[go: up one dir, main page]

JPH06230325A - Method for cleaning optical component - Google Patents

Method for cleaning optical component

Info

Publication number
JPH06230325A
JPH06230325A JP3244493A JP3244493A JPH06230325A JP H06230325 A JPH06230325 A JP H06230325A JP 3244493 A JP3244493 A JP 3244493A JP 3244493 A JP3244493 A JP 3244493A JP H06230325 A JPH06230325 A JP H06230325A
Authority
JP
Japan
Prior art keywords
optical component
pure water
optical
cleaning
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3244493A
Other languages
Japanese (ja)
Inventor
Toshimoto Nishiguchi
敏司 西口
Ikuo Nakajima
生朗 中嶋
Hirohide Matsuhisa
裕英 松久
Susumu Ito
進 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3244493A priority Critical patent/JPH06230325A/en
Publication of JPH06230325A publication Critical patent/JPH06230325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To provide the cleaning method for optical components which can clean the optical components with pure water without leaving a stain and a burn on the surface of an optical component in a final dry state and secure a stable yield of products. CONSTITUTION:By this cleaning method for the glass optical component, the glass optical component is dipped in pure water which is warmed up to a necessary temperature, the surface of the glass optical component is cleaned according to the degree of water removing when the component is pull out of the pure water, and then the surface is uniformly dried. When the pulling-up speed (mm/s) of the glass optical component is S1 and the surface tension (dyne/cm) of the pure water on the surface of the glass optical component at this time is A, the glass optical component is pulled up at a speed represented by S1-5814/A-82+ or -2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として、レンズ、ミ
ラー、プリズムなどの光学部品を洗浄するときに、その
光学部品の仕上り状態を、常に均一に保持できるように
工夫した光学部品の洗浄方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a method of cleaning optical parts such as lenses, mirrors, prisms, etc., which is devised so that the finished condition of the optical parts can always be kept uniform. Regarding

【0002】[0002]

【従来の技術】従来、光学部品の光学機能面の洗浄に
は、所要温度に加温したフロン蒸気あるいはアルコール
蒸気中に光学部品を浸漬し、加温状態で、このフロン蒸
気あるいはアルコール蒸気から前記光学部品を引き上げ
る時、その光学部品の光学機能面に付着した汚れなどを
洗い流している。
2. Description of the Related Art Conventionally, for cleaning the optical functional surface of an optical component, the optical component is immersed in a CFC vapor or an alcohol vapor heated to a required temperature, and the CFC vapor or an alcohol vapor is heated to the above-mentioned condition. When pulling up an optical component, the dirt adhering to the optical function surface of the optical component is washed away.

【0003】しかし、フロンは、オゾンを破壊する物質
であり、地球を覆うオゾン層に悪影響があるため、環境
保護の観点から、今後の使用を禁止する方向が世界的に
示されている。また、アルコールを使用する場合には、
その引火性が問題となり、このため、消火装置などの安
全対策を施す必要から、費用がかかる上、使用上の管理
も厳密を要する。
However, chlorofluorocarbon is a substance that destroys ozone and has an adverse effect on the ozone layer covering the earth. Therefore, from the viewpoint of environmental protection, it has been shown worldwide that the use of chlorofluorocarbon will be prohibited. Also, when using alcohol,
Its flammability becomes a problem, and therefore, it is necessary to take safety measures such as a fire extinguishing device, so that it is expensive and strict control is required in use.

【0004】[0004]

【発明が解決しようとする課題】そこで、最近では、所
要温度に加温した純水中に光学部品を浸漬し、その引き
上げの時、表面の水分を少なくして引き上げることで、
乾燥させることが行なわれているが、この引き上げ速度
を適正にしないと、その後に、光学機能面などにシミや
ヤケを残すおそれがある。なお、ここで、[シミ]と
は、洗浄工程を終了した後、被洗浄物である光学部品の
表面に残る洗浄液残渣による表面の汚れであり、また、
[ヤケ]とは、被洗浄物の材質が、例えば、ガラスの場
合、水とガラス表面の化学反応により発生するくもりな
どを指している。このシミやヤケは、揮発性の低い液
体、例えば、水に被洗浄物を浸漬し、その後、引き上げ
た場合に多く発生し易い。また、ヤケは、水とガラスと
の接触が多い程、発生し易い。これは、光学部品を純水
から引き上げる時、かなりの水が光学部品の表面に付着
したまま、上昇され、それが、乾燥過程で、上述の悪影
響となるためであると考えられる。
Therefore, recently, by immersing an optical component in pure water heated to a required temperature and pulling it while reducing the water content on the surface,
Although it is dried, if the pulling speed is not proper, then there is a risk that stains or burns will remain on the optical function surface. Here, the [stain] is a stain on the surface due to the cleaning liquid residue remaining on the surface of the optical component that is the object to be cleaned after the cleaning step is finished.
The term “burnt” refers to, for example, when the material to be cleaned is glass, cloudiness or the like generated by a chemical reaction between water and the glass surface. The stains and burns are likely to occur when the object to be cleaned is dipped in a liquid having low volatility, for example, water and then pulled up. Further, burnout is more likely to occur as the contact between water and glass increases. It is considered that this is because when the optical component is pulled up from pure water, a considerable amount of water is raised while adhering to the surface of the optical component, which causes the above-mentioned adverse effect in the drying process.

【0005】しかしながら、これ迄は、引き上げに際し
ての水の付着の状態は、純水の温度や引き上げ速度に依
存していると思われていても、これらを経験的に把握し
ているだけなので、その設定が適確ではなく、不良品の
発生が避けられない。
However, until now, even if it was thought that the state of water adhesion during pulling up depends on the temperature of pure water and the pulling rate, these are only empirically understood. The setting is not accurate and defective products cannot be avoided.

【0006】[0006]

【発明の目的】本発明は、上記事情に基いてなされたも
ので、最終的な乾燥状態で、光学部品の表面にシミやヤ
ケを残すことなく、純水による光学部品の洗浄が達成で
き、安定した製品の歩留りを確保できるようにした光学
部品の洗浄方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made based on the above circumstances, and in the final dry state, it is possible to achieve cleaning of optical components with pure water without leaving spots or burns on the surface of the optical components. An object of the present invention is to provide a method for cleaning an optical component that can secure a stable product yield.

【0007】[0007]

【課題を解決するための手段】そこで、本発明では、ガ
ラス光学部品を、所要温度に加温した純水に浸漬し、そ
の純水から引き上げる時の水切れの具合で前記ガラス光
学部品の表面の洗浄をなし、また、その表面の乾燥を均
一にするようにした光学部品の洗浄方法において、ガラ
ス光学部品の引き上げ速度(mm/s)をS1 とし、そ
の時のガラス光学部品の表面における純水の表面張力
(dyne/cm)をAとする時、 S1 =5814/A−82±2 で表わされる速度で、前記ガラス光学部品の引き上げを
行なうのである。
Therefore, in the present invention, the glass optical component is dipped in pure water heated to a required temperature, and the surface of the glass optical component is depleted when the glass optical component is drained from the pure water. In a method of cleaning an optical component which is not cleaned and whose surface is dried uniformly, the pulling speed (mm / s) of the glass optical component is set to S 1 and pure water on the surface of the glass optical component at that time is set. When the surface tension (dyne / cm) of A is A, the glass optical component is pulled up at a speed represented by S 1 = 5814 / A−82 ± 2.

【0008】また、本発明では、少なくとも、その光学
機能面がアルミで構成される光学部品を、所要温度に加
温した純水に浸漬し、その純水から引き上げる時の水切
れの具合で前記光学部品の光学機能面の洗浄をなし、そ
の光学機能面の乾燥を均一にするようにした光学部品の
洗浄方法において、光学部品の引き上げ速度(mm/
s)をS2 とし、その時の光学部品の表面における純水
の表面張力(dyne/cm)をAとする時、 S2 =2758/A−36±2 で表わされる速度で、前記光学部品の引き上げを行なう
のである。
Further, according to the present invention, at least the optical component whose optical function surface is made of aluminum is immersed in pure water heated to a required temperature, and when the optical component is pulled out from the pure water, the optical component is cut off. A method for cleaning an optical component, in which the optical functional surface of the component is cleaned and the optical functional surface is uniformly dried, a pulling speed of the optical component (mm /
s) is S 2 and the surface tension (dyne / cm) of pure water on the surface of the optical component at that time is A, S 2 = 2758 / A−36 ± 2 It will be pulled up.

【0009】[0009]

【実施例】以下、本発明の洗浄方法の実施例を、図1お
よび図2を参照して、具体的に詳述する。なお、図にお
いて、符号1は、純水製造装置であり、この純水製造装
置1で製造された純水は、ヒーター2を経由するとき、
所望温度に加温され、補助槽3に一時的に蓄えられる。
そして、ポンプ4によって、フィルター5を介して純水
洗浄槽7に供給される。この純水洗浄槽7には、エレベ
ータ6によって、光学部品が浸漬され、また、所定の引
き上げ速度で、引き上げられ、以後の乾燥工程にもたら
される。また、純水洗浄槽7は、オーバーフローの作用
で、余剰の純水(これには、洗浄作用により、洗い流さ
れた塵埃などの汚れが浮遊しているが)をドレン8へと
導出する構成になっている。なお、この実施例では、エ
レベータ6によって純水洗浄槽7に搬送される光学部品
は、予め、洗浄剤槽9、純水槽10、洗浄剤槽11、純
水槽12および13を順次、経由して、その表面の化学
的な洗浄を終了している。
EXAMPLES Examples of the cleaning method of the present invention will be described in detail below with reference to FIGS. 1 and 2. In the figure, reference numeral 1 is a pure water producing apparatus, and the pure water produced by this pure water producing apparatus 1 is:
It is heated to a desired temperature and temporarily stored in the auxiliary tank 3.
Then, it is supplied to the pure water cleaning tank 7 through the filter 5 by the pump 4. The optical components are dipped in the pure water cleaning tank 7 by the elevator 6, and are pulled up at a predetermined pulling speed, and brought to the subsequent drying step. Further, the deionized water cleaning tank 7 has a configuration in which excess deionized water (although dirt such as dust that has been washed away floats due to the cleaning action) is discharged to the drain 8 by the action of overflow. Has become. In this embodiment, the optical components conveyed to the pure water cleaning tank 7 by the elevator 6 are sequentially passed through the cleaning agent tank 9, the pure water tank 10, the cleaning agent tank 11, and the pure water tanks 12 and 13 in advance. , The surface has been chemically cleaned.

【0010】このような構成では、被洗浄物である光学
部品を、所要時間だけ、純水洗浄槽7に浸漬し、純水か
らの熱伝導で、その光学部品が所要温度まで加温された
段階で、以下に述べる引き上げ速度で、前記光学部品を
引き上げる時、純水の表面張力と、上記引き上げ速度と
の関係から、光学部品の表面が水に均一に濡れた状態
で、しかも、最低の付着水量で、光学部品の引き上げが
達成される。
In such a structure, the optical component as the object to be cleaned is immersed in the pure water cleaning tank 7 for the required time, and the optical component is heated to the required temperature by the heat conduction from the pure water. In the stage, when pulling up the optical component at the pulling rate described below, the surface tension of pure water and the relation between the pulling rate indicate that the surface of the optical component is evenly wet with water, and The amount of attached water achieves the lifting of the optical component.

【0011】本発明者によるこれまでの実験からは、次
のような結論が導かれている。すなわち、純水を用い
て、光学部品の洗浄を行なう場合、引き上げ時の被洗浄
物(光学部品)表面に対する水分の付着状態は、その後
の乾燥工程に大きく影響することが解っており、できる
だけ均一で、少ない付着状態を得ることが、シミ、ヤケ
の発生を回避する上で重要である。これには、光学部品
の引き上げ速度および純水の表面張力が、支配的要因と
して挙げられる。
From the experiments conducted so far by the present inventor, the following conclusions have been drawn. In other words, when cleaning optical components with pure water, it has been found that the state of water adhered to the surface of the object to be cleaned (optical components) during pulling up has a great influence on the subsequent drying process, and is as uniform as possible. Therefore, it is important to obtain a small adhesion state in order to avoid the generation of stains and burns. The dominant factors for this are the pulling rate of the optical component and the surface tension of pure water.

【0012】換言すれば、水分が塊となって光学部品の
表面に付着すると、引き上げ後、乾燥工程で、その個所
の水分の蒸発に時間が掛かり、ヤケの発生や塵埃の付着
が起こる。そのため、引き上げに際しては、光学部品の
表面に付着する水分の広がりが均一であることが必要
で、これには、純水の表面張力を配慮する必要がある。
一方、光学部品の引き上げは、洗浄工程の稼動効率に直
接影響するから、できるだけ、大きな速度で達成される
ことが望まれるが、前記表面張力による均一な水膜の確
保のためには、おのずと、引き上げ速度に制約を受ける
ことになる。
In other words, if water forms a lump and adheres to the surface of the optical component, it takes a long time to evaporate the water in that part in the drying process after pulling up, causing burns and adhesion of dust. Therefore, at the time of pulling up, it is necessary that the spread of the moisture adhering to the surface of the optical component is uniform, and this requires consideration of the surface tension of pure water.
On the other hand, since pulling up of the optical component directly affects the operation efficiency of the cleaning process, it is desired to be achieved at a speed as large as possible. However, in order to secure a uniform water film by the surface tension, naturally, The pulling speed will be limited.

【0013】そこで、本発明者は、引き上げ速度が表面
張力に反比例すると仮定し、引き上げ速度Sについて、
次の実験式を立てた。 S=X/A+Y なお、上式で、Aは純水の表面張力であり、X、Yは上
式を満足する係数および補正係数である。ここで、純水
の表面張力は、その純水の温度に対応して変化するの
で、先ず、対象の光学部品の最適引き上げ速度(引き上
げに際して、できるだけ薄く、かつ、均一な水膜を光学
部品の表面に確保するに足る最大引き上げ速度)と、洗
浄用の純水の温度との関係を実験によって求め、これか
ら、実験式の各係数を確定する必要がある。
Therefore, the present inventor assumes that the pulling speed is inversely proportional to the surface tension, and regarding the pulling speed S,
The following empirical formula was established. S = X / A + Y In the above equation, A is the surface tension of pure water, and X and Y are coefficients and correction coefficients that satisfy the above equation. Here, since the surface tension of pure water changes according to the temperature of the pure water, first of all, the optimum pulling speed of the target optical component (when pulling, a water film as thin as possible and uniform in the optical component is used). It is necessary to experimentally determine the relationship between the maximum pulling speed sufficient to secure the surface) and the temperature of pure water for cleaning, and from this, it is necessary to determine each coefficient of the empirical formula.

【0014】実験の結果、シミ、ヤケの発生しない条件
での最大引き上げ速度は、次の表のとおりである。な
お、光学部品としては、その表面がガラス(対象とし
て、レンズ、プリズムなどを想定)の場合と、アルミ
(対象として、ポリゴンミラーなどを想定)の場合とに
分けて、各最大引き上げ速度を求めている。
As a result of the experiment, the maximum pulling speed under the condition that no stain or burn is generated is as shown in the following table. As for the optical parts, the maximum pulling speed is calculated by dividing the case where the surface is glass (assuming the target is a lens, a prism, etc.) and the case where the surface is aluminum (assuming the target is a polygon mirror). ing.

【0015】[0015]

【表1】 今、表1から、カラスの場合については、60℃の表面
張力66.841、および、80℃の表面張力 63.
209を、実験式に代入して、また、アルミの場合とに
ついては、40℃の表面張力70.224、および、6
0℃の表面張力66.841を、実験式に代入して、各
係数を求めると、X1 =5814、Y1=−82、X2
=2758、Y2 = −36が得られる。この場合、前
処理工程における洗浄性で、被洗浄物(光学部品)の表
面状態が相違する点を、実験結果から想定し、補正係数
の許容幅を±2mm/sと設定した。これにより、ガラス、
アルミの何れについても、最大引き上げ速度S1 および
2 が下記の実験式で求められることになる。 S1 =5814/A−82±2 S2 =2758/A−36±2 なお、水の表面張力は、20〜100℃の範囲でγ=a
−bt−ct2 の式で近似されることが知られている
(ただし、t:液温度(℃)、a:76.24、b:
0.1379、c:3.124×10-4で、Wilhelmy法
による)。また、上述の純水には、通常の水質のものが
用いられる。例えば、これは、比抵抗10MΩ・cm以
上、純水中の0.2μm径の粒子数は100個/ml以
下、そして、総有機炭素量1mg/l以下である。
[Table 1] Now, from Table 1, in the case of crows, the surface tension of 60 ° C. is 66.841, and the surface tension of 80 ° C. is 63.
209 is substituted into the empirical formula, and in the case of aluminum, the surface tension of 40 ° C. is 70.224 and 6
Substituting the surface tension of 66.841 at 0 ° C. into the empirical formula to obtain each coefficient, X 1 = 5814, Y 1 = −82, X 2
= 2758, Y 2 = -36 is obtained. In this case, the allowable width of the correction coefficient was set to ± 2 mm / s, assuming that the surface condition of the object to be cleaned (optical component) differs depending on the cleaning property in the pretreatment process from the experimental results. This allows the glass,
The maximum pulling speeds S 1 and S 2 can be obtained from the following empirical formulas for any of aluminum. S 1 = 5814 / A-82 ± 2 S 2 = 2758 / A-36 ± 2 The surface tension of water is γ = a in the range of 20 to 100 ° C.
It is known that it is approximated by the formula −bt−ct 2 (where, t: liquid temperature (° C.), a: 76.24, b:
0.1379, c: 3.124 × 10 −4 by Wilhelmy method). Further, as the above-mentioned pure water, those having a normal water quality are used. For example, it has a specific resistance of 10 MΩ · cm or more, the number of particles of 0.2 μm diameter in pure water is 100 particles / ml or less, and the total organic carbon amount is 1 mg / l or less.

【0016】次に、本発明の洗浄方法が、上記実験式に
基く最大引き上げ速度で実施された場合の成果を、以下
の実施例で検証する。 実施例 1 図2で示すような洗浄処理工程において、直径30m
m、厚さ中心部5mm、端部1mmの光学レンズ10個
を、各槽に1分当て浸漬し、周波数28kHz、出力1
200Wで、超音波洗浄を行なった後、図1に示すよう
な60℃の純水洗浄槽で、1分間浸漬し、その後、5m
m/sの引き上げ速度で、光学レンズを引き上げ、その
表面に、3分間、80℃の温風を吹き付ける。洗浄・乾
燥が終了した光学レンズを、150Wのライトの透過光
により目視して、この表面におけるシミ、ヤケなどの有
無について、評価を行ない、この結果を表2に示し、ま
た、光学レンズの表面にMgF2 膜を約200nmの厚
さでコーティングした後、65℃の雰囲気内で、100
0時間、耐久テストを行ない、その後、上述同様の目視
による評価を行ない、この結果を表3に示した。
Next, the results obtained when the cleaning method of the present invention is carried out at the maximum pulling rate based on the above empirical formula will be verified in the following examples. Example 1 In a cleaning process as shown in FIG. 2, a diameter of 30 m
m, thickness center part 5 mm, end part 1 mm, 10 optical lenses were immersed in each tank for 1 minute, frequency 28 kHz, output 1
After performing ultrasonic cleaning at 200 W, immerse in a pure water cleaning tank at 60 ° C. for 1 minute as shown in FIG.
The optical lens is pulled up at a pulling rate of m / s, and hot air at 80 ° C. is blown onto the surface of the optical lens for 3 minutes. The optical lens that had been washed and dried was visually inspected with the transmitted light of a light of 150 W, and the presence or absence of stains and burns on this surface was evaluated. The results are shown in Table 2 and the surface of the optical lens After coating the MgF 2 film with a thickness of about 200 nm on the substrate, 100
A durability test was performed for 0 hours, and thereafter, the same visual evaluation as described above was performed. The results are shown in Table 3.

【0017】実施例 2 実施例1と同様の方法で、直径150mm、厚さ中心部
20mm、端部5mmの光学レンズ10個の洗浄・乾燥
を行なった。前述と同様な目視による評価の結果は、同
じく表2および3に示す。
Example 2 In the same manner as in Example 1, ten optical lenses having a diameter of 150 mm, a thickness center portion of 20 mm, and an end portion of 5 mm were washed and dried. The results of visual evaluation similar to those described above are also shown in Tables 2 and 3.

【0018】実施例 3 実施例1と同様の方法で、直径300mm、厚さ中心部
50mmで、端部10mmの光学レンズ10個の洗浄・
乾燥を行なった。前述と同様な目視による評価の結果
は、同じく表2および3に示す。
Example 3 In the same manner as in Example 1, ten optical lenses each having a diameter of 300 mm, a thickness of 50 mm, and an edge of 10 mm were washed.
It was dried. The results of visual evaluation similar to those described above are also shown in Tables 2 and 3.

【0019】実施例 4 実施例1と同様の方法で、直径300mm、厚さ中心部
50mmで、端部10mmの光学レンズ10個を洗浄
し、80℃の純水洗浄槽で、1分間浸漬し、その後、1
0mm/sの引き上げ速度で、光学レンズを引き上げ、
3分間、80℃の温風を吹き付ける。その後、前述と同
様な目視による評価の結果は、同じく表2および3に示
す。
Example 4 In the same manner as in Example 1, ten optical lenses having a diameter of 300 mm, a thickness center of 50 mm and an edge of 10 mm were washed and immersed in a pure water washing bath at 80 ° C. for 1 minute. , Then 1
Pull up the optical lens at a pulling speed of 0 mm / s,
Blow hot air at 80 ° C. for 3 minutes. Then, the same visual evaluation results as described above are also shown in Tables 2 and 3.

【0020】実施例 5 実施例1と同様の方法で、直径30mm、厚さ中心部5
mm、端部1mmの光学レンズ10個を洗浄し、80℃
の純水洗浄槽で、1分間浸漬し、その後、10mm/s
の引き上げ速度で、光学レンズを引き上げ、3分間、8
0℃の温風を吹き付ける。その後、前述と同様な目視に
よる評価の結果は、同じく表2および3に示す。
Example 5 In the same manner as in Example 1, the central portion 5 having a diameter of 30 mm and a thickness of 5
mm, edge 10mm optical lens was washed, 80 ℃
Immerse in pure water cleaning tank for 1 minute, then 10mm / s
Pull up the optical lens at a pulling speed of
Blow hot air at 0 ° C. Then, the same visual evaluation results as described above are also shown in Tables 2 and 3.

【0021】実施例 6 図2で示すような洗浄処理工程において、直径30m
m、厚さ5mmの鏡面加工をした光学アルミ10個を、
各槽に1分当て浸漬し、周波数200kHz、出力60
0Wで、超音波洗浄を行なった後、図1に示すような4
0℃の純水洗浄槽で、1分間浸漬し、その後、3mm/
sの引き上げ速度で、光学アルミを引き上げ、その表面
に、3分間、80℃の温風を吹き付ける。洗浄・乾燥が
終了した後、光学アルミの600nm反射率を測定した
結果は、表4に示す通りである。
Example 6 In a cleaning process as shown in FIG. 2, a diameter of 30 m
10 pieces of optical aluminum with m and thickness of 5 mm
Immerse in each tank for 1 minute, frequency 200 kHz, output 60
After performing ultrasonic cleaning at 0 W, 4 as shown in FIG.
Immerse in pure water cleaning tank at 0 ° C for 1 minute, then 3mm /
The optical aluminum is pulled up at a pulling rate of s, and hot air at 80 ° C. is blown onto the surface of the optical aluminum for 3 minutes. Table 4 shows the results of measuring the 600 nm reflectance of optical aluminum after the completion of washing and drying.

【0022】実施例 7 実施例6と同様な方法で、直径30mm、厚さ5mmの
鏡面加工をした光学アルミ10個を、図1に示すような
50℃の純水洗浄槽で1分間浸漬し、その後、4mm/
sの引き上げ速度で、光学アルミを引き上げ、その表面
に対して、3分間、80℃の温風を吹き付ける。洗浄・
乾燥が終了した後、光学アルミの600nm反射率を測
定した結果は、表4に示す通りである。
Example 7 In the same manner as in Example 6, 10 pieces of mirror-polished optical aluminum having a diameter of 30 mm and a thickness of 5 mm were immersed in a pure water cleaning tank at 50 ° C. for 1 minute as shown in FIG. , Then 4 mm /
The optical aluminum is pulled up at a pulling rate of s, and hot air at 80 ° C. is blown onto the surface of the optical aluminum for 3 minutes. Washing·
Table 4 shows the results of measuring the 600-nm reflectance of the optical aluminum after the drying was completed.

【0023】実施例 8 実施例6と同様な方法で、直径30mm、厚さ5mmの
鏡面加工をした光学アルミ10個を、図1に示すような
60℃の純水洗浄槽で1分間浸漬し、その後、5mm/
sの引き上げ速度で、光学アルミを引き上げ、その表面
に対して、3分間、80℃の温風を吹き付ける。洗浄・
乾燥が終了した後、光学アルミの600nm反射率を測
定した結果は、表4に示す通りである。
Example 8 In the same manner as in Example 6, 10 pieces of mirror-polished optical aluminum having a diameter of 30 mm and a thickness of 5 mm were immersed in a pure water cleaning tank at 60 ° C. for 1 minute as shown in FIG. , Then 5 mm /
The optical aluminum is pulled up at a pulling rate of s, and hot air at 80 ° C. is blown onto the surface of the optical aluminum for 3 minutes. Washing·
Table 4 shows the results of measuring the 600-nm reflectance of the optical aluminum after the drying was completed.

【0024】本発明の洗浄方法の優位性を示すために、
本発明の技術範囲外に設定した実験比較例を、以下に示
す。 比較例 1 実施例4と同様な方法で、直径300mm、厚さ中心部
50mmで、端部10mmの光学レンズ10個を洗浄
し、80℃の純水洗浄槽で、1分間浸漬し、その後、2
0mm/sの引き上げ速度(この点が異なる)で、光学
レンズを引き上げて、3分間、80℃の温風を吹き付け
る。その後、前述と同様な目視による評価の結果は、同
じく表2および3に示す。
In order to show the superiority of the cleaning method of the present invention,
An experimental comparison example set outside the technical scope of the present invention is shown below. Comparative Example 1 In the same manner as in Example 4, ten optical lenses each having a diameter of 300 mm, a thickness of 50 mm and a thickness of 50 mm and an edge of 10 mm were washed and immersed in a pure water washing tank at 80 ° C. for 1 minute, and then, Two
The optical lens is pulled up at a pulling rate of 0 mm / s (this point is different), and hot air of 80 ° C. is blown for 3 minutes. Then, the same visual evaluation results as described above are also shown in Tables 2 and 3.

【0025】比較例 2 実施例3と同様な方法で、直径300mm、厚さ中心部
50mmで、端部10mmの光学レンズ10個を洗浄
し、60℃の純水洗浄槽で、1分間浸漬し、その後、1
0mm/sの引き上げ速度(この点が異なる)で、光学
レンズを引き上げて、3分間、80℃の温風を吹き付け
る。その後、前述と同様な目視による評価の結果は、同
じく表2および3に示す。
Comparative Example 2 In the same manner as in Example 3, ten optical lenses having a diameter of 300 mm, a thickness center of 50 mm and an end of 10 mm were washed and immersed in a pure water washing tank at 60 ° C. for 1 minute. , Then 1
The optical lens is pulled up at a pulling rate of 0 mm / s (this point is different), and hot air of 80 ° C. is blown for 3 minutes. Then, the same visual evaluation results as described above are also shown in Tables 2 and 3.

【0026】比較例 3 実施例1と同様な方法で、直径30mm、厚さ中心部5
mm、端部1mmの光学レンズ10個を洗浄し、60℃
の純水洗浄槽で、1分間浸漬し、その後、10mm/s
の引き上げ速度(この点が異なる)で、光学レンズを引
き上げて、3分間、80℃の温風を吹き付ける。その
後、前述と同様な目視による評価の結果は同じく表2お
よび3に示す。
Comparative Example 3 In the same manner as in Example 1, the central portion 5 having a diameter of 30 mm and a thickness of 5
mm, edge 10mm optical lens was washed, 60 ℃
Immerse in pure water cleaning tank for 1 minute, then 10mm / s
The optical lens is pulled up at the pulling rate (different in this point), and hot air at 80 ° C. is blown for 3 minutes. Thereafter, the same visual evaluation results as described above are also shown in Tables 2 and 3.

【0027】比較例 4 実施例7と同様な方法で、直径30mm、厚さ5mmの
鏡面加工をした光学アルミ10個を、図1に示すような
50℃の純水洗浄槽で1分間浸漬し、その後、7mm/
sの引き上げ速度(この点が異なる)で、光学アルミを
引き上げ、その表面に対して、3分間、80℃の温風を
吹き付ける。洗浄・乾燥が終了した後、光学アルミの6
00nm反射率を測定した結果は、表4に示す通りであ
る。
Comparative Example 4 In the same manner as in Example 7, 10 pieces of mirror-polished optical aluminum having a diameter of 30 mm and a thickness of 5 mm were immersed in a pure water cleaning tank at 50 ° C. for 1 minute as shown in FIG. , Then 7 mm /
The optical aluminum is pulled up at a pulling rate of s (this point is different), and hot air of 80 ° C. is blown onto the surface of the optical aluminum for 3 minutes. After cleaning and drying, the optical aluminum 6
The results of measuring the 00 nm reflectance are shown in Table 4.

【0028】比較例 5 実施例8と同様な方法で、直径30mm、厚さ5mmの
鏡面加工をした光学アルミ10個を、図1に示すような
60℃の純水洗浄槽で1分間浸漬し、その後、8mm/
sの引き上げ速度(この点が異なる)で、光学アルミを
引き上げ、その表面に対して、3分間、80℃の温風を
吹き付ける。洗浄・乾燥が終了した後、光学アルミの6
00nm反射率を測定した結果は、表4に示す通りであ
る。
Comparative Example 5 In the same manner as in Example 8, 10 pieces of mirror-polished optical aluminum having a diameter of 30 mm and a thickness of 5 mm were immersed in a pure water cleaning tank at 60 ° C. for 1 minute as shown in FIG. , Then 8 mm /
The optical aluminum is pulled up at a pulling rate of s (this point is different), and hot air of 80 ° C. is blown onto the surface of the optical aluminum for 3 minutes. After cleaning and drying, the optical aluminum 6
The results of measuring the 00 nm reflectance are shown in Table 4.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【発明の効果】本発明は、以上説明したように、ガラス
光学部品を、所要温度に加温した純水に浸漬し、その純
水から引き上げる時の水切れの具合で前記ガラス光学部
品の表面の洗浄をなし、また、その表面の乾燥を均一に
するようにした光学部品の洗浄方法において、ガラス光
学部品の引き上げ速度(mm/s)をS1 とし、その時
のガラス光学部品の表面における純水の表面張力(dy
ne/cm)をAとする時、S1 =5814/A−82
±2で表わされる速度で、前記ガラス光学部品の引き上
げを行なうのである。
INDUSTRIAL APPLICABILITY As described above, the present invention immerses a glass optical component in pure water heated to a required temperature, and when the glass optical component is drained from the pure water, the surface of the glass optical component is removed. In a method of cleaning an optical component which is not cleaned and whose surface is dried uniformly, the pulling speed (mm / s) of the glass optical component is set to S 1 and pure water on the surface of the glass optical component at that time is set. Surface tension (dy
ne / cm) is A, S 1 = 5814 / A-82
The glass optical component is pulled up at a speed represented by ± 2.

【0033】また、本発明は、少なくとも、その光学機
能面がアルミで構成される光学部品を、所要温度に加温
した純水に浸漬し、その純水から引き上げる時の水切れ
の具合で前記光学部品の光学機能面の洗浄をなし、その
光学機能面の乾燥を均一にするようにした光学部品の洗
浄方法において、光学部品の引き上げ速度(mm/s)
をS2 とし、その時の光学部品の光学機能面における純
水表面張力(dyne/cm)をAとする時、S2 =2
758/A−36±2で表わされる速度で、前記光学部
品の引き上げを行なうのである。
Further, according to the present invention, at least an optical component whose optical function surface is made of aluminum is immersed in pure water heated to a required temperature, and when the optical component is pulled out from the pure water, the optical component is drained. A method for cleaning an optical component, in which the optical functional surface of the component is cleaned and the optical functional surface is uniformly dried, a pulling speed (mm / s) of the optical component
Is S 2 and the pure water surface tension (dyne / cm) on the optical functional surface of the optical component at that time is A, S 2 = 2
The optical component is pulled up at a speed represented by 758 / A-36 ± 2.

【0034】従って、最終的な乾燥状態で、光学部品の
表面にシミやヤケを残すことなく、純水による光学部品
の洗浄が達成でき、安定した製品の歩留りを確保できる
という効果が得られる。
Therefore, in the final dry state, the optical components can be washed with pure water without leaving stains or burns on the surface of the optical components, and a stable product yield can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すための装置の概略構成図
である。
FIG. 1 is a schematic configuration diagram of an apparatus for showing an embodiment of the present invention.

【図2】本発明の洗浄方法での前段洗浄工程を示す概略
構成図である。
FIG. 2 is a schematic configuration diagram showing a first-stage cleaning step in the cleaning method of the present invention.

【符号の説明】[Explanation of symbols]

1 純水製造装置 2 ヒーター 3 補助槽 4 ポンプ 5 フィルター 6 エレベータ 7 純水洗浄槽 1 Pure Water Production Device 2 Heater 3 Auxiliary Tank 4 Pump 5 Filter 6 Elevator 7 Pure Water Cleaning Tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 進 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Susumu Ito 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス光学部品を、所要温度に加温した
純水に浸漬し、その純水から引き上げる時の水切れの具
合で前記ガラス光学部品の表面の洗浄をなし、また、そ
の表面の乾燥を均一にするようにした光学部品の洗浄方
法において、ガラス光学部品の引き上げ速度(mm/
s)をS1 とし、その時のガラス光学部品の表面におけ
る純水の表面張力(dyne/cm)をAとする時、 S1 =5814/A−82±2 で表わされる速度で、前記ガラス光学部品の引き上げを
行なうことを特徴とする光学部品の洗浄方法。
1. A glass optical component is immersed in pure water heated to a required temperature, and when the glass optical component is drained from the pure water, the surface of the glass optical component is washed and the surface is dried. In a method of cleaning an optical component in which the temperature is made uniform, the pulling speed of the glass optical component (mm /
s) is S 1 and the surface tension (dyne / cm) of pure water on the surface of the glass optical component at that time is A, S 1 = 5814 / A−82 ± 2 A method for cleaning an optical component, which comprises pulling up the component.
【請求項2】 少なくとも、その光学機能面がアルミで
構成される光学部品を、所要温度に加温した純水に浸漬
し、その純水から引き上げる時の水切れの具合で前記光
学部品の光学機能面の洗浄をなし、その光学機能面の乾
燥を均一にするようにした光学部品の洗浄方法におい
て、 光学部品の引き上げ速度(mm/s)をS2 とし、その
時の光学部品の光学機能面における純水の表面張力(d
yne/cm)をAとする時、 S2 =2758/A−36±2 で表わされる速度で、前記光学部品の引き上げを行なう
ことを特徴とする光学部品の洗浄方法。
2. An optical function of the optical component at least when the optical component whose optical functional surface is made of aluminum is immersed in pure water heated to a required temperature and drained when the optical component is pulled up from the pure water. In the method of cleaning an optical component in which the surface is cleaned and the optical functional surface is dried uniformly, the pulling speed (mm / s) of the optical component is set to S 2 and the optical functional surface of the optical component at that time is set. Surface tension of pure water (d
Y / cm) is A, the method for cleaning an optical component is characterized in that the optical component is pulled up at a speed represented by S 2 = 2758 / A-36 ± 2.
【請求項3】 純水の温度を40〜100℃の範囲とし
たことを特徴とする請求項1あるいは2に記載の光学部
品の洗浄方法。
3. The method for cleaning an optical component according to claim 1, wherein the temperature of pure water is set in a range of 40 to 100 ° C.
JP3244493A 1993-01-29 1993-01-29 Method for cleaning optical component Pending JPH06230325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3244493A JPH06230325A (en) 1993-01-29 1993-01-29 Method for cleaning optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3244493A JPH06230325A (en) 1993-01-29 1993-01-29 Method for cleaning optical component

Publications (1)

Publication Number Publication Date
JPH06230325A true JPH06230325A (en) 1994-08-19

Family

ID=12359140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3244493A Pending JPH06230325A (en) 1993-01-29 1993-01-29 Method for cleaning optical component

Country Status (1)

Country Link
JP (1) JPH06230325A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868864A (en) * 1995-11-27 1999-02-09 Minolta Co., Ltd. Washing method using pure water
US11998035B2 (en) 2017-12-31 2024-06-04 Evertron Holdings Pte Ltd Moisture control apparatus and moisture control method
US12102108B2 (en) 2017-08-03 2024-10-01 Evertron Holdings Pte. Ltd. Ingredient control method and ingredient control device
US12133546B2 (en) 2017-12-31 2024-11-05 Evertron Holdings Pte Ltd. Moisture control apparatus, moisture control method, program, storage medium, produced object, product, apparatus, and facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868864A (en) * 1995-11-27 1999-02-09 Minolta Co., Ltd. Washing method using pure water
US12102108B2 (en) 2017-08-03 2024-10-01 Evertron Holdings Pte. Ltd. Ingredient control method and ingredient control device
US11998035B2 (en) 2017-12-31 2024-06-04 Evertron Holdings Pte Ltd Moisture control apparatus and moisture control method
US12133546B2 (en) 2017-12-31 2024-11-05 Evertron Holdings Pte Ltd. Moisture control apparatus, moisture control method, program, storage medium, produced object, product, apparatus, and facility

Similar Documents

Publication Publication Date Title
US6946035B2 (en) Method of cleaning substrate
US2383469A (en) Method of cleaning and coating glass, plastics, and other surfaces
US6391117B2 (en) Method of washing substrate with UV radiation and ultrasonic cleaning
JPH06230325A (en) Method for cleaning optical component
JP2006055775A (en) Die coater-used coating method, and photo-lithographic pellicle produced by the method
CH639749A5 (en) METHOD FOR REMOVING WATER FROM A MASS OF WET INTUMESCENT MATERIAL, A MASS THUS FORMED AND ITS USE IN A FIRE-RESISTANT PANEL.
JP2001293442A (en) Method for cleaning optical device
JP3530639B2 (en) Precision cleaning method
JP2756381B2 (en) Cleaning method
US2037716A (en) Process for the graining and surfacing of metal photolithographic and offset press plates
JP2610441B2 (en) Work drying method
JPH10167761A (en) Glass product
JPH11305002A (en) Lens cleaning method and device thereof
JP2006284695A (en) Cleaning method of connection lead terminal
JPH09208995A (en) Method of cleaning with pure water
JP3835768B2 (en) Precision optical element cleaning method
JPH08117503A (en) Draining and drying method
JP2001108822A (en) Color filter and method of production of color filter
CN116274107A (en) Cleaning method of lens after multi-wire cutting
KR20210150986A (en) Method for manufacturing polarizing film
JP2003075626A (en) Cleaning method for color filter substrate
JPH047831A (en) Substrate drying method and substrate drying device
JPH08310025A (en) Manufacture of glazed ceramic board
JP2000343049A (en) Washing device and washing method
JPS59129374A (en) Washing drier