cm -1) was confirmed to be lost completely any. Also,
It was confirmed that the obtained silicon oxide film was insoluble in organic solvents such as MIBK and acetone.

【0029】[0029]

【実施例2】参考例1と同様にして調製した、式: [H(CH32SiO1/20.5(SiO4/21.0 で示されるケイ素樹脂をMIBKに溶解し、30重量%
溶液を調製した。この溶液を半導体デバイス基板(段差
1.0μm)上にスピンコートし、最大厚さ1.54μ
mのケイ素樹脂被膜を形成した。被膜形成後、この半導
体デバイス基板を円筒型環状炉に挿入し、空気中、40
0℃で1時間加熱し、その後空気中で徐冷し室温まで冷
却した。半導体デバイス基板上に形成されたセラミック
状酸化ケイ素膜の特性を測定したところ、最大厚さ1.
38μmであり、半導体デバイス表面の凹凸は均一に平
坦化されていた。顕微鏡観察の結果、この酸化ケイ素膜
にはクラックおよびピンホールがないことが確認され
た。またフーリエ変換型赤外線分光分析器で透過モード
により構造解析を行ったところ、酸化ケイ素膜中のSi
H基のピーク(910cm-1および2150cm-1)、
シラノール基のピーク(3500cm-1付近)およびア
ルコキシ基のピーク(2870cm-1)はいずれも完全
に消失していることが確認された。また、得られた酸化
ケイ素膜は、MIBK、アセトン等の有機溶剤に対して
不溶であることが確認された。
Example 2 A silicon resin represented by the formula: [H (CH 3 ) 2 SiO 1/2 ] 0.5 (SiO 4/2 ) 1.0 , prepared in the same manner as in Reference Example 1, was dissolved in MIBK to obtain 30 wt. %
A solution was prepared. This solution was spin-coated on a semiconductor device substrate (step difference of 1.0 μm) to a maximum thickness of 1.54 μm.
m silicon resin film was formed. After forming the film, the semiconductor device substrate was inserted into a cylindrical annular furnace,
The mixture was heated at 0 ° C for 1 hour, then gradually cooled in air and cooled to room temperature. When the characteristics of the ceramic silicon oxide film formed on the semiconductor device substrate were measured, the maximum thickness was 1.
It was 38 μm, and the unevenness on the surface of the semiconductor device was uniformly flattened. As a result of microscopic observation, it was confirmed that this silicon oxide film had neither cracks nor pinholes. In addition, when a structural analysis was performed in a transmission mode with a Fourier transform infrared spectrophotometer, the Si in the silicon oxide film was analyzed.
H group peaks (910 cm -1 and 2150 cm -1 ),
It was confirmed that the silanol group peak (near 3500 cm −1 ) and the alkoxy group peak (2870 cm −1 ) were completely disappeared. Moreover, it was confirmed that the obtained silicon oxide film was insoluble in organic solvents such as MIBK and acetone.

【0030】[0030]

【実施例3】参考例2で調製した溶液Bを半導体デバイ
ス基板(段差1.0μm)上にスピンコートし、最大厚
さ2.43μmのケイ素樹脂被膜を形成した。被膜形成
後、この半導体デバイス基板を円筒型環状炉に挿入し、
空気中、400℃で1時間加熱し、その後空気中で徐冷
し室温まで冷却した。半導体デバイス基板上に形成され
たセラミック状酸化ケイ素膜の特性を測定したところ、
最大厚さ1.98μmであり、半導体デバイス表面の凹
凸は均一に平坦化されていた。顕微鏡観察の結果、この
酸化ケイ素膜にはクラックおよびピンホールがないこと
が確認された。またフーリエ変換型赤外線分光分析器で
透過モードにより構造解析を行ったところ、酸化ケイ素
膜中のSiH基のピーク(910cm-1および2150
cm-1)、シラノール基のピーク(3500cm-1
近)およびアルコキシ基のピーク(2870cm-1)は
いずれも完全に消失していることが確認された。また、
得られた酸化ケイ素膜は、MIBK、アセトン等の有機
溶剤に対して不溶であることが確認された。
Example 3 The solution B prepared in Reference Example 2 was spin-coated on a semiconductor device substrate (step difference of 1.0 μm) to form a silicon resin film having a maximum thickness of 2.43 μm. After forming the film, this semiconductor device substrate is inserted into a cylindrical annular furnace,
It was heated in air at 400 ° C. for 1 hour, then gradually cooled in air and cooled to room temperature. When the characteristics of the ceramic silicon oxide film formed on the semiconductor device substrate were measured,
The maximum thickness was 1.98 μm, and the unevenness on the surface of the semiconductor device was uniformly flattened. As a result of microscopic observation, it was confirmed that this silicon oxide film had neither cracks nor pinholes. In addition, when structural analysis was performed by a transmission mode with a Fourier transform infrared spectrophotometer, the peaks of SiH groups in the silicon oxide film (910 cm −1 and 2150
cm -1), the peak of the silanol groups (3500 cm -1 vicinity) and peak alkoxy groups (2870cm -1) was confirmed to be lost completely any. Also,
It was confirmed that the obtained silicon oxide film was insoluble in organic solvents such as MIBK and acetone.

【0031】[0031]

【実施例4】参考例3で調製した溶液Cを半導体デバイ
ス基板(段差1.0μm)上にスピンコートし、最大厚
さ1.72μmのケイ素樹脂被膜を形成した。被膜形成
後、この半導体デバイス基板を円筒型環状炉に挿入し、
空気中、300℃で1時間加熱し、引き続き、空気中、
400℃で1時間加熱した。その後空気中で徐冷し室温
まで冷却した。半導体デバイス基板上に形成されたセラ
ミック状酸化ケイ素膜の特性を測定したところ、最大厚
さ1.47μmであり、半導体デバイス表面の凹凸は均
一に平坦化されていた。顕微鏡観察の結果、この酸化ケ
イ素膜にはクラックおよびピンホールがないことが確認
された。またフーリエ変換型赤外線分光分析器で透過モ
ードにより構造解析を行ったところ、酸化ケイ素膜中の
SiH基のピーク(910cm-1および2150c
-1)、シラノール基のピーク(3500cm-1付近)
およびアルコキシ基のピーク(2870cm-1)はいず
れも完全に消失していることが確認された。また、得ら
れた酸化ケイ素膜は、MIBK、アセトン等の有機溶剤
に対して不溶であることが確認された。
Example 4 Solution C prepared in Reference Example 3 was spin-coated on a semiconductor device substrate (step difference of 1.0 μm) to form a silicon resin film having a maximum thickness of 1.72 μm. After forming the film, this semiconductor device substrate is inserted into a cylindrical annular furnace,
Heat in air at 300 ° C for 1 hour, then in air,
Heated at 400 ° C. for 1 hour. Then, it was gradually cooled in air and cooled to room temperature. When the characteristics of the ceramic silicon oxide film formed on the semiconductor device substrate were measured, the maximum thickness was 1.47 μm, and the unevenness on the surface of the semiconductor device was uniformly flattened. As a result of microscopic observation, it was confirmed that this silicon oxide film had neither cracks nor pinholes. In addition, when structural analysis was performed by a transmission mode with a Fourier transform infrared spectrophotometer, the peaks of SiH groups in the silicon oxide film (910 cm −1 and 2150 c
m -1 ), peak of silanol group (around 3500 cm -1 )
It was confirmed that the peaks of the alkoxy group and the alkoxy group (2870 cm −1 ) were completely disappeared. Moreover, it was confirmed that the obtained silicon oxide film was insoluble in organic solvents such as MIBK and acetone.

【0032】[0032]

【比較例1】東京応化工業(株)製無機SOG(商品
名:OCD−typeII)を半導体デバイス基板(段差
1.0μm)上にスピンコートし、最大厚さ0.55μ
mの樹脂被膜を形成した。被膜形成後、この半導体デバ
イス基板を円筒型環状炉に挿入し、空気中、400℃で
1時間加熱し、その後空気中で徐冷し室温まで冷却し
た。半導体デバイス基板上に形成された酸化ケイ素膜の
特性を測定しようとしたが、肉眼で確認できるクラック
が多数発生しており、膜厚は測定不能であった。
[Comparative Example 1] Inorganic SOG (trade name: OCD-type II) manufactured by Tokyo Ohka Kogyo Co., Ltd. was spin-coated on a semiconductor device substrate (step difference of 1.0 μm) to a maximum thickness of 0.55 μm.
m resin coating was formed. After forming the film, the semiconductor device substrate was inserted into a cylindrical annular furnace, heated in air at 400 ° C. for 1 hour, and then gradually cooled in air and cooled to room temperature. An attempt was made to measure the characteristics of the silicon oxide film formed on the semiconductor device substrate, but many cracks that could be visually confirmed were generated, and the film thickness could not be measured.

【0033】[0033]

【比較例2】水素シルセスキオキサンをMIBK溶液に
溶解し、30重量%溶液を調製した。この溶液を半導体
デバイス基板(段差1.0μm)上にスピンコートし、
最大厚さ1.15μmのケイ素樹脂被膜を形成した。被
膜形成後、この半導体デバイス基板を円筒型環状炉に挿
入し、空気中、400℃で1時間加熱し、その後、空気
中で徐冷し室温まで冷却した。半導体デバイス基板上に
形成された酸化ケイ素膜の最大厚さは0.98μmであ
ったが、顕微鏡観察したところ、この酸化ケイ素膜には
多数のマイクロクラックが発生していることが確認され
た。
Comparative Example 2 Hydrogen silsesquioxane was dissolved in a MIBK solution to prepare a 30 wt% solution. This solution is spin-coated on a semiconductor device substrate (step difference of 1.0 μm),
A silicon resin film having a maximum thickness of 1.15 μm was formed. After forming the film, the semiconductor device substrate was inserted into a cylindrical annular furnace, heated in air at 400 ° C. for 1 hour, and then gradually cooled in air to room temperature. The maximum thickness of the silicon oxide film formed on the semiconductor device substrate was 0.98 μm, but it was confirmed by microscopic observation that many microcracks were generated in this silicon oxide film.

【0034】[0034]

【発明の効果】本発明の酸化ケイ素膜の形成方法は、基
材表面に厚膜でかつクラックおよびピンホールを有しな
い、有機溶剤に不溶のセラミック状酸化ケイ素膜を形成
することができるという特徴を有する。
The method for forming a silicon oxide film of the present invention is characterized in that a ceramic-like silicon oxide film insoluble in an organic solvent, which is a thick film and has neither cracks nor pinholes, can be formed on the surface of a substrate. Have.

フロントページの続き (72)発明者 峰 勝利 千葉県市原市千種海岸2番2 東レ・ダウ コーニング・シリコーン株式会社研究開発 本部内Front Page Continuation (72) Inventor Satoru Mine 2-2 Chikusaigan, Ichihara, Chiba Toray Dow Corning Silicone Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に、一般式: (HR2SiO1/2X(SiO4/21.0 (式中、Rは水素原子、アルキル基およびアリール基か
らなる群から選択される基であり、Xは0.1≦X≦
2.0である。)で示されるケイ素樹脂を主剤としてな
る被膜を形成し、次いで該被膜の形成された該基材を加
熱して、該被膜をセラミック状酸化ケイ素膜にすること
を特徴とする酸化ケイ素膜の形成方法。
1. The surface of the substrate has the general formula: (HR 2 SiO 1/2 ) X (SiO 4/2 ) 1.0 (wherein R is selected from the group consisting of hydrogen atom, alkyl group and aryl group). And X is 0.1 ≦ X ≦
It is 2.0. Forming a coating film comprising a silicon resin as a main component, and then heating the substrate having the coating film formed thereon to form a ceramic silicon oxide film. Method.
JP04459093A 1993-02-09 1993-02-09 Method for forming silicon oxide film Expired - Fee Related JP3188782B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP04459093A JP3188782B2 (en) 1993-02-09 1993-02-09 Method for forming silicon oxide film
US08/187,239 US5380555A (en) 1993-02-09 1994-01-26 Methods for the formation of a silicon oxide film
TW83100722A TW295689B (en) 1993-02-09 1994-01-31
KR1019940002644A KR100295485B1 (en) 1993-02-09 1994-02-08 Manufacturing method of silicon oxide film
DE69423991T DE69423991T2 (en) 1993-02-09 1994-02-08 Process for producing a silicon oxide film
EP94101924A EP0610899B1 (en) 1993-02-09 1994-02-08 Methods for the formation of a silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04459093A JP3188782B2 (en) 1993-02-09 1993-02-09 Method for forming silicon oxide film

Publications (2)

Publication Number Publication Date
JPH06235067A true JPH06235067A (en) 1994-08-23
JP3188782B2 JP3188782B2 (en) 2001-07-16

Family

ID=12695695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04459093A Expired - Fee Related JP3188782B2 (en) 1993-02-09 1993-02-09 Method for forming silicon oxide film

Country Status (2)

Country Link
JP (1) JP3188782B2 (en)
TW (1) TW295689B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018952A (en) * 2013-07-11 2015-01-29 帝人株式会社 Composition for forming silicon oxide film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229419B2 (en) 1993-02-10 2001-11-19 ダウ・コ−ニング・コ−ポレ−ション Method for forming silicon oxide film
JP3229418B2 (en) 1993-02-10 2001-11-19 ダウ・コ−ニング・コ−ポレ−ション Method for forming silicon oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018952A (en) * 2013-07-11 2015-01-29 帝人株式会社 Composition for forming silicon oxide film

Also Published As

Publication number Publication date
TW295689B (en) 1997-01-11
JP3188782B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
US5380555A (en) Methods for the formation of a silicon oxide film
JP3210457B2 (en) Method for forming silicon oxide film
JP3174417B2 (en) Method for forming silicon oxide film
US5043789A (en) Planarizing silsesquioxane copolymer coating
US6806161B2 (en) Process for preparing insulating material having low dielectric constant
JP3174416B2 (en) Method for forming silicon oxide film
US6022812A (en) Vapor deposition routes to nanoporous silica
US6143855A (en) Organohydridosiloxane resins with high organic content
US8053173B2 (en) Multi-functional linear siloxane compound, a siloxane polymer prepared from the compound, and a process for forming a dielectric film by using the polymer
US6177143B1 (en) Electron beam treatment of siloxane resins
US4981530A (en) Planarizing ladder-type silsesquioxane polymer insulation layer
JPH06191970A (en) Method for forming silica-containing ceramic coating
US20040024164A1 (en) Siloxane-based resin and method for forming insulating film between interconnect layuers in semiconductor devices by using the same
WO2005068539A1 (en) Method for producing polymer, polymer, composition for forming insulating film, method for producing insulating film, and insulating film
JPH0791509B2 (en) Insulating film forming coating solution for semiconductors
US7834119B2 (en) Organic silicate polymer and insulation film comprising the same
JP4180417B2 (en) Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
JP2851915B2 (en) Semiconductor device
JP3229419B2 (en) Method for forming silicon oxide film
US5286572A (en) Planarizing ladder-type silsequioxane polymer insulation layer
JPH06235067A (en) Formation of silicon oxide film
US6908977B2 (en) Siloxane-based resin and method of forming an insulating film between interconnect layers of a semiconductor device using the same
JP3229418B2 (en) Method for forming silicon oxide film
JP2002201416A (en) Coating liquid for forming semiconductor silica coating film, semiconductor silica coating film, and semiconductor device
JPH06181201A (en) Insulating film for semiconductor device and liquid applied for growing that insulating film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010403

LAPS Cancellation because of no payment of annual fees