JPH0623415B2 - Method for producing amorphous alloy compact - Google Patents
Method for producing amorphous alloy compactInfo
- Publication number
- JPH0623415B2 JPH0623415B2 JP60213318A JP21331885A JPH0623415B2 JP H0623415 B2 JPH0623415 B2 JP H0623415B2 JP 60213318 A JP60213318 A JP 60213318A JP 21331885 A JP21331885 A JP 21331885A JP H0623415 B2 JPH0623415 B2 JP H0623415B2
- Authority
- JP
- Japan
- Prior art keywords
- amorphous alloy
- temperature
- magnetic
- amorphous
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15358—Making agglomerates therefrom, e.g. by pressing
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】 イ.産業上の利用分野 本発明は非晶質合金成形体の製造方法に関する。Detailed Description of the Invention a. TECHNICAL FIELD The present invention relates to a method for producing an amorphous alloy compact.
ロ.従来技術 従来、100 KHzを越え、特に0.5 〜10MHz程度の高周波
領域で良好な磁気特性を有する軟質磁性材料としてNi
−Zn系或いはMn−Zn系の酸化物(フェライト)系
の材料があり、とりわけMn−Zn系フェライトは5M
Hzでの実効透磁率が約600 であり、優れた磁気的特性を
示す。B. 2. Description of the Related Art Conventionally, Ni is used as a soft magnetic material having good magnetic characteristics in the high frequency region of over 100 KHz, especially about 0.5 to 10 MHz.
-Zn-based or Mn-Zn-based oxide (ferrite) -based materials are available. In particular, Mn-Zn-based ferrite is 5M.
The effective magnetic permeability at Hz is about 600, which shows excellent magnetic characteristics.
しかしながら、高密度磁気記録技術の進歩に伴い、磁気
記録媒体としてγ−Fe2O3やCrO2等の酸化物磁
性粉を用いた従来の磁気テープに代わって、微細鉄粉や
Co系等の磁性合金を塗布したり蒸着したりして磁気記
録媒体とする所謂メタルテープが使用されるようになっ
てきており、今後、この種のメタルテープは8ミリVT
R等の磁気テープの主流をなす状況にある。However, with the progress of high-density magnetic recording technology, in place of a conventional magnetic tape using an oxide magnetic powder such as γ-Fe 2 O 3 or CrO 2 as a magnetic recording medium, a fine iron powder or a Co-based magnetic tape is used. A so-called metal tape that is used as a magnetic recording medium by coating or vapor depositing a magnetic alloy has come to be used. In the future, this type of metal tape will be 8 mm VT.
It is in the mainstream of magnetic tapes such as R.
ところで、この種のメタルテープに使用される磁気記録
媒体の磁気的特性は、従来のγ−Fe2O3やCrO2
等の酸化物磁性体でなる磁気記録媒体の磁気的特性に比
べて磁束密度(Bs)及び保持力(Hc)が格段に大き
い。By the way, the magnetic characteristics of the magnetic recording medium used for this type of metal tape are as follows: γ-Fe 2 O 3 and CrO 2
The magnetic flux density (Bs) and the coercive force (Hc) are remarkably large as compared with the magnetic characteristics of the magnetic recording medium made of an oxide magnetic material such as.
それ故、メタルテープの場合には、飽和磁束密度の大き
い磁性材料を使用した磁気ヘッドでないと充分な記憶あ
るいは読み取りができないので、Mn−Zn系フェライ
ト等の酸化物系磁性材料を鉄芯とした磁気ヘッドを使用
することができない。Therefore, in the case of a metal tape, a magnetic head using a magnetic material having a high saturation magnetic flux density cannot sufficiently store or read data. Therefore, an oxide magnetic material such as Mn—Zn ferrite is used as an iron core. No magnetic head can be used.
従って、メタルテープに使用する磁気ヘッド用磁性鉄芯
材としては酸化物系磁性材料に代わり、飽和磁束密度が
大きくかつ高周波数領域での周波数特性の良好な磁性材
料製鉄芯材が用されており、センダストや非晶質磁性合
金の採用が提案されてる。Therefore, as a magnetic iron core material for a magnetic head used for a metal tape, a magnetic material iron core material having a large saturation magnetic flux density and good frequency characteristics in a high frequency region is used instead of an oxide magnetic material. , Sendust and amorphous magnetic alloys have been proposed.
センダストや非晶質磁性合金は、高透磁率合金として知
られた合金であり、高周波領域における磁気特性もパー
マロイ等の他の金属系磁性材料に比べて良好でかつ磁束
密度も酸化物系磁性材料に比べて大きいので、磁気ヘッ
ド等の鉄芯材料として有望な材料である、しかしなが
ら。従来提案のこれらの磁性材料も若干の難点を有して
おり、未だ要求特性を満足するには至っておらず、なお
改善が望まれている。Sendust and amorphous magnetic alloys are known as high-permeability alloys and have good magnetic characteristics in the high frequency range as compared with other metal-based magnetic materials such as Permalloy, and also have a magnetic flux density of oxide-based magnetic materials. However, it is a promising material as an iron core material for magnetic heads, etc., however. These conventionally proposed magnetic materials also have some drawbacks and have not yet satisfied the required characteristics, and further improvements are desired.
即ち、センダストは、直流での磁気特性を示す初透磁率
μoが約30,000であり、直流特性は良好であるが、高周
波領域においては周波数が高くなるにつれて周波数領域
での磁気的特性を示す実効透磁率(μeff)の値が急
激に低下し、例えば8ミリVTRで使用される周波数領
域(5MHz)での実効透磁率は約60(板厚が0,1mmの
場合)に低下してしまう。この周波数領域での実効透磁
率の低下は、センダストの電気比抵抗が約80μΩ−cmで
酸化物系磁性材料のそれに比べて任いので渦電流損失が
大きいことによる。センダストを薄板に加工して使用す
ることにより実効透磁率μeffの低下を或る程度防止
することができ。That is, sendust has an initial permeability μo of about 30,000, which exhibits magnetic characteristics at direct current, and has good direct current characteristics, but has an effective permeability that exhibits magnetic characteristics in the frequency region as the frequency increases in the high frequency region. The value of magnetic permeability (μeff) sharply decreases, and, for example, the effective magnetic permeability in the frequency range (5 MHz) used in 8 mm VTR decreases to about 60 (when the plate thickness is 0.1 mm). The decrease in the effective magnetic permeability in this frequency range is due to the large eddy current loss because the electric resistivity of Sendust is about 80 μΩ-cm, which is dependent on that of the oxide magnetic material. By processing Sendust into a thin plate and using it, it is possible to prevent the decrease of the effective magnetic permeability μeff to some extent.
しかしながら、センダストは電気比抵抗が小さいので、
5MHzの高周波領域においてμeff=500 以上の実効
透磁率を得るにはセンダストを略10μm以下の極薄の板
材にすることが必要であるが、機械加工で充分な極薄板
材とすることは工業的に不可能である。However, sendust has a low electrical resistivity, so
To obtain an effective magnetic permeability of μeff = 500 or more in the high frequency region of 5 MHz, it is necessary to make sendust an extremely thin plate material of approximately 10 μm or less, but it is industrially necessary to make it an extremely thin plate material by machining. Impossible.
非晶質磁性合金も高透磁率を示す磁性材料として知られ
ており、特に磁歪λ=1に近い例えばCo−Fe−Si
−B系のこの種の非晶質磁性合金は従来オーデオ用や通
常の(酸化物系磁気記録媒体を使用した)磁気テープを
使用するVTR用の磁気ヘッド用材料としても採用され
ている。また、非晶質磁性合金はその電気比抵抗がセン
ダストのそれに比べて大きく、従って、渦電流損失によ
る実効透磁率μeffの低下が少なく、高周波領域での
実効透磁率はセンダストよりも優れている。Amorphous magnetic alloys are also known as magnetic materials exhibiting high magnetic permeability, and particularly, magnetostriction λ = 1 is close to, for example, Co—Fe—Si.
This type of B-type amorphous magnetic alloy has been conventionally used as a material for a magnetic head for audio or for a VTR using a general magnetic tape (using an oxide magnetic recording medium). Further, the amorphous magnetic alloy has a larger electric resistivity than that of Sendust, and therefore, the effective permeability μeff is less likely to decrease due to eddy current loss, and the effective permeability in a high frequency region is superior to that of Sendust.
従って、非晶質磁性合金は高周波用トランスや磁気ヘッ
ドの鉄芯の材料として極めて好適である。また、非晶質
合金は、同一化学組成の結晶質合金に比べて著しく強靭
であり、硬度も高いので、磁気ヘッドの鉄芯の材料とし
て特に好適である。Therefore, the amorphous magnetic alloy is extremely suitable as a material for a high frequency transformer or an iron core of a magnetic head. Further, the amorphous alloy is remarkably tougher and has a higher hardness than a crystalline alloy having the same chemical composition, and is therefore particularly suitable as a material for the iron core of the magnetic head.
ところで、非晶質合金は、単ロール法、双ロール法、ト
リプルロール法等により、熔融合金を急速回転するロー
ル上に供給し、急速凝固させて製造され、薄いリボン状
を呈した状態で供給されるが、この種の薄板リボンを用
いて磁性鉄芯に成形する場合には、加工上で解決を要す
る問題があり、工業的に採用するには難がある。By the way, amorphous alloys are manufactured by supplying molten alloy onto a rapidly rotating roll by a single roll method, a twin roll method, a triple roll method, etc. and rapidly solidifying it, and supplying it in the state of a thin ribbon. However, when a thin iron ribbon of this type is used to form a magnetic iron core, there is a problem to be solved in processing and it is difficult to industrially adopt it.
即ち、液体急冷法により製造される非晶質合金薄板リボ
ン材から所望の磁気ヘッドを加工するには鉄芯の形状や
寸法に応じて、外形や巻き線挿入溝部を予め一枚一枚エ
ッチングやレーザー加工等により切り出すか、或いはプ
レス金型で打ち抜く等の方法で加工されるが、前二者は
生産性に乏しいく工業的方法としては適さず、また、後
者は、非晶質合金の硬度が極めて高い(HV=900 程
度)ので金型の消耗が甚だしく経済的な方法ではない。
更に、液体急冷法により製造される薄板リボン材は、溶
融金属を急冷して直接薄板リボン材にするので、薄板材
としての寸法精度が悪く、良好な磁気的特性を得るため
は予め薄板リボン材を研磨加工により一定厚みに加工す
る必要がある等、加工上での多くの難点を有している。
また、液体急冷法により薄板リボン材を製造する場合の
製造技術上の問題として、製造時に気泡の巻込みや酸化
物等の介在物の混入等による表面欠陥の発生が避け難い
という問題があり、従って、製品(鉄芯)に欠陥が発生
し易く製造保留が低い。That is, in order to process a desired magnetic head from an amorphous alloy thin ribbon material manufactured by the liquid quenching method, the outer shape and the winding insertion groove are previously etched one by one according to the shape and size of the iron core. It is cut out by laser processing or processed by a method such as punching with a press die, but the former two are not suitable as industrial methods with poor productivity, and the latter is the hardness of amorphous alloy. Is extremely high (about HV = 900), which is not an economical method because the die consumption is extremely heavy.
In addition, the thin ribbon material produced by the liquid quenching method directly melts the molten metal to directly form the thin ribbon material, so that the dimensional accuracy as the thin sheet material is poor and the thin ribbon material is previously obtained in order to obtain good magnetic characteristics. There are many difficulties in processing, such as the fact that it has to be processed to a certain thickness by polishing.
Further, as a manufacturing technology problem when manufacturing a thin ribbon material by the liquid quenching method, there is a problem that it is difficult to avoid the occurrence of surface defects due to inclusion of bubbles or inclusions such as oxides during manufacturing. Therefore, defects are likely to occur in the product (iron core) and the production hold is low.
ハ.発明の目的 本発明は、上記の事情に鑑みてなされたものであって、
非晶質合金リボンからなる従来品の問題点を解消した非
晶質合金成形体の製造方法を提供することを目的として
いる。C. OBJECT OF THE INVENTION The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a method for producing an amorphous alloy compact, which solves the problems of conventional products made of amorphous alloy ribbons.
ニ.発明の構成 本発明は、非晶質合金粉末を製造する工程と、前記非晶
質合金粉末のみをそのガラス遷移温度を越え、結晶化温
度未満の範囲内の温度で成形する工程とを有する非晶質
合金成形体の製造方法に係る。D. Structure of the Invention The present invention comprises a step of producing an amorphous alloy powder and a step of molding only the amorphous alloy powder at a temperature in a range above its glass transition temperature and below its crystallization temperature. The present invention relates to a method for producing a crystalline alloy compact.
非晶質合金は、前述したような強靭性に優れ、而も硬度
が高いので、リボン材を粉砕して粉末とするのは極めて
困難である。非晶質合金粉末を製造する方法としては、
熔融金属に対して濡れ性の小さな表面層を有し、2m/
sec 以上の周速度で回転しているロール表面に前記熔融
金属をノズルを経由して供給し、前記熔融金属を微細な
熔融金属滴に分断した後、引き続いてこの熔融金属滴を
10m/sec 以上の周速度で回転している金属回転体に衝
突させて急速凝固させる方法によるのが好適である。Since the amorphous alloy is excellent in toughness as described above and has a high hardness, it is extremely difficult to grind the ribbon material into powder. As a method for producing the amorphous alloy powder,
Has a surface layer with low wettability for molten metal, 2m /
The molten metal is supplied to the surface of the roll rotating at a peripheral speed of sec or more through a nozzle, and the molten metal is divided into fine molten metal droplets.
It is preferable to collide with a metallic rotating body rotating at a peripheral speed of 10 m / sec or more to rapidly solidify the metallic rotating body.
なお、前記ガラス化遷移温度とは、非晶質構造の侭で固
体から液体状態に遷移する温度であり、ガラスやポリマ
ーの分野で使用されている用語と同一定義である。The vitrification transition temperature is a temperature at which a solid state transitions from a solid state to a liquid state due to an amorphous structure, and has the same definition as a term used in the fields of glass and polymers.
成形温度が、ガラス化遷移温度以下では成形が困難であ
り、結晶化温度以上になると非晶質→結晶質の変態が起
こり、而もこの変態は非可逆的であるので、非晶質合金
の優れた特性が失われてしまう。If the molding temperature is below the glassification transition temperature, it is difficult to mold, and above the crystallization temperature, an amorphous → crystalline transformation occurs, and since this transformation is irreversible, the amorphous alloy Excellent properties are lost.
ガラス化遷移温度と結晶化温度との間の温度範囲は一般
に大きくはない。例えば、Co75Si15B10合金(元素
記号に付された数字は、当該元素成分の原子%を表す。
以下、同様。)では上記温度範囲は約10℃である。本発
明者は、検討を重ねた結果、上記温度範囲は合金の化学
組成によって変化し、上記温度範囲が大幅に広くなる組
成範囲が存在することを見出した。The temperature range between the vitrification transition temperature and the crystallization temperature is generally not large. For example, a Co 75 Si 15 B 10 alloy (the number attached to the element symbol represents the atomic% of the element component).
The same applies hereinafter. ), The above temperature range is about 10 ° C. As a result of repeated studies, the present inventors have found that the above temperature range varies depending on the chemical composition of the alloy, and there is a composition range in which the above temperature range is significantly widened.
本発明にあっては、非晶質合金粉末を上記温度範囲内の
温度で成形するのであるが、この温度範囲が30K未満の
合金では、加工温度をこの温度範囲にに保持するのが容
易ではない。上記温度範囲が50K以上である非晶質合金
粉末を成形するのが特に好ましい。また、成形温度は、
ガラス化遷移温度よりも20K高い温度を越え、結晶化温
度未満の範囲内の温度とするのが一層好ましい。In the present invention, the amorphous alloy powder is molded at a temperature within the above temperature range. However, if the temperature range is less than 30 K, it is not easy to keep the processing temperature within this temperature range. Absent. It is particularly preferable to form an amorphous alloy powder having the above temperature range of 50K or higher. Also, the molding temperature is
More preferably, the temperature is higher than the vitrification transition temperature by 20 K and lower than the crystallization temperature.
ホ.実施例 まず、非晶質合金リボンを使用して、ガラス化遷移温
度、結晶化温度及び変形し易さが温度によってどのよう
に変化するかを調べた予備実験について説明する。E. Example First, a preliminary experiment for investigating how the vitrification transition temperature, the crystallization temperature, and the easiness of deformation change with temperature using an amorphous alloy ribbon will be described.
予備実験1 単ロール法によってCo75Si10B15の化学組成の非晶
質合金リボンを作製した。このリボンの厚さは20μ
m、幅は1mmである。このリボンに0.6kg/mm2の引
張応力を加え、その状態で室温から5℃/min の加熱速
度で加熱しながら、標点距離10mmでの寸法変化を測定し
た。Preliminary Experiment 1 An amorphous alloy ribbon having a chemical composition of Co 75 Si 10 B 15 was prepared by the single roll method. The thickness of this ribbon is 20μ
m, width is 1 mm. A tensile stress of 0.6 kg / mm 2 was applied to this ribbon, and the dimensional change at a gauge length of 10 mm was measured while heating from that temperature at a heating rate of 5 ° C./min from room temperature.
測定結果は第1図に示す通りである。The measurement results are as shown in FIG.
寸法変化Δl、Tgで示す温度よりも若干低い温度迄は
直線的に変化を示し、Tg以上の温では急激に増大し、
Txで示す温度で明瞭な折曲点Aが観察される。Tgは
ガラス化遷移温度、Txは結晶化温度である。Dimensional change Δl, changes linearly up to a temperature slightly lower than Tg, and increases sharply at temperatures above Tg.
A clear bending point A is observed at the temperature indicated by Tx. Tg is a vitrification transition temperature and Tx is a crystallization temperature.
室温からTgよりも若干低い温度迄は、寸法変化の温度
変化による変化α1 は一定である。TgとTxとの間では、寸法変化の温度
変化による変化α2 は、α1に較べて大幅に増大している。以下、α1を1
次寸法変化率、α2を2次寸法変化率と呼ぶ。From room temperature to a temperature slightly lower than Tg, change in dimensional change due to temperature change α 1 Is constant. Between Tg and Tx, the change in dimensional change due to temperature change α 2 Is significantly larger than α 1 . Below, α 1 is 1
The secondary dimensional change rate, α 2 is called the secondary dimensional change rate.
この非晶質合金のガラス化遷移温度(Tg)は440 ℃、
結晶化温度(Tx)は500℃である。The glass transition temperature (Tg) of this amorphous alloy is 440 ° C,
The crystallization temperature (Tx) is 500 ° C.
以上の結果から、TgとTxとの間の温度範囲内では、
同一応力下でTg未満の温度に較べて変形がきくなり、
粉末を成形するに当たり、粉末粒子が容易に変形し、ス
プリングバックも極めて小さくなるので成形が容易であ
ることが理解されよう。From the above results, within the temperature range between Tg and Tx,
Under the same stress, the deformation becomes higher than the temperature below Tg,
It will be understood that when the powder is molded, the powder particles are easily deformed and the springback is extremely small, so that the powder is easily molded.
第1図の曲線には、ガラス化遷移温度Tgよりも20℃高
い温度460 ℃を僅かに越える温度B点に編曲点が観察さ
れ、B点以上の温度でΔlが急激に増大している。従っ
て、成形温度はこのB点以上、結晶化温度A点未満の範
囲内の温度とするのが一層好ましいことが理解できる。In the curve of FIG. 1, an inflection point is observed at a point B slightly exceeding the temperature 460 ° C. which is 20 ° C. higher than the glass transition temperature Tg, and Δl sharply increases at a temperature above the point B. Therefore, it can be understood that the molding temperature is more preferably within the range of the point B or higher and the crystallization temperature lower than the point A.
予備実験2 化学組成をCo90-XSi10Bxとし、xを変化させた非
晶質合金リボンを単ロール法によって作製した。これら
のリボンの厚さは20〜25μmである。Preliminary Experiment 2 An amorphous alloy ribbon having a chemical composition of Co 90 -X Si 10 Bx and varying x was prepared by a single roll method. The thickness of these ribbons is 20-25 μm.
これらリボンについて、前記予備実験1に於けると同様
の試験を行い、ガラス化遷移温度(Tg)、結晶化温度
(Tx)及び2次寸法変化率(α2)を測定した。These ribbons were tested in the same manner as in Preliminary Experiment 1 to measure the vitrification transition temperature (Tg), crystallization temperature (Tx) and secondary dimensional change rate (α 2 ).
試験結果は第2図に示す通りである。The test results are shown in FIG.
ガラス化遷移温度と結晶化温度との間の温度範囲(Tx
−Tg)は、xが15原子%(Co75Si10B15)付近
で極大値を示し、その値は16Kと極めて大きい。α2は
xの上昇に伴って上昇し、x15原子%(Co75Si10
B15)では約100 ×10-6/Kであって、この非晶質合金
のα1((10〜13)×10-6/K)に較べて1桁大きい。Temperature range between the vitrification transition temperature and the crystallization temperature (Tx
-Tg) has a maximum value when x is around 15 atom% (Co 75 Si 10 B 15 ), and the value is extremely large at 16K. α 2 increases as x increases, and x 15 atomic% (Co 75 Si 10
B 15 ) is about 100 × 10 −6 / K, which is an order of magnitude larger than α 1 ((10 to 13) × 10 −6 / K) of this amorphous alloy.
予備実験3 化学組成をCo75Si25-XBxとし、xを変化させた非
晶質合金リボンを単ロール法によって作製した。これら
リボンの厚さは20〜25μmである。Preliminary Experiment 3 An amorphous alloy ribbon having a chemical composition of Co 75 Si 25-X Bx and varying x was prepared by a single roll method. The thickness of these ribbons is 20-25 μm.
これらリボンについて、前記予備実験2に於けると同様
の試験を行った。These ribbons were tested in the same manner as in Preliminary Experiment 2.
試験結果は第3図に示す通りである。The test results are shown in FIG.
Tx−Tgはx15原子%で極大値を示し、前記予備実験
2に於けると同様に、Co75Si10B15が最も大きいT
x−Tgを示している。この実験では、α2もx15原子
%付近で極大値を示している。上記結果からCo75Si
10B15の非晶質合金は、Tx−Tgの温度範囲で極めて
成形性に優れていることが解る。Tx-Tg shows a maximum value at x15 atomic%, and as in the case of the above-mentioned preliminary experiment 2, Co 75 Si 10 B 15 has the largest T.
x-Tg is shown. In this experiment, α 2 also shows a maximum value near x15 atom%. From the above results, Co 75 Si
It can be seen that the amorphous alloy of 10 B 15 has extremely excellent formability in the temperature range of Tx-Tg.
予備実験4 Co75Si10B15の非晶質合金のCoの一部をFeで置
換した非晶質合金を作製し、前記予備実験2及び3と同
様の試験を行った。Preliminary Experiment 4 An amorphous alloy in which a part of Co in the amorphous alloy of Co 75 Si 10 B 15 was replaced with Fe was produced, and the same tests as those in the Preliminary Experiments 2 and 3 were conducted.
試験結果は第4図に示す通りである。The test results are shown in FIG.
Tx−Tgにはxによる変化は明らかには認められな
い。xが10原子%迄はTg、Tx共に若干上昇する。ま
た、xが10原子%迄はα2が明らかに上昇し、10原子%
以上ではその上昇は僅少である。従って、Coの一部を
Feで置換することは、成形性改善の観点から有利であ
る。No apparent change in Tx-Tg due to x was observed. Both Tg and Tx slightly increase until x is 10 atomic%. Also, when x is up to 10 atom%, α 2 obviously increases, and 10 atom%
Above, the rise is insignificant. Therefore, substituting a part of Co with Fe is advantageous from the viewpoint of improving formability.
以下、本発明の具体的な実施例について説明する。Hereinafter, specific examples of the present invention will be described.
実施例1 前記予備実験2及び3で良好な成績を示したCo75Si
10B15の非晶質合金リボン、この合金のCoの一部をF
eで置換したCo70Fe5Si10B15の非晶質合金リボ
ン、磁歪零材料であるCo70.3Fe4.7Si15B10及び
Co68.8Fe4.2Si15B12の非晶質合金リボン並びに
高磁束密度材料であるCo75Fe5Si4B16及びNi
75Si8B17の非晶質合金リボンを単ロール法によって
作製した。これらリボンの厚さは20μmである。Example 1 Co 75 Si showing good results in the preliminary experiments 2 and 3
10 B 15 amorphous alloy ribbon, part of Co of this alloy is F
An amorphous alloy ribbon of Co 70 Fe 5 Si 10 B 15 substituted with e, an amorphous alloy ribbon of Co 70.3 Fe 4.7 Si 15 B 10 and Co 68.8 Fe 4.2 Si 15 B 12 which are zero magnetostrictive materials, and a high magnetic flux Density materials Co 75 Fe 5 Si 4 B 16 and Ni
An amorphous alloy ribbon of 75 Si 8 B 17 was produced by the single roll method. The thickness of these ribbons is 20 μm.
これらのリボンについて、前記予備実験2、3及び4に
於けると同様の試験を行った。These ribbons were tested in the same manner as in the preliminary experiments 2, 3 and 4.
試験結果は下記第1表に示す通りである。The test results are shown in Table 1 below.
これら非晶質合金リボンと同一化学組成を有する熔湯か
ら、次のような方法で非晶質合金粉末を製造した。 Amorphous alloy powder was produced by the following method from a molten metal having the same chemical composition as those of the amorphous alloy ribbons.
第5図は非晶質合金粉末の製造に供した製造の概要を示
し、坩堝1中に収容された上記化学組成の熔湯2を、水
冷ジャケッン5によって冷却される石英管製ノズル3を
経由して黒鉛製ロール4a、4bの間隙に向けて落下供
給した。ロール4a、4bは、径60mmで、0.05mmの間隙
をおいて相対向させ、夫々500rpm (周速15.7m/sec)
で回転させておいた。ロール対4のロール4a、4b間
に通過する熔湯は、負圧になってキャビテーションが発
生し、微細な溶融金属滴6となって高速で下向きに放出
され、銅製回転円筒体7の表面(周速52.4m/sec )に
衝突して急速凝固し、平均粒径74〜149 μm非晶質合金
粉末8となり、容器9中に捕集される。FIG. 5 shows an outline of the production used for producing the amorphous alloy powder, in which the molten metal 2 having the above chemical composition contained in the crucible 1 is passed through a quartz tube nozzle 3 cooled by a water cooling jacket 5. Then, it was dropped and supplied toward the gap between the graphite rolls 4a and 4b. The rolls 4a and 4b have a diameter of 60 mm and are opposed to each other with a gap of 0.05 mm, and each is 500 rpm (peripheral speed 15.7 m / sec).
I rotated it at. The molten metal passing between the rolls 4a and 4b of the roll pair 4 has a negative pressure to generate cavitation, and becomes fine molten metal droplets 6 which are discharged downward at a high speed, and the surface of the copper rotating cylindrical body 7 ( It collides with a peripheral velocity of 52.4 m / sec) and rapidly solidifies to form an amorphous alloy powder 8 having an average particle size of 74 to 149 μm, which is collected in a container 9.
上記のように製造された非晶質合金粉末をマレージング
鋼製型中に充填し、第1表に示す成形温度に約50分かけ
て加熱し、その温度に保持しながら15分間100 kg/mm2
の成形圧で圧縮成形し、直径5mm、高さ5mmの成形体と
した。The amorphous alloy powder manufactured as described above was filled into a maraging steel mold, heated to the molding temperature shown in Table 1 for about 50 minutes, and kept at that temperature for 15 minutes 100 kg / mm. 2
It was compression-molded with a molding pressure of 5 mm to obtain a molded body having a diameter of 5 mm and a height of 5 mm.
これらの成形体について、密度とビッカース硬度を測定
した。The density and Vickers hardness of these molded products were measured.
密度はいずれも90%を越えており、硬度は第1表中に併
記してあるように高く、得られた成形体はいずれも極め
て緻密であることが判る。All the densities exceeded 90%, and the hardness was high as also shown in Table 1, and it is understood that all the obtained molded articles are extremely dense.
実施例2 Co68,8Fe4.2Si15B12非晶質合金粉末を前記実施
例1に於けると同じ条件で成形した。このようにして得
られた圧粉磁芯は1MHzで透磁率300 という高い値が得
られた。従来の圧粉磁芯は密度が60〜70%と低いため10
0程度の透磁率しか得られていない。Example 2 Co 68,8 Fe 4.2 Si 15 B 12 amorphous alloy powder was molded under the same conditions as in Example 1 above. The powder magnetic core thus obtained had a high magnetic permeability of 300 at 1 MHz. Conventional powder magnetic core has a low density of 60-70%, so 10
Only a magnetic permeability of about 0 is obtained.
実施例3 前記実施例1で使用した非晶質合金粉末を成形温度を変
えて成形し、硬度を測定した。其他の条件は前記実施例
1に於けると同様である。Example 3 The amorphous alloy powder used in Example 1 was molded at different molding temperatures, and the hardness was measured. The other conditions are the same as in the first embodiment.
測定結果は下記第2表に示す通りである。The measurement results are as shown in Table 2 below.
上記の結果から、成形温度をTgを越え、Tx未満の温
度とすることにより、非晶質合金が強靭でかつ高硬度で
あることから成形性が良好でないように考えられる非晶
質合金末の成形が容易にでき、成形温度をTg+20Kを
越え、Tx未満の温度とすれば、成形が一層容易になっ
て、より緻密な非晶質合金成形体が得られることが理解
できる。また、そのためには、TgとTxとの間の温度
範囲はできるだけ広いことが望ましく、この温度範囲が
40K以上、更に好ましくは50K以上の非晶質合金の粉末
を成形するのが良い。 From the above results, when the forming temperature is set to a temperature higher than Tg and lower than Tx, the amorphous alloy is tough and has high hardness. It can be understood that the molding can be easily carried out, and if the molding temperature is higher than Tg + 20K and lower than Tx, the molding becomes easier and a denser amorphous alloy compact can be obtained. For that purpose, it is desirable that the temperature range between Tg and Tx is as wide as possible, and this temperature range is
It is preferable to form a powder of an amorphous alloy of 40K or higher, more preferably 50K or higher.
以上のように、本発明の方法は成形が容易であり、ま
た、非晶質合金粉末のみを成形するので、所望の形状、
寸法の非晶質合金成形体を得ることができ、材料の無駄
が殆どなく、高い歩留りで成形体を製造できる。As described above, the method of the present invention is easy to mold, and since only the amorphous alloy powder is molded, the desired shape,
An amorphous alloy compact having a size can be obtained, and there is almost no waste of material, and the compact can be produced with a high yield.
ヘ.発明の効果 以上説明したように、本発明に基づく非晶質合金成形体
の製造方法によれば、次のような効果が奏せられる。F. EFFECTS OF THE INVENTION As described above, according to the method for producing an amorphous alloy compact according to the present invention, the following effects can be obtained.
(i)非晶質合金粉末を製造し、この粉末のみを成形する
ので、材料の無駄が殆どなく、高い歩留りで非晶質合金
成形体を製造することができる。(i) Since the amorphous alloy powder is manufactured and only this powder is molded, there is almost no waste of material, and the amorphous alloy molded body can be manufactured with high yield.
(ii)ガラス化遷移温度を越える温度で成形するために、
2次寸法変化率(α2)の値が大きく、その結果、スプ
リングバックが極めて小さくて成形が容易である。(ii) In order to mold at a temperature exceeding the vitrification transition temperature,
The secondary dimensional change rate (α 2 ) has a large value, and as a result, the springback is extremely small and the molding is easy.
(iii)結晶化温度未満の温度で成形するので、結晶質に
変わるようなことがなく、非晶質合金の特性が損なわれ
ることがない。(iii) Since it is formed at a temperature lower than the crystallization temperature, it does not become crystalline and the characteristics of the amorphous alloy are not impaired.
図面はいずれも本発明の実施例を示すものであって、 第1図は、Co75Si10B15非晶質合金の引張応力下に
於ける寸法変化が、保持温度によって変化する状況を示
すグラフ、 第2図及び第3図はCo−Si−B系非晶質合金の化学
組成と結晶化温度Tx、ガラス化遷移温度Tg、2次寸
法変化率α2との関係を示すグラフ、 第4図はCo−Fe−Si−B系非晶質合金のFe含有
量と結晶化温度Tx、ガラス化遷移温度Tg、2次寸法
変化率α2との関係を示すグラフ、 第5図は本発明の第1工程の実施態様の要部を図解的に
示す一部破断立面図 である。 なお、図面に示された符号において、 1……坩堝 2……熔融金属 3……ノズル 4……ロール対 4a、4b……ロール 5……冷却用ジャケット 6……熔融金属滴 8……非晶質金属粉末 9……容器 である。The drawings all show examples of the present invention, and FIG. 1 shows a situation in which the dimensional change of Co 75 Si 10 B 15 amorphous alloy under tensile stress changes with the holding temperature. Graphs, FIGS. 2 and 3 are graphs showing the relationship between the chemical composition of the Co—Si—B system amorphous alloy and the crystallization temperature Tx, the vitrification transition temperature Tg, and the secondary dimensional change rate α 2 . FIG. 4 is a graph showing the relationship between the Fe content of the Co—Fe—Si—B system amorphous alloy and the crystallization temperature Tx, the vitrification transition temperature Tg, and the secondary dimensional change rate α 2, and FIG. FIG. 3 is a partially cutaway elevational view schematically showing a main part of an embodiment of a first step of the invention. In the reference numerals shown in the drawings, 1 ... crucible 2 ... molten metal 3 ... nozzle 4 ... roll pair 4a, 4b ... roll 5 ... cooling jacket 6 ... molten metal drop 8 ... non Crystalline metal powder 9 ... It is a container.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 増本 健 宮城県仙台市上杉3丁目−8―22 (72)発明者 深道 和明 宮城県仙台市山田自由ヶ丘33の26 (56)参考文献 特開 昭53−100905(JP,A) 特開 昭60−121203(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Masumoto, 3-8-22 Uesugi, Sendai City, Miyagi Prefecture (72) Inventor, Kazuaki Fukando, 33-33 Yamada Jiyugaoka, Sendai City, Miyagi Prefecture (56) References 53-100905 (JP, A) JP-A-60-121203 (JP, A)
Claims (1)
晶質合金粉末のみをそのガラス化遷移温度を越え、結晶
化温度未満の範囲内の温度で成形する工程とを有する非
晶質合金成形体の製造方法。1. An amorphous process comprising the steps of producing an amorphous alloy powder and molding the amorphous alloy powder alone at a temperature in the range above the glass transition temperature and below the crystallization temperature. For manufacturing a high quality alloy compact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60213318A JPH0623415B2 (en) | 1985-09-25 | 1985-09-25 | Method for producing amorphous alloy compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60213318A JPH0623415B2 (en) | 1985-09-25 | 1985-09-25 | Method for producing amorphous alloy compact |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6274032A JPS6274032A (en) | 1987-04-04 |
JPH0623415B2 true JPH0623415B2 (en) | 1994-03-30 |
Family
ID=16637161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60213318A Expired - Lifetime JPH0623415B2 (en) | 1985-09-25 | 1985-09-25 | Method for producing amorphous alloy compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0623415B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5108477A (en) * | 1990-05-21 | 1992-04-28 | Corning Incorporated | Method for making a glass article |
JP2578529B2 (en) * | 1991-01-10 | 1997-02-05 | 健 増本 | Manufacturing method of amorphous alloy molding material |
JP3904250B2 (en) * | 1995-06-02 | 2007-04-11 | 独立行政法人科学技術振興機構 | Fe-based metallic glass alloy |
JP6427862B2 (en) * | 2013-10-25 | 2018-11-28 | 日立金属株式会社 | Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6014081B2 (en) * | 1977-02-16 | 1985-04-11 | 株式会社東芝 | Method for manufacturing amorphous structure |
-
1985
- 1985-09-25 JP JP60213318A patent/JPH0623415B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6274032A (en) | 1987-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5301742A (en) | Amorphous alloy strip having a large thickness | |
JP3913167B2 (en) | Bulk Fe-based sintered alloy soft magnetic material made of metallic glass and manufacturing method thereof | |
US4368447A (en) | Rolled core | |
US4437912A (en) | Amorphous magnetic alloys | |
US4337087A (en) | Microcrystalline thin strip for magnetic material having high permeability, a method of producing the same and articles made from the thin strip | |
US4581080A (en) | Magnetic head alloy material and method of producing the same | |
EP0095830B1 (en) | Amorphous metals and articles made thereof | |
JPH0623415B2 (en) | Method for producing amorphous alloy compact | |
JPH09256122A (en) | Ferrous amorphous alloy | |
JPH0277505A (en) | Apparatus for casting metal powder | |
US4743313A (en) | Amorphous alloy for use in magnetic heads | |
JP2002105607A (en) | Fe-BASE AMORPHOUS ALLOY HAVING HIGH SATURATION MAGNETIZATION AND EXCELLENT SOFT MAGNETIC PROPERTY | |
JP3532392B2 (en) | Bulk core | |
JP2812573B2 (en) | Magnetic head | |
JPS6227540A (en) | Fine amorphous metallic wire | |
JPH11507771A (en) | Method for achieving controlled stepwise magnetization loop change in amorphous alloys | |
JPH1092619A (en) | Fe-based soft magnetic metallic glass sintered body and method for producing the same | |
JPH08144029A (en) | Iron-base amorphous alloy excellent in magnetic property and embrittlement resistance and its production | |
JP3083940B2 (en) | Metal / alloy ribbon manufacturing method | |
JPS61288404A (en) | Manufacture of amorphous alloy magnetic core material | |
JP6683419B2 (en) | Fe-based amorphous alloy and amorphous alloy ribbon with excellent soft magnetic properties | |
US20240352567A1 (en) | Method for manufacturing fe-si-b-based thick plate rapidly solidified alloy ribbon | |
JPH05329587A (en) | Production of thin strip of amorphous alloy having large thickness | |
JPS5942069B2 (en) | Method for manufacturing amorphous alloy with high effective magnetic permeability | |
JPS6151404B2 (en) |