[go: up one dir, main page]

JPH06230647A - Electrostatic charging device - Google Patents

Electrostatic charging device

Info

Publication number
JPH06230647A
JPH06230647A JP1408693A JP1408693A JPH06230647A JP H06230647 A JPH06230647 A JP H06230647A JP 1408693 A JP1408693 A JP 1408693A JP 1408693 A JP1408693 A JP 1408693A JP H06230647 A JPH06230647 A JP H06230647A
Authority
JP
Japan
Prior art keywords
charging
magnetic
magnetic particles
charged
photosensitive drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1408693A
Other languages
Japanese (ja)
Inventor
Satoru Haneda
哲 羽根田
Kunio Shigeta
邦男 重田
Yukie Hosokoshizawa
幸恵 細越澤
Masakazu Fukuchi
真和 福地
Shizuo Morita
静雄 森田
Hiroyuki Nomori
弘之 野守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1408693A priority Critical patent/JPH06230647A/en
Publication of JPH06230647A publication Critical patent/JPH06230647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To provide an electrostatic charging device in which magnetic particles are prevented from adhering to a member to be electrostatically charged and the dielectric breakdown of the member to be electrostatically charged is prevented from being caused and which can perform extremely stable and uniform electrostatic charging. CONSTITUTION:By a non-magnetic conductive electrostatic charging sleeve 22 rotatably disposed on the outer periphery of a magnetic body 23 having an outer periphery where magnetic poles are arranged and fixed so that horizontal magnetic field may be formed in an electrostatic charging area, and a magnetic brush consisting of the layer of the magnetic particles 21 adhering to the outer periphery of the sleeve 22, AC bias electric field is formed between the sleeve 22 and the photosensitive drum 10 so as to electrostatically charge the photosensitive drum 10 in this electrostatic charging device 20. A leveling member 29 is provided at an upstream part of an electrostatic charging area so that one surface of the leading edge and the other surface may come in contact with the photosensitive drum 10 and the magnetic brush, respectively, thereby, the magnetic brush is made stably and accurately to oppose to the moving photosensitive drum 10 without coming into contact with it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真複写機、静電
記録装置等の静電転写プロセスを利用する画像形成装置
の帯電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for an image forming apparatus utilizing an electrostatic transfer process such as an electrophotographic copying machine and an electrostatic recording device.

【0002】[0002]

【従来の技術】従来、電子写真方式による画像形成装置
において、感光体ドラム等の被帯電部材である像形成体
の帯電には、一般にコロナ帯電器が使用されていた。こ
のコロナ帯電器は、高電圧を放電ワイヤに印加して、放
電ワイヤの周辺に強電界を発生させ気体放電を行うもの
で、その際発生する電荷イオンを像形成体に吸着させる
ことにより帯電が行われる。
2. Description of the Related Art Conventionally, in an electrophotographic image forming apparatus, a corona charger has generally been used to charge an image forming body which is a member to be charged such as a photosensitive drum. This corona charger applies a high voltage to the discharge wire to generate a strong electric field around the discharge wire to perform gas discharge, and the charged ions generated at that time are adsorbed to the image forming body to charge. Done.

【0003】このような従来の画像形成装置に用いられ
ているコロナ帯電器は、像形成体と機械的に接触するこ
となく帯電させることができるため、帯電時に像形成体
を傷付けることがないという利点を有している。しかし
ながら、このコロナ帯電器は高電圧を使用するために感
電したり、リークする危険があり、かつ気体放電に伴っ
て発生するオゾンが人体に有害であり、像形成体の寿命
を短くするという欠点を有していた。また、コロナ帯電
器による帯電電位は温度,湿度に強く影響されるので不
安定であり、さらに、コロナ帯電器では高電圧によるノ
イズ発生があって通信端末機や情報処理装置として電子
写真式画像形成装置を利用する場合の大きな欠点となっ
ている。
Since the corona charger used in such a conventional image forming apparatus can be charged without mechanical contact with the image forming body, it is said that the image forming body is not damaged during charging. Have advantages. However, since this corona charger uses a high voltage, there is a risk of electric shock or leakage, and ozone generated by gas discharge is harmful to humans, which shortens the life of the image forming body. Had. Further, the charging potential of the corona charger is unstable because it is strongly affected by temperature and humidity. Further, the corona charger generates noise due to high voltage, which causes electrophotographic image formation as a communication terminal or an information processing device. This is a major drawback when using the device.

【0004】このようなコロナ帯電器の多くの欠点は、
帯電を行うのに気体放電を伴うことに原因がある。
Many drawbacks of such corona chargers are:
The cause is that gas discharge is involved in charging.

【0005】そこで、コロナ帯電器のような高圧の気体
放電を行わず、しかも被帯電部材に機械的損傷を与える
ことなく、該被帯電部材を帯電させることのできる帯電
装置として、磁石体を内包した円筒状の搬送担体上に磁
性粒子を吸着して磁気ブラシを形成し、この磁気ブラシ
で被帯電部材の表面を摺擦することにより帯電を行うよ
うにした帯電装置が特開昭59-133569号、特開平4-21873
号、特開平4-116674号公報に開示されている。
Therefore, a magnet body is included as a charging device capable of charging a charged member without causing a high-pressure gas discharge like a corona charger and without mechanically damaging the charged member. A charging device in which magnetic particles are adsorbed on a cylindrical carrier formed as described above to form a magnetic brush and the surface of the member to be charged is rubbed by the magnetic brush to perform charging is disclosed in Japanese Patent Laid-Open No. 59-133569. No. 4-21873
And JP-A-4-116674.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記公
報に開示された帯電装置においても、被帯電部材を完全
に安定して一様に帯電させることはできないという問題
点があった。即ち、帯電領域において前記円筒状の磁性
粒子搬送担体表面上の磁性粒子は磁力線に沿って鎖状に
なり、この鎖を通して帯電が行われていた。このため磁
性粒子の被帯電部材への付着や、局所的に帯電が過多と
なり被帯電部材の絶縁破壊や帯電ムラが発生するという
問題点がある。
However, even the charging device disclosed in the above publication has a problem in that the member to be charged cannot be charged completely stably and uniformly. That is, in the charging area, the magnetic particles on the surface of the cylindrical magnetic particle carrying carrier are chained along the lines of magnetic force, and charging is performed through the chains. For this reason, there is a problem that magnetic particles adhere to the member to be charged, or the charge is locally excessive, resulting in dielectric breakdown of the member to be charged and uneven charging.

【0007】本発明はこれらの点を解決して、磁性粒子
の被帯電部材への付着や被帯電部材の絶縁破壊の発生が
なく、極めて安定した均一な帯電を行うことのできる帯
電装置を提供することを目的とする。
The present invention solves these problems, and provides a charging device capable of performing extremely stable and uniform charging without adhesion of magnetic particles to a member to be charged or dielectric breakdown of the member to be charged. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記目的は、被帯電部材
に対し、磁気ブラシを形成し、交流バイアス下で帯電を
行う帯電装置において、前記磁気ブラシは被帯電部材と
微小間隙を有して対向することを特徴とする帯電装置に
よって達成される。
The above object is to provide a charging device for forming a magnetic brush on a member to be charged and charging the member under an AC bias, wherein the magnetic brush has a minute gap with the member to be charged. It is achieved by a charging device characterized by facing each other.

【0009】また、前記磁気ブラシは、水平磁界下で被
帯電部材と対向すると共に、均し部材に接触していて、
該均し部材は、被帯電部材に接触していることを特徴と
する前記帯電装置は好ましい実施態様である。
The magnetic brush faces the member to be charged under a horizontal magnetic field and is in contact with the leveling member,
The charging device is characterized in that the leveling member is in contact with the member to be charged.

【0010】[0010]

【作用】本発明においては、帯電装置の磁気ブラシを被
帯電部材と微小間隙を有して対向するようにしたので、
従来のコロナ放電に比べ低いバイアス電圧で被帯電部材
を帯電することができる。
In the present invention, since the magnetic brush of the charging device is opposed to the member to be charged with a minute gap,
The member to be charged can be charged with a bias voltage lower than that of the conventional corona discharge.

【0011】[0011]

【実施例】以下図面を用いて本発明の実施例について説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図2は本発明の帯電装置を用いた画像形成
装置の構成の概要を示す断面図である。図において、10
は矢示(時計)方向に回転する被帯電部材である(−)帯
電のOPCから成る感光体ドラムで、その周縁部には後
述する帯電装置20、露光装置からの像光Lの入射する露
光部12、現像器30、転写ローラ13、クリーニング装置50
等が設けられている。
FIG. 2 is a sectional view showing the outline of the construction of an image forming apparatus using the charging device of the present invention. In the figure, 10
Is a photosensitive drum made of (-) charged OPC which is a member to be charged which rotates in the direction of the arrow (clockwise), and a peripheral portion of which is a charging device 20 and an exposure device in which image light L from an exposure device is incident. Part 12, developing device 30, transfer roller 13, cleaning device 50
Etc. are provided.

【0013】本実施例のコピープロセスの基本動作は、
図示しない操作部よりコピー開始指令が図示しない制御
部に送出されると、制御部の制御により、感光体ドラム
10は矢示方向に回転を始める。感光体ドラム10の回転に
従いその周面は、後述する帯電装置20により一様に帯電
され通過する。感光体ドラム10上には、露光部12におい
て画像書き込み装置等からの例えばレーザビームの像光
Lによる画像の書き込みが行われ、画像に対応した静電
潜像が形成される。
The basic operation of the copy process of this embodiment is as follows.
When a copy start command is sent from an operation unit (not shown) to a control unit (not shown), the control unit controls the photosensitive drum.
10 starts rotating in the direction of the arrow. As the photosensitive drum 10 rotates, the peripheral surface of the photosensitive drum 10 is uniformly charged by a charging device 20 described later and passes through. An image is written on the photoconductor drum 10 by the image writing device such as a laser beam in the exposure unit 12 to form an electrostatic latent image corresponding to the image.

【0014】現像器30内には帯電装置20に用いられるも
のと共通の磁性粒子とトナーとからなる二成分現像剤が
あって撹拌スクリュー33A,33Bによって撹拌されたの
ち、磁石体ローラ32の外側にあって回転する現像スリー
ブ31外周に付着して現像剤の磁気ブラシを形成し、現像
スリーブ31には所定の交流バイアス電圧が印加されて、
感光体ドラム10に対向した現像領域において非接触又
は、接触の反転現像が行われトナー像が形成される。
Inside the developing device 30, there is a two-component developer consisting of magnetic particles and toner, which is common to that used in the charging device 20, and is agitated by agitating screws 33A and 33B, and then outside the magnet roller 32. A magnetic brush of developer is formed by adhering to the outer periphery of the rotating developing sleeve 31, and a predetermined AC bias voltage is applied to the developing sleeve 31,
Non-contact or contact reversal development is performed in the development area facing the photoconductor drum 10 to form a toner image.

【0015】給紙カセット40からは、記録紙Pが一枚ず
つ第1給紙ローラ41によって繰り出される。この繰り出
された記録紙Pは、感光体ドラム10上の前記トナー像と
同期して作動する第2給紙ローラ42によって感光体ドラ
ム10上に送出される。 そして転写ローラ13の作用によ
り、感光体ドラム10上のトナー像が記録紙P上に転写さ
れ、感光体ドラム10上から分離される。トナー像を転写
された記録紙Pは搬送手段80を経て図示しない定着装置
へ送られ、熱定着ローラ及び圧着ローラによって挟持さ
れ、溶融定着されたのち装置外へ排出される。記録紙P
に転写されずに残ったトナーを有して回転する感光体ド
ラム10の表面は、ブレード51等を備えたクリーニング装
置50により掻き落とされ清掃されて次回の画像記録に待
機する。
From the paper feed cassette 40, the recording papers P are fed one by one by a first paper feed roller 41. The fed recording paper P is sent onto the photosensitive drum 10 by the second paper feed roller 42 which operates in synchronization with the toner image on the photosensitive drum 10. Then, by the action of the transfer roller 13, the toner image on the photoconductor drum 10 is transferred onto the recording paper P and separated from the photoconductor drum 10. The recording paper P on which the toner image has been transferred is sent to a fixing device (not shown) via the conveying means 80, is sandwiched by a heat fixing roller and a pressure bonding roller, is fused and fixed, and is then discharged to the outside of the apparatus. Recording paper P
The surface of the photoconductor drum 10 that has toner remaining without being transferred to the surface of the photoconductor drum 10 is scraped off and cleaned by a cleaning device 50 having a blade 51 and the like, and stands by for the next image recording.

【0016】次に本発明の実施例の帯電装置20を説明す
る前に磁性粒子の粒径及び搬送担体の条件について説明
する。
Before explaining the charging device 20 of the embodiment of the present invention, the particle size of the magnetic particles and the conditions of the carrier will be described.

【0017】一般に磁性粒子の平均粒径(平均重量)が
大きいと、(イ)搬送担体上に形成される磁気ブラシの
穂の状態が粗いために、電界により振動を与えながら帯
電しても、磁気ブラシにムラが現れ易く、帯電ムラの問
題が起こる。この問題を解消するには、磁性粒子の平均
粒径を小さくすればよく、実験の結果、平均粒径150μm
以下でその効果が現れ初め、特に100μm以下になると、
実質的に(イ)の問題が生じなくなることが判明した。
しかし、粒子が細か過ぎると帯電時被帯電部材面に付着
するようになったり、飛散し易くなったりする。これら
の現象は、粒子に作用する磁界の強さ、それによる粒子
の磁化の強さにも関係するが、一般的には、粒子の平均
粒径が30μm以下に顕著に現れるようになる。なお、磁
化の強さは20〜200emu/gのものが好ましく用いられる。
Generally, when the average particle size (average weight) of the magnetic particles is large, (a) since the state of the magnetic brush formed on the carrier is rough, even when charged while vibrating by the electric field, The magnetic brush is likely to have unevenness, which causes a problem of uneven charging. In order to solve this problem, the average particle size of the magnetic particles should be reduced.
The effect begins to appear below, especially when it becomes 100 μm or less,
It was found that the problem (a) would not substantially occur.
However, if the particles are too fine, they tend to adhere to the surface of the member to be charged during charging, or are likely to scatter. These phenomena are related to the strength of the magnetic field acting on the particles and the strength of the magnetization of the particles thereby, but generally, the average particle diameter of the particles becomes prominent at 30 μm or less. It is preferable that the magnetization intensity is 20 to 200 emu / g.

【0018】以上から、磁性粒子の粒径は平均粒径(平
均重量)が150μm以下、特に好ましくは100μm以下30μ
m以上であることが好ましい。
From the above, the average particle diameter (average weight) of the magnetic particles is 150 μm or less, particularly preferably 100 μm or less 30 μm.
It is preferably m or more.

【0019】このような磁性粒子は、磁性体として従来
の二成分現像剤の磁性キャリヤ粒子におけると同様の、
鉄,クロム,ニッケル,コバルト等の金属、あるいはそ
れらの化合物や合金、例えば四三酸化鉄,γ−酸化第二
鉄,二酸化クロム,酸化マンガン,フェライト,マンガ
ン−銅系合金、と云った強磁性体の粒子、又はそれら磁
性体粒子の表面をスチレン系樹脂,ビニル系樹脂,エチ
レン系樹脂,ロジン変性樹脂,アクリル系樹脂,ポリア
ミド樹脂,エポキシ樹脂,ポリエステル樹脂等の樹脂で
被覆するか、あるいは、磁性体微粒子を分散して含有し
た樹脂で作るかして得られた粒子を従来公知の平均粒径
選別手段で粒径選別することによって得られる。
Such magnetic particles are the same as those used in the magnetic carrier particles of the conventional two-component developer as a magnetic material.
Ferromagnetism such as metals such as iron, chromium, nickel and cobalt, or their compounds and alloys such as ferric tetroxide, γ-ferric oxide, chromium dioxide, manganese oxide, ferrite and manganese-copper alloys. Body particles or the surface of these magnetic particles is coated with a resin such as styrene resin, vinyl resin, ethylene resin, rosin modified resin, acrylic resin, polyamide resin, epoxy resin, polyester resin, or Particles obtained by making a resin containing magnetic fine particles dispersed therein can be obtained by selecting the particle size by a conventionally known average particle size selecting means.

【0020】なお、磁性粒子を球状に形成することは、
搬送担体に形成される粒子層が均一となり、また搬送担
体に高いバイアス電圧を均一に印加することが可能とな
ると云う効果も与える。すなわち、磁性粒子が球形化さ
れていることは、(1)一般に、磁性粒子は長軸方向に
磁化吸着され易いが、球形化によってその方向性が無く
なり、従って、層が均一に形成され、局所的に抵抗の低
い領域や層厚のムラの発生を防止する、(2)磁性粒子
の高抵抗化と共に、従来の粒子に見られるようなエッジ
部が無くなって、エッジ部への電界の集中が起こらなく
なり、その結果、磁性粒子搬送担体に高いバイアス電圧
を印加しても、被帯電部材面に均一に放電して帯電ムラ
が起こらない、という効果を与える。
The spherical shape of the magnetic particles means that
The particle layer formed on the carrier is made uniform, and a high bias voltage can be uniformly applied to the carrier. That is, the fact that the magnetic particles are spherical means that (1) generally, the magnetic particles are easily magnetized and adsorbed in the long axis direction, but due to the spherical shape, the directionality is lost, so that a layer is uniformly formed and local layers are formed. (2) Higher resistance of the magnetic particles is eliminated, and the edge portions seen in conventional particles are eliminated, and electric field concentration on the edge portions is prevented. As a result, even if a high bias voltage is applied to the magnetic particle carrying carrier, it is possible to uniformly discharge the surface of the member to be charged and prevent uneven charging.

【0021】以上のような効果を奏する球形粒子には磁
性粒子の抵抗率が103Ω・cm以上1012Ω・cm以下、特に104
Ω・cm以上109Ω・cm以下であるように導電性の磁性粒子
を形成したものが好ましい。この抵抗率は、粒子を0.50
cm2の断面積を有する容器に入れてタッピングした後、
詰められた粒子上に1kg/cm2の荷重を掛け、荷重と底面
電極との間に1,000V/cmの電界が生ずる電圧を印加した
ときの電流値を読み取ることで得られる値であり、この
抵抗率が低いと、搬送担体にバイアス電圧を印加した場
合に、磁性粒子に電荷が注入されて、被帯電部材面に磁
性粒子が付着し易くなったり、あるいはバイアス電圧に
よる被帯電部材の絶縁破壊が起こり易くなったりする。
また、抵抗率が高いと電荷注入が行われず帯電が行われ
ない。
The spherical particles having the above effects have a magnetic particle resistivity of 10 3 Ω · cm or more and 10 12 Ω · cm or less, and particularly 10 4
It is preferable that the conductive magnetic particles are formed so as to be Ω · cm or more and 10 9 Ω · cm or less. This resistivity is 0.50 for particles
After tapping in a container with a cross-sectional area of cm 2 ,
A value obtained by applying a load of 1 kg / cm 2 on the packed particles and reading the current value when a voltage that generates an electric field of 1,000 V / cm is applied between the load and the bottom electrode. When the resistivity is low, when a bias voltage is applied to the carrier, electric charges are injected into the magnetic particles and the magnetic particles tend to adhere to the surface of the charged member, or the dielectric breakdown of the charged member due to the bias voltage. May occur easily.
If the resistivity is high, charge injection is not performed and charging is not performed.

【0022】さらに、本発明に用いられる磁性粒子は、
それにより構成される磁気ブラシが振動電界により軽快
に動き、しかも外部飛散が起きないように、比重の小さ
く、かつ適度の最大磁化を有するものが望ましい。具体
的には真比重が6以下で最大磁化が30〜100emu/gのも
の、特に40〜80emu/gを用いると好結果が得られること
が判明した。
Further, the magnetic particles used in the present invention are
It is desirable that the magnetic brush constituted by it has a small specific gravity and a suitable maximum magnetization so that the magnetic brush moves lightly due to an oscillating electric field and does not cause external scattering. Specifically, it was found that good results can be obtained when the true specific gravity is 6 or less and the maximum magnetization is 30 to 100 emu / g, particularly 40 to 80 emu / g.

【0023】以上を総合して、磁性粒子は、少なくとも
長軸と短軸の比が3倍以下であるように球形化されてお
り、針状部やエッジ部等の突起が無く、抵抗率が好まし
くは104Ω・cm以上109Ω・cm以下であることが適正条件で
ある。そして、このような球状の磁性粒子は、磁性体粒
子にできるだけ球形のものを選ぶこと、磁性体微粒子分
散系の粒子では、できるだけ磁性体の微粒子を用いて、
分散樹脂粒子形成後に球形化処理を施すこと、あるいは
スプレードライの方法によって分散樹脂粒子を形成する
こと等によって製造される。
In summary, the magnetic particles are spherical so that at least the ratio of the major axis to the minor axis is 3 times or less, and there are no protrusions such as needle-shaped portions and edge portions, and the resistivity is The appropriate condition is preferably 10 4 Ω · cm or more and 10 9 Ω · cm or less. Then, such spherical magnetic particles should be selected as spherical as possible for the magnetic particles, and in the particles of the magnetic particle dispersion system, the particles of the magnetic material should be used as much as possible.
After the dispersed resin particles are formed, a spheroidizing treatment is performed, or the dispersed resin particles are formed by a spray drying method.

【0024】また、トナーが磁気ブラシに混入すると、
トナーは絶縁性が高いため帯電性が低下し帯電ムラを生
じる。これを防止するにはトナーが帯電時被帯電部材へ
移動するようにトナーの電荷量を低くすることが必要で
あり、磁性粒子にトナーを混合し、1重量%のトナー濃
度に調整した条件下でトナーの摩擦帯電量を帯電極性が
同じで、かつ1〜20μC/gとした場合、磁気ブラシへの
トナーの蓄積を防止できた。このことはトナーが混入し
ても帯電時感光体へ付着するためと考えられる。トナー
の電荷量が大きいと磁性粒子から離れずらくなり、一方
小さいと電気的に被帯電部材に移動しずらくなることが
認められた。
When toner is mixed in the magnetic brush,
Since the toner has a high insulating property, the charging property is lowered and uneven charging occurs. In order to prevent this, it is necessary to lower the charge amount of the toner so that the toner moves to the member to be charged during charging. Under the condition that the toner is mixed with magnetic particles and the toner concentration is adjusted to 1% by weight. When the triboelectrification amount of the toner was the same and the charging polarity was 1 to 20 μC / g, it was possible to prevent the toner from accumulating on the magnetic brush. It is considered that this is because even if the toner is mixed, it adheres to the photoconductor during charging. It was confirmed that when the charge amount of the toner is large, it becomes difficult to separate from the magnetic particles, and when it is small, it becomes difficult to electrically move to the member to be charged.

【0025】以上が磁性粒子についての条件であり、次
に粒子層を形成して被帯電部材を帯電する磁性粒子の搬
送担体に関する条件について述べる。
The above are the conditions for the magnetic particles. Next, the conditions for the carrier for the magnetic particles for forming the particle layer and charging the member to be charged will be described.

【0026】磁性粒子の搬送担体は、バイアス電圧を印
加し得る導電性の搬送担体が用いられるが、特に、表面
に粒子層が形成される導電性の帯電スリーブの内部に複
数の磁極を有する磁石体が設けられている構造のものが
好ましく用いられる。このような搬送担体においては、
磁石体との相対的な回転によって、導電性帯電スリーブ
の表面に形成される粒子層が波状に起伏して移動するよ
うになるから、新しい磁性粒子が次々と供給され、搬送
担体表面の粒子層に多少の層厚の不均一があっても、そ
の影響は上記波状の起伏によって実際上問題とならない
ように十分カバーされる。搬送担体の表面は磁性粒子の
安定な均一搬送のために表面の平均粗さを2〜15μmと
することが好ましい、平滑であると搬送は十分に行えな
く、粗すぎると表面の凸部から過電流が流れ、どちらに
しても帯電ムラが生じ易い。上記の表面粗さとするには
サンドブラスト処理が好ましく用いられる。また、搬送
担体の直径は5〜20mmが好ましい。上記径とすることに
より帯電に必要な帯電領域を確保する。帯電領域が必要
以上に大きいと帯電電流が過大となるし、小さいと帯電
ムラが生じ易い。また上記のように小径とした場合、遠
心力により磁性粒子が飛散あるいは被帯電部材に付着し
易いために、搬送担体の線速度は下記の範囲内で遅くす
ることが好ましい。搬送担体の回転による磁性粒子の搬
送速度は、被帯電部材の移動速度と殆ど同じか、それよ
りも早くともよいが、遅い方が磁性粒子の飛散を少なく
することから好ましい。また、搬送担体の回転による搬
送方向は、同方向が好ましい。同方向の方が反対方向の
場合よりも帯電の均一性に優れている。しかし、それら
に限定されるものではない。
A conductive carrier for applying a bias voltage is used as the carrier for the magnetic particles, and in particular, a magnet having a plurality of magnetic poles inside a conductive charging sleeve on the surface of which a particle layer is formed. A structure having a body is preferably used. In such a carrier,
The relative rotation with the magnet body causes the particle layer formed on the surface of the conductive charging sleeve to undulate and move in a wave shape, so that new magnetic particles are supplied one after another, and the particle layer on the carrier surface is supplied. Even if there is some non-uniformity in the layer thickness, the effect is sufficiently covered by the above-mentioned wavy undulation so as not to be a practical problem. The surface of the carrier is preferable to have an average surface roughness of 2 to 15 μm for stable and uniform transfer of the magnetic particles. A current flows, and in either case uneven charging is likely to occur. Sandblasting is preferably used to achieve the above surface roughness. The diameter of the carrier is preferably 5 to 20 mm. With the above diameter, a charging area required for charging is secured. If the charging area is unnecessarily large, the charging current will be excessive, and if it is small, uneven charging is likely to occur. When the diameter is small as described above, magnetic particles are easily scattered or adhered to the member to be charged due to centrifugal force. Therefore, the linear velocity of the carrier is preferably slow within the following range. The transport speed of the magnetic particles due to the rotation of the transport carrier may be almost the same as or faster than the moving speed of the member to be charged, but it is preferable that the transport speed is slow because the scattering of the magnetic particles is reduced. In addition, it is preferable that the transporting carrier is rotated in the same direction. Uniformity of charging is better in the same direction than in the opposite direction. However, it is not limited thereto.

【0027】また、搬送担体上に形成する粒子層の厚さ
は、規制手段によって十分に掻き落されて均一な層とな
る厚さであることが好ましい。帯電領域において搬送担
体の表面上の磁性粒子の存在量が多すぎると磁性粒子の
振動が十分に行われず感光体の摩耗や帯電ムラを起こす
とともに過電流が流れ易く、搬送担体の駆動トルクが大
きくなるという欠点がある。反対に磁性粒子の帯電領域
における搬送担体上の存在量が少な過ぎると被帯電部材
への接触に不完全な部分を生じ磁性粒子の被帯電部材上
への付着や帯電ムラを起こすことになる。実験を重ねた
結果、帯電領域における磁性粒子の好ましい存在量Wは
10〜300mg/cm2であり、特に好ましくは30〜150mg/cm2
あることが判明した。なお、この存在量は、磁気ブラシ
の帯電領域における平均値である。
Further, the thickness of the particle layer formed on the carrier is preferably such that it is sufficiently scraped off by the regulating means to form a uniform layer. If there are too many magnetic particles on the surface of the carrier in the charging region, the vibration of the magnetic particles will not be sufficiently performed, causing wear and uneven charging of the photoconductor, and overcurrent will easily flow, resulting in a large drive torque of the carrier. There is a drawback that On the other hand, if the amount of the magnetic particles present on the carrier in the charged area is too small, an incomplete portion is formed in contact with the member to be charged, resulting in adhesion of the magnetic particles to the member to be charged and uneven charging. As a result of repeated experiments, the preferable abundance W of magnetic particles in the charged region is
Was 10-300 mg / cm 2, particularly preferably found to be 30~150mg / cm 2. The existing amount is an average value in the charged area of the magnetic brush.

【0028】そして、搬送担体と被帯電部材との間隙D
は100〜5,000μmが好ましい。搬送担体と被帯電部材の
表面間隙Dが100μmよりも狭くなり過ぎると、それに対
して均一な帯電作用する磁気ブラシの穂を形成するのが
困難となり、また、十分な磁性粒子を帯電領域に供給す
ることもできなくなって、安定した帯電が行われなくな
るし、間隙Dが5,000μmを大きく超すようになると、粒
子層が粗く形成されて帯電ムラが起き易く十分な帯電が
得られないようになる。このように、搬送担体と被帯電
部材の間隙Dが極端になると、それに対して搬送担体上
の粒子層の厚さを適当にすることができなくなるが、間
隙Dが100〜5,000μmの範囲では、それに対して粒子層
の厚さを適当に形成することができ、磁気ブラシの穂も
均一に形成される。また、さらに適切な搬送量(W)と
間隙(D)との間に最も好ましい条件が存在することが
明らかとなった。
The gap D between the carrier and the member to be charged is
Is preferably 100 to 5,000 μm. If the surface gap D between the carrier and the member to be charged becomes too narrower than 100 μm, it becomes difficult to form the magnetic brush ears that uniformly charge the carrier, and sufficient magnetic particles are supplied to the charging area. If the gap D exceeds 5,000 μm, the particle layer is coarsely formed and uneven charging is likely to occur and sufficient charging cannot be obtained. . As described above, when the gap D between the carrier and the member to be charged becomes extreme, the thickness of the particle layer on the carrier cannot be adjusted appropriately, but when the gap D is in the range of 100 to 5,000 μm. On the contrary, the thickness of the particle layer can be appropriately formed, and the ears of the magnetic brush are also formed uniformly. Further, it has been clarified that the most preferable condition exists between the more appropriate transport amount (W) and the gap (D).

【0029】帯電を均一でかつ高速で安定に行なうには
300 ≦ W/D ≦ 3,000(mg/cm3)の条件が重要であっ
た。W/Dがこの範囲外の場合には帯電が不均一になる
ことが確認された。
To perform charging uniformly and at high speed and stably
The condition of 300 ≤ W / D ≤ 3,000 (mg / cm 3 ) was important. It was confirmed that when W / D is out of this range, charging becomes non-uniform.

【0030】Dは磁性粒子の鎖長を決める要素と考えら
れる。鎖の長さに相当する電気抵抗が、帯電のし易さや
帯電速度と対応すると考えられる。一方、Wは磁性粒子
の鎖の密度を決める要素と考えられる。鎖の数を増やす
ことにより、帯電の均一性が向上すると考えられる。し
かしながら、帯電領域において、磁性粒子が狭い間隙を
通過するとき、磁性粒子の鎖の圧縮状態が実現している
と考えられる。この時、磁性粒子の鎖は互いに接触し、
曲がった状態で、撹乱を受けながら被帯電部材と対向し
ていることになる。
D is considered to be a factor that determines the chain length of magnetic particles. It is considered that the electric resistance corresponding to the chain length corresponds to the ease of charging and the charging speed. On the other hand, W is considered to be a factor that determines the density of chains of magnetic particles. It is believed that increasing the number of chains improves the charging uniformity. However, it is considered that when the magnetic particles pass through the narrow gap in the charging region, the compressed state of the chains of the magnetic particles is realized. At this time, the chains of magnetic particles contact each other,
In a bent state, it faces the member to be charged while being disturbed.

【0031】この撹乱条件が、帯電のスジなどを生じさ
せず電荷の移動を容易にし均一な帯電に有効と考えられ
る。すなわち、磁性粒子密度に相当するW/Dが小さい
ときは、磁性粒子の鎖は粗となり撹乱をうける割合が少
なく、帯電が不均一になる。W/Dが大となるときは、
磁性粒子の鎖は高いパッキングにより十分に形成され
ず、磁性粒子の撹乱は少ない。このことが電荷の自由な
移動を妨げ、均一な帯電が行われなくなる原因と考えら
れる。
It is considered that this disturbing condition is effective for uniform charge by facilitating the transfer of charge without causing charge stripes. That is, when the W / D corresponding to the magnetic particle density is small, the chains of the magnetic particles become coarse and the ratio of disturbance is small, resulting in non-uniform charging. When W / D becomes large,
The chains of the magnetic particles are not well formed due to the high packing and the magnetic particles are less disturbed. It is considered that this hinders the free movement of the charges and prevents uniform charging.

【0032】図1は本発明の帯電装置(図2の画像形成
装置に用いられる帯電装置20)の一実施例を示す断面図
である。図において、21は磁性粒子、22は例えばアルミ
ニウムなどの非磁性かつ導電性の金属からなる磁性粒子
21の搬送担体である帯電スリーブ、23は帯電スリーブ22
の内部に固定して配設された柱状の磁石体で、この磁石
体23は図2に示すように周縁に帯電スリーブ22の表面で
500〜1,000ガウスとなるようにS極及びN極を配置して
着磁されている。帯電スリーブ22は直径が5〜30mmであ
り磁石体23に対し回動可能になっていて、感光体ドラム
10との対向位置で0.5〜1.0mmの間隙に保持され感光体ド
ラム10の移動方向と同方向に1.2〜2.0倍の周速度で回転
させられる。
FIG. 1 is a sectional view showing an embodiment of the charging device (charging device 20 used in the image forming apparatus of FIG. 2) of the present invention. In the figure, 21 is a magnetic particle, 22 is a magnetic particle made of a non-magnetic and conductive metal such as aluminum.
21 is a charging sleeve which is a carrier, 23 is a charging sleeve 22
2 is a columnar magnet body that is fixedly arranged in the inside of the charging body. The magnet body 23 is formed on the periphery of the surface of the charging sleeve 22 as shown in FIG.
It is magnetized by arranging the S pole and the N pole so that it becomes 500 to 1,000 Gauss. The charging sleeve 22 has a diameter of 5 to 30 mm and is rotatable with respect to the magnet body 23.
It is held in a gap of 0.5 to 1.0 mm at a position facing 10 and rotated in the same direction as the moving direction of the photosensitive drum 10 at a peripheral speed of 1.2 to 2.0 times.

【0033】前記磁石体23の感光体ドラム10に最も近接
した2つの異なる磁極の位置は、帯電スリーブ22と感光
体ドラム10との最近接した位置、すなわち感光体ドラム
10の中心と帯電スリーブ22の中心を結ぶ中心線の両側に
あって、帯電スリーブ22の中心と磁極を結ぶ直線の前記
中心線となす角度θ1及びθ2は、実験の結果、それぞれ
5°ないし45°の範囲、好ましくは30°であることが良
好な結果を得ることが判明した。なお、異なる2つの磁
極の極性はどちらがN又はSでもよく限定する必要はな
い。角度θ1,θ2は、さらに好ましくはθ1 ≧ θ2とす
ることが好ましい。こうすることにより下流部で強磁界
を形成した状態で帯電することができ、磁性粒子の付着
を防止する好ましい構成である。
The positions of the two different magnetic poles of the magnet body 23 closest to the photoconductor drum 10 are the closest positions of the charging sleeve 22 and the photoconductor drum 10, that is, the photoconductor drum 10.
The angles θ1 and θ2, which are on both sides of the center line connecting the center of the charging sleeve 22 and the center of the charging sleeve 22 and the center line of the straight line connecting the center of the charging sleeve 22 and the magnetic poles, are 5 ° to 45 °, respectively, as a result of the experiment. It has been found that good results are obtained in the range of °, preferably 30 °. It is not necessary to limit the polarity of the two different magnetic poles to either N or S. The angles θ1 and θ2 are more preferably θ1 ≧ θ2. By doing so, charging can be performed in a state where a strong magnetic field is formed in the downstream portion, and this is a preferable configuration for preventing the adhesion of magnetic particles.

【0034】この結果、帯電領域における磁力線の方向
は感光体ドラム10の接線方向と平行になる。この磁界を
水平磁界ということにする。
As a result, the direction of the magnetic lines of force in the charging region is parallel to the tangential direction of the photosensitive drum 10. This magnetic field is called a horizontal magnetic field.

【0035】25は前記磁性粒子21の貯蔵部を形成する収
容容器であるケーシングで,このケーシング25は絶縁性
材料から成っており、その内部には前記帯電スリーブ22
と磁石体23が配置されている。また、26はケーシング25
の出口に設けられた帯電スリーブ22に付着して搬送され
る磁性粒子21の量の規制手段である規制板、27は磁性粒
子21の偏りを修正する板状部材を軸の回りに有する回転
体からなる撹拌部材、28は帯電スリーブ22から磁性粒子
21を掻き取る掻き取り部材で、磁性粒子21はこの掻き取
り部材28と撹拌部材27により絶えず撹拌混合されて常に
均一な状態に保持される。前記規制板26と帯電スリーブ
22との間隙は磁性粒子21の搬送量すなわち、帯電領域に
おける帯電スリーブ22上の磁性粒子21の存在量が10〜30
0mg/cm2、特に好ましくは30〜150mg/cm2となるよう調
整される。29は磁性粒子21の層を帯電スリーブ22に向か
って押圧し、その先端は感光体ドラム10の周面に接触す
るように帯電領域の上流側に設けられた均し部材で、感
光体ドラム10や帯電スリーブ22の表面を傷付けず、耐摩
耗性にも優れて、帯電スリーブ22に高圧のバイアス電圧
を印加してもバイアス電圧による感光体ドラム10の絶縁
破壊を生ぜしめないような、厚さ50〜300μm程度の絶縁
性の弾性材料、例えばクリーニング用のブレード51とし
て用いられているようなウレタンゴムやマイラー薄板か
ら成るものが好ましく用いられる。しかし、ゴムのよう
な弾性材料から成るものに限らず、より剛性を有する材
料から成るものであってもよい。均し部材29の先端部の
一面は感光体ドラム10表面に接触すると共に、先端部他
面は磁性粒子21から成る磁気ブラシに接触し、その先端
部と帯電スリーブ22と感光体ドラム10との最近接した位
置(以下これを最近接位置という)からの角度、即ち均
し部材29の先端部と帯電スリーブ22中心とを結ぶ直線と
感光体ドラム10の中心と帯電スリーブ22の中心を結ぶ中
心線とのなす角度βは前記θ1より小さく、θ1>β>0
とするのが好ましい。しかも均し部材29の先端部は再近
接位置より1〜3mmであるのが好ましい。この均し部材
29により帯電領域は4〜5mmに制限されることになる。
均し部材29によって磁性粒子21の層はさらに帯電領
域の直前で均され規制板26における目詰まりなどで生じ
易い筋ムラも解消され均一な薄層となり帯電領域に搬送
される。磁性粒子21の磁気ブラシは均し部材29により穂
立ちを押さえられ、水平磁界により感光体ドラム10の周
面に接線方向に形成され、一方、感光体ドラム10と帯電
スリーブ22との間隙Dは前記範囲内に保たれ、かつ磁気
ブラシの層が、その先端から感光体ドラム10周面より20
〜300μm離れて非接触に保たれるようにされる。
Reference numeral 25 denotes a casing which is a container for forming a storage portion for the magnetic particles 21, and the casing 25 is made of an insulating material, and the charging sleeve 22 is provided inside the casing 25.
And the magnet body 23 are arranged. 26 is a casing 25
A regulating plate which is a means for regulating the amount of the magnetic particles 21 attached to and conveyed by the charging sleeve 22 provided at the outlet of the rotating body, and 27 is a rotating body having a plate-like member for correcting the bias of the magnetic particles 21 around the shaft. A stirring member composed of 28, magnetic particles from the charging sleeve 22
The magnetic particles 21 are constantly stirred and mixed by the scraping member 28 and the stirring member 27 by the scraping member that scrapes off the magnetic particles 21 and are always kept in a uniform state. The regulation plate 26 and the charging sleeve
A gap between the magnetic particles 21 and the gap 22 is, that is, the amount of the magnetic particles 21 present on the charging sleeve 22 in the charging region is 10 to 30.
0 mg / cm 2, particularly preferably adjusted to be 30~150mg / cm 2. Reference numeral 29 is a leveling member that is provided upstream of the charging region so as to press the layer of magnetic particles 21 toward the charging sleeve 22, and the tip thereof is in contact with the peripheral surface of the photosensitive drum 10. And the surface of the charging sleeve 22 are not scratched and have excellent wear resistance, and even if a high bias voltage is applied to the charging sleeve 22, a thickness that does not cause dielectric breakdown of the photosensitive drum 10 due to the bias voltage. An insulating elastic material having a thickness of about 50 to 300 μm, for example, one made of urethane rubber used as the cleaning blade 51 or a mylar thin plate is preferably used. However, the material is not limited to one made of an elastic material such as rubber, but may be made of a material having higher rigidity. One surface of the tip end of the leveling member 29 contacts the surface of the photoconductor drum 10, and the other surface of the tip end contacts the magnetic brush composed of the magnetic particles 21, and the tip end, the charging sleeve 22, and the photoconductor drum 10 are connected. The angle from the closest position (hereinafter referred to as the closest position), that is, the straight line connecting the tip of the leveling member 29 and the center of the charging sleeve 22 and the center connecting the center of the photosensitive drum 10 and the center of the charging sleeve 22. The angle β with the line is smaller than θ1 and θ1>β> 0.
Is preferred. Moreover, the tip of the leveling member 29 is preferably 1 to 3 mm from the closest position. This leveling member
29 will limit the charged area to 4-5 mm.
By the leveling member 29, the layer of the magnetic particles 21 is further leveled immediately before the charging area, and the unevenness of stripes that is likely to occur due to clogging of the regulation plate 26 is eliminated, and a uniform thin layer is conveyed to the charging area. The magnetic brush of the magnetic particles 21 has its ears suppressed by the leveling member 29 and is formed tangentially on the peripheral surface of the photoconductor drum 10 by the horizontal magnetic field, while the gap D between the photoconductor drum 10 and the charging sleeve 22 is Within the above range, the layer of the magnetic brush is 20 from the peripheral surface of the photosensitive drum 10 from its tip.
It is kept contactless at ~ 300 μm apart.

【0036】間隙が広くなると低電圧の帯電が困難とな
り、近接しすぎると磁性粒子の付着や、過電流による帯
電の不均一性が顕著になることから、好ましい間隙は20
〜300μmである。
If the gap is wide, it becomes difficult to charge at a low voltage, and if it is too close, adhesion of magnetic particles and non-uniformity of charging due to overcurrent become remarkable.
~ 300 μm.

【0037】感光体ドラム10は、導電基材10bとその表
面を覆う感光体層10aとからなり、導電基材10bは接地
されている。
The photosensitive drum 10 comprises a conductive base material 10b and a photosensitive body layer 10a covering the surface thereof, and the conductive base material 10b is grounded.

【0038】24は前記帯電スリーブ22と導電基材10bと
の間にバイアス電圧を付与するバイアス電源で、帯電ス
リーブ22はこのバイアス電源24を介して接地されてい
る。
Reference numeral 24 is a bias power source for applying a bias voltage between the charging sleeve 22 and the conductive base material 10b, and the charging sleeve 22 is grounded via the bias power source 24.

【0039】前記バイアス電源24は帯電すべき電圧と同
じ値に設定された直流成分に交流成分を重畳した交流バ
イアス電圧を供給する電源で、帯電スリーブ22と感光体
ドラム10との間の間隙Dの大きさ、感光体ドラム10を帯
電する帯電電圧等によって異なるが、間隙Dが0.1〜5m
mに保持されるとき、帯電すべき電圧とほぼ同じ−500V
〜−1,000Vの直流成分に、ピーク値間電圧(VP-P)400
〜7,000V、周波数0.3〜10KHzの交流成分を重畳した交
流バイアス電圧を保護抵抗Rを介して帯電スリーブ22に
供給することにより、好ましい帯電条件を得ることがで
きた。なおバイアス電源24は、直流成分は定電圧制御
を、交流成分は定電流制御を行っている。
The bias power source 24 is a power source for supplying an AC bias voltage in which an AC component is superposed on a DC component set to the same value as the voltage to be charged, and a gap D between the charging sleeve 22 and the photoconductor drum 10. , The gap D is 0.1 to 5 m, although it depends on the size of the photosensitive drum 10 and the charging voltage for charging the photosensitive drum 10.
-500V, which is almost the same as the voltage to be charged when held at m
Voltage between peak value (V PP ) 400 for DC component of -1,000V
By supplying an AC bias voltage in which an AC component of ˜7,000 V and a frequency of 0.3 to 10 KHz is superimposed to the charging sleeve 22 through the protective resistor R, a preferable charging condition could be obtained. The bias power source 24 performs constant voltage control for the DC component and constant current control for the AC component.

【0040】次に前述した帯電装置20の動作について説
明する。
Next, the operation of the charging device 20 described above will be described.

【0041】感光体ドラム10を矢示方向に回転させなが
ら帯電スリーブ22を矢示同方向に感光体ドラム10の周速
度の0.2〜2.0倍、好ましくは0.3〜0.7倍の周速度で回転
させると、帯電スリーブ22に付着・搬送される磁性粒子
21の層は磁石体23の磁力線により帯電スリーブ22上の感
光体ドラム10との対向位置で磁気的に鎖状に連結して一
種のブラシ状になり、いわゆる磁気ブラシが形成され
る。そしてこの磁気ブラシは帯電スリーブ22の回転方向
に搬送されて帯電領域に達して水平磁界により感光体ド
ラム10の周面に平行となり感光体層10aから磁気ブラシ
層は前記のように20〜300μm離れて対向している。帯電
スリーブ22と感光体ドラム10との間には前記交流バイア
ス電圧が印加されているので、導電性の磁性粒子21と感
光体層10aとの上記微小間隙間で気体放電が行われるこ
とにより帯電が行われる。この場合特に、交流バイアス
電圧を印加することにより振動電界を形成したことと、
帯電領域において水平磁界を形成するよう磁石体23の磁
極を配置し、帯電スリーブ22と感光体ドラム10との最近
接位置上流部に均し部材29を設けたので、磁性粒子21の
鎖状に連結した磁気ブラシは前記水平磁界により感光体
ドラム10の周面接線方向に平行で安定かつ正確に微小間
隙を設けて非接触とすることが可能になり、感光体ドラ
ム10への磁性粒子の付着を防止し、低いバイアス電圧に
よる極めて安定した高速でムラのない均一な帯電を行う
ことができるようになった。
When the charging sleeve 22 is rotated in the same direction as indicated by the arrow while rotating the photosensitive drum 10 at a peripheral speed of 0.2 to 2.0 times, preferably 0.3 to 0.7 times the peripheral speed of the photosensitive drum 10. , Magnetic particles attached to and transported by the charging sleeve 22
The layer 21 is magnetically connected in a chain shape at a position facing the photosensitive drum 10 on the charging sleeve 22 by the magnetic force lines of the magnet body 23 to form a kind of brush shape, so that a so-called magnetic brush is formed. The magnetic brush is conveyed in the rotating direction of the charging sleeve 22, reaches the charging area, and becomes parallel to the peripheral surface of the photosensitive drum 10 by the horizontal magnetic field, and the magnetic brush layer is separated from the photosensitive layer 10a by 20 to 300 .mu.m as described above. Are facing each other. Since the AC bias voltage is applied between the charging sleeve 22 and the photoconductor drum 10, the gas is discharged in the minute gap between the conductive magnetic particles 21 and the photoconductor layer 10a so that the charging is performed. Is done. In this case, in particular, forming an oscillating electric field by applying an AC bias voltage,
The magnetic poles of the magnet body 23 are arranged so as to form a horizontal magnetic field in the charging region, and the leveling member 29 is provided in the upstream portion of the closest position between the charging sleeve 22 and the photosensitive drum 10, so that the magnetic particles 21 are chained. Due to the horizontal magnetic field, the connected magnetic brushes are parallel to the tangential direction of the peripheral surface of the photoconductor drum 10 and can be stably and accurately provided with a minute gap so as to be in non-contact, and the magnetic particles adhere to the photoconductor drum 10. It has become possible to prevent charging, and to perform extremely stable high speed and uniform charging with low bias voltage.

【0042】なお、以上の実施例において、帯電スリー
ブ22に印加する交流電圧成分の周波数と電圧を変化させ
た結果を図3に示した。
The results of changing the frequency and voltage of the AC voltage component applied to the charging sleeve 22 in the above embodiment are shown in FIG.

【0043】図3において、縦線で陰を有した範囲が絶
縁破壊の生じ易い範囲、斜線で陰を付した範囲が帯電ム
ラを生じ易い範囲であり、陰を付してない範囲が安定し
て帯電の得られる好ましい範囲である。図から明らかな
ように、好ましい範囲は、交流電圧成分の変化によって
多少変化する。なお、交流電圧成分の波形は、正弦波に
限らず、矩形波や三角波であってもよい。また図3にお
いて、散点状の陰を施した低周波領域は、周波数が低い
ために帯電ムラが生ずるようになる範囲である。
In FIG. 3, the range shaded with vertical lines is the range where dielectric breakdown is likely to occur, the range shaded with diagonal lines is the range where uneven charging is likely to occur, and the range not shaded is stable. This is a preferable range in which electrostatic charging is obtained. As is clear from the figure, the preferable range changes slightly depending on the change of the AC voltage component. The waveform of the AC voltage component is not limited to a sine wave, and may be a rectangular wave or a triangular wave. Further, in FIG. 3, the low frequency region shaded with dots is a range where uneven charging occurs due to the low frequency.

【0044】前記実施例の磁性粒子21として導電性を有
するようコーティングした球形フェライト粒子を用い
た。その他に磁性粒子と樹脂を主成分としてこれを熱錬
成後に粉砕して得られる導電性の磁性樹脂粒子を用いる
こともできる。良好な帯電を行うために、外形は真球で
粒径50μm、比抵抗108Ω・cmに調整されていて、トナー
との摩擦帯電量はトナー濃度1重量%の条件で−5μC/
gである。
As the magnetic particles 21 in the above-mentioned embodiment, spherical ferrite particles coated so as to have conductivity are used. In addition, conductive magnetic resin particles obtained by pulverizing the magnetic particles and a resin as main components after thermal smelting can also be used. In order to perform good charging, the outer shape is adjusted to a spherical shape with a particle size of 50 μm and a specific resistance of 10 8 Ω · cm. The frictional charge amount with the toner is -5 μC / toner concentration 1% by weight.
It is g.

【0045】なお、本実施例の帯電装置20を用いて感光
体ドラム10の除電をすることも可能である。除電はバイ
アス電圧の直流成分のみを零とすることによって行うこ
とができる。画像形成後、交流成分のみを印加して被帯
電部材を回動させることにより感光体ドラム10を除電す
る。感光体ドラム10の除電が終了した時点で交流成分も
印加を停止する。
It is also possible to use the charging device 20 of this embodiment to eliminate the charge on the photosensitive drum 10. The static elimination can be performed by setting only the DC component of the bias voltage to zero. After the image formation, only the AC component is applied to rotate the member to be charged, so that the photosensitive drum 10 is discharged. When the charge removal of the photoconductor drum 10 is finished, the application of the AC component is also stopped.

【0046】また、上記帯電装置20がクリーニング装置
として用いられる画像形成方法では現像に当って正規現
像より反転現像の方が好ましい。なぜなら帯電装置20か
ら帯電時トナーを排出することがあっても排出されたト
ナーは反転現像時には同一極性となり、現像部で現像バ
イアスにより回収することになり画像のカブリが防止で
きることになるからである。
In the image forming method in which the charging device 20 is used as a cleaning device, reversal development is preferable to regular development in developing. This is because even if toner is discharged from the charging device 20 at the time of charging, the discharged toner has the same polarity during reversal development and is collected by the developing bias in the developing section, thus preventing image fogging. .

【0047】なお、長期使用によって感光体ドラム10表
面にクリーニングされずに残留したトナーの磁性粒子21
層内への混入が多くなり磁気ブラシ21Aの抵抗が高くな
って帯電効率が損なわれることがある。これには画像形
成前あるいは後の感光体ドラム10の回転時に帯電スリー
ブ22に印加する直流バイアス電圧の極性を高く設定し、
あるいは交流電圧を高く設定して、トナーが感光体ドラ
ム10に付着し易い条件を設定してトナー混入を防止する
ことができる。特に反転現像を行う画像形成装置のよう
に感光体ドラム10の帯電極性がトナーと同極性の場合は
現像器30内のトナー極性と同じとなるためにトナーによ
る汚染が発生しずらく、現像時画像にかぶりとして現れ
ず極めて好適な組合わせとなる。
Incidentally, the magnetic particles 21 of the toner remaining on the surface of the photosensitive drum 10 without being cleaned due to long-term use.
In many cases, the magnetic brush 21A is highly mixed with the layer and the resistance of the magnetic brush 21A is increased, so that the charging efficiency is deteriorated. To this end, the polarity of the DC bias voltage applied to the charging sleeve 22 at the time of rotation of the photosensitive drum 10 before or after image formation is set high,
Alternatively, it is possible to prevent the toner from mixing by setting a high AC voltage and setting a condition that the toner is likely to adhere to the photosensitive drum 10. In particular, when the photosensitive drum 10 has the same polarity as the toner, such as in an image forming apparatus that performs reversal development, the toner polarity in the developing device 30 is the same as that of the toner. It does not appear as a fog in the image and is a very suitable combination.

【0048】[0048]

【発明の効果】本発明によれば、磁気ブラシを被帯電部
材に非接触で対向するようにし、微小間隙の間での気体
放電による帯電方式としたので、従来のコロナ放電によ
る帯電方式に比べ非常に低いバイアス電圧で帯電するこ
とができ、被帯電部材への磁性粒子の付着がなく、被帯
電部材の絶縁破壊の発生を防止し、オゾン発生の少ない
極めて安定した高速でムラのない均一な帯電を行うこと
ができる帯電装置を提供することができる。
According to the present invention, the magnetic brush is opposed to the member to be charged in a non-contact manner, and the charging method by gas discharge between the minute gaps is adopted. Therefore, compared with the conventional charging method by corona discharge. It can be charged with a very low bias voltage, there is no adhesion of magnetic particles to the member to be charged, the occurrence of dielectric breakdown of the member to be charged is prevented, the ozone generation is extremely stable, high speed and uniform A charging device capable of charging can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の帯電装置の一実施例を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing an embodiment of a charging device of the present invention.

【図2】本発明の帯電装置を用いた画像形成装置の構成
の概要を示す断面図である。
FIG. 2 is a sectional view showing the outline of the configuration of an image forming apparatus using the charging device of the present invention.

【図3】交流電圧成分の周波数と電圧を変化させたとき
の帯電特性図である。
FIG. 3 is a charging characteristic diagram when a frequency and a voltage of an AC voltage component are changed.

【符号の説明】[Explanation of symbols]

10 感光体ドラム(被帯電部材) 20 帯電装置 21 磁性粒子 22 帯電スリーブ(搬送担体) 23 磁石体 24 バイアス電源 25 ケーシング 26 規制板 29 均し部材 R 保護抵抗 10 Photosensitive drum (charged member) 20 Charging device 21 Magnetic particles 22 Charging sleeve (transport carrier) 23 Magnet body 24 Bias power supply 25 Casing 26 Regulation plate 29 Leveling member R Protective resistance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福地 真和 東京都八王子市石川町2970番地コニカ株式 会社内 (72)発明者 森田 静雄 東京都八王子市石川町2970番地コニカ株式 会社内 (72)発明者 野守 弘之 東京都八王子市石川町2970番地コニカ株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masakazu Fukuchi 2970 Ishikawa-cho, Hachioji, Tokyo Konica stock company (72) Inventor Shizuo Morita 2970 Ishikawa-cho, Hachioji, Tokyo Konica stock company (72) Invention Noriyuki Hiroshi Nomori 2970 Ishikawa-cho, Hachioji City, Tokyo Konica Stock Company

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被帯電部材に対し、磁気ブラシを形成
し、交流バイアス下で帯電を行う帯電装置において、 前記磁気ブラシは被帯電部材と微小間隙を有して対向す
ることを特徴とする帯電装置。
1. A charging device for forming a magnetic brush on a member to be charged and charging the member under an AC bias, wherein the magnetic brush is opposed to the member to be charged with a minute gap. apparatus.
【請求項2】 前記磁気ブラシは、水平磁界下で被帯電
部材と対向することを特徴とする請求項1の帯電装置。
2. The charging device according to claim 1, wherein the magnetic brush faces the member to be charged under a horizontal magnetic field.
【請求項3】 前記磁気ブラシは均し部材に接触してい
ることを特徴とする請求項1の帯電装置。
3. The charging device according to claim 1, wherein the magnetic brush is in contact with a leveling member.
【請求項4】 前記均し部材は、被帯電部材に接触して
いることを特徴とする請求項1の帯電装置。
4. The charging device according to claim 1, wherein the leveling member is in contact with the member to be charged.
JP1408693A 1993-01-29 1993-01-29 Electrostatic charging device Pending JPH06230647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1408693A JPH06230647A (en) 1993-01-29 1993-01-29 Electrostatic charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1408693A JPH06230647A (en) 1993-01-29 1993-01-29 Electrostatic charging device

Publications (1)

Publication Number Publication Date
JPH06230647A true JPH06230647A (en) 1994-08-19

Family

ID=11851302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1408693A Pending JPH06230647A (en) 1993-01-29 1993-01-29 Electrostatic charging device

Country Status (1)

Country Link
JP (1) JPH06230647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895146A (en) * 1996-01-10 1999-04-20 Canon Kabushiki Kaisha Charging device and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895146A (en) * 1996-01-10 1999-04-20 Canon Kabushiki Kaisha Charging device and image forming apparatus

Similar Documents

Publication Publication Date Title
US5367365A (en) Image forming apparatus with charger of image carrier using magnetic brush
JP3416820B2 (en) Image forming device
US5381215A (en) Image forming apparatus having charger to charge image carrier with magnetic brush
JPH06230650A (en) Image forming device
JP3041715B2 (en) Charging device
JP3165925B2 (en) Charging device
JP3416826B2 (en) Image forming device
JPH06230647A (en) Electrostatic charging device
JP3362293B2 (en) Image forming device
JPH06186821A (en) Image forming device
JPH06230655A (en) Image forming device
JPH06314015A (en) Image forming device
JPH06180523A (en) Image forming device
JPH06194928A (en) Magnetic brush electrostatic charger
JPH06186892A (en) Image forming device
JP3353172B2 (en) Charging device
JPH06130776A (en) Image forming device
JPH06186820A (en) Image forming device
JP3189099B2 (en) Charging device
JPH06180522A (en) Image forming device
JPH06161209A (en) Image forming device
JPH06194927A (en) Image forming device
JPH06161208A (en) Image forming device
JPH06186819A (en) Image forming device
JPH06161207A (en) Image forming device