JPH06229745A - Planarity measuring equipment - Google Patents
Planarity measuring equipmentInfo
- Publication number
- JPH06229745A JPH06229745A JP1463493A JP1463493A JPH06229745A JP H06229745 A JPH06229745 A JP H06229745A JP 1463493 A JP1463493 A JP 1463493A JP 1463493 A JP1463493 A JP 1463493A JP H06229745 A JPH06229745 A JP H06229745A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- flatness
- plane
- parallel light
- reflected light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 2
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、滑らかな被測定面の平
面度(すなわち、真直度)を光学的に非接触で測定する
平面度測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flatness measuring device for optically measuring the flatness (that is, straightness) of a smooth surface to be measured without contact.
【0002】[0002]
【従来の技術】物体表面を被測定面とし、その平面度を
非接触で測定する方法としては、一般に光学的手法が採
用されている。例えば、特開昭61−196111号公
報に開示の平面度測定装置は、被測定面全体を光軸方向
に前後に動かし、その表面に多数の微小レンズを通した
平行光線を照射して局所的な反射光のスポツト径の変化
からその平面度を測定するようにしている。2. Description of the Related Art An optical method is generally employed as a method for measuring the flatness of an object surface as a surface to be measured without contact. For example, in the flatness measuring device disclosed in Japanese Patent Laid-Open No. 61-196111, the entire surface to be measured is moved back and forth in the direction of the optical axis, and the surface is irradiated with parallel light rays passing through a large number of microlenses to locally. The flatness is measured from the change in spot diameter of the reflected light.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来の技術においては、被測定面の反射率にばらつきがあ
ると、反射光の強度分布が平行光線の照射位置によって
異なるために、測定精度を高くすることができないとい
う問題があった。また、同一の微小レンズを多数個カバ
ーガラスに張り付けた光学素子と、被測定面を光軸方向
に前後に動かすための高精度の移動ステージを必要とす
るために、測定装置の構成が複雑になり、コスト高にな
るという問題があった。However, in the above-mentioned conventional technique, when the reflectance of the surface to be measured varies, the intensity distribution of the reflected light varies depending on the irradiation position of the parallel light rays, so that the measurement accuracy is high. There was a problem that I could not do it. In addition, the configuration of the measuring device is complicated because it requires an optical element in which a large number of the same microlenses are attached to the cover glass and a highly accurate moving stage for moving the surface to be measured back and forth in the optical axis direction. However, there is a problem that the cost becomes high.
【0004】本発明の目的は、上記従来技術の問題点を
解消し、単純な構成で被測定面の反射率のばらつきに影
響されることなく被接触で被測定面の平面度を測定する
ことのできる平面度測定装置を提供することにある。An object of the present invention is to solve the above-mentioned problems of the prior art and to measure the flatness of the surface to be measured by the contact without being influenced by the variation in the reflectance of the surface to be measured with a simple structure. An object of the present invention is to provide a flatness measuring device capable of performing the above.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、被測定面の一部分に平行光線スポツトを
照射し、その反射光線の戻り位置をCCDイメージセン
サ等の光検出手段で検出することを測定原理とし、被測
定面の当該照射部分の向いている角度を計算し、上記平
行光線スポツトを被測定面の測定領域全面で走査させる
ことによって被測定面の各部分面の傾き成分を積分する
ようにしたものである。In order to achieve the above object, the present invention irradiates a part of the surface to be measured with parallel light spots, and the returning position of the reflected light is detected by a light detecting means such as a CCD image sensor. The principle of detection is to calculate the angle that the irradiated portion of the surface to be measured is facing, and the parallel light spot is scanned over the entire measurement area of the surface to be measured to incline each part of the surface to be measured. It is designed to integrate the components.
【0006】すなわち、本発明は、滑らかな被測定面の
平面度を光学的に非接触で測定する平面度測定装置にお
いて、前記被測定面に対して平行光線スポツトを照射す
る平行光線スポツト照射手段と、上記平行光線スポツト
を前記被測定面上に走査する平行光線スポツト走査手段
と、上記被測定面からの反射光を受光して前記被測定面
上における上記平行光線スポツトの照射位置を検出する
反射光線戻り位置検出手段と、上記反射光線戻り位置検
出手段の検出出力から前記被測定面の平面度を計算する
平面度計算処理手段とから構成したことを特徴とする。That is, according to the present invention, in a flatness measuring device for optically measuring the flatness of a smooth surface to be measured without contact, a parallel light spot irradiating means for irradiating the surface to be measured with a parallel light spot. And a parallel light spot scanning means for scanning the parallel light spot on the surface to be measured, and receiving reflected light from the surface to be measured to detect the irradiation position of the parallel light spot on the surface to be measured. It is characterized by comprising a reflected light beam return position detection means and a flatness calculation processing means for calculating the flatness of the surface to be measured from the detection output of the reflected light beam return position detection means.
【0007】[0007]
【作用】平行光線スポツト照射手段は光源の光を平行光
線スポツトとして被測定面に照射する。被測定面からの
反射光は光検出素子に到達する。平行光線スポツトは被
測定面の測定領域全面を2次元的に走査するように動か
される。The parallel light spot irradiation means irradiates the light from the light source as parallel light spots on the surface to be measured. The reflected light from the surface to be measured reaches the photodetector element. The parallel light spot is moved so as to two-dimensionally scan the entire measurement area of the surface to be measured.
【0008】平行光線スポツトの被測定面の走査に同期
して光検出素子から得られる戻り位置信号を平面度計算
処理手段で積分することにより被測定面の各部分の傾き
が検出され、それから被測定面の平面度が測定される。The flatness calculation processing means integrates the return position signal obtained from the photodetector in synchronism with the scanning of the surface to be measured of the parallel light spot to detect the inclination of each portion of the surface to be measured, and then the object to be measured. The flatness of the measuring surface is measured.
【0009】[0009]
【実施例】以下、本発明の実施例につき、図面を参照し
て詳細に説明する。図1は本発明による平面度測定装置
の1実施例の構成図であって、1は光源、2はスリッ
ト、3はビームスプリッタ、4はコリメータレンズ、5
は可動窓、6は可動窓駆動手段、7はCCDイメージセ
ンサ、8は平面度計算処理手段、9は平行光線照射機
構、10は被測定面である。Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram of an embodiment of a flatness measuring device according to the present invention, in which 1 is a light source, 2 is a slit, 3 is a beam splitter, 4 is a collimator lens, and 5 is a collimator lens.
Is a movable window, 6 is a movable window driving means, 7 is a CCD image sensor, 8 is flatness calculation processing means, 9 is a parallel light beam irradiation mechanism, and 10 is a surface to be measured.
【0010】同図において、光源1からの光はスリット
2を通して広げられ、ビームスプリッタ3により被測定
面方向に曲げられる。ビームスプリッタ3からの光はコ
リメータレンズ4で平行光線とされて可動窓5のスリッ
トを通って被測定面10の一部分にスポツトとして投射
される。被測定面10で反射した光線は、可動窓5のス
リット51→コリメータレンズ4→ビームスプリッタ3
の経路を通ってCCDイメージセンサ7の光検知面に入
射する。In the figure, the light from the light source 1 is spread through the slit 2 and bent by the beam splitter 3 toward the surface to be measured. The light from the beam splitter 3 is collimated by the collimator lens 4, passes through the slit of the movable window 5, and is projected as a spot on a part of the surface 10 to be measured. The light beam reflected by the surface to be measured 10 has the slit 51 of the movable window 5 → the collimator lens 4 → the beam splitter 3
The light is incident on the light detection surface of the CCD image sensor 7 through the path.
【0011】CCDイメージセンサ7は入射した光スポ
ツトの位置を検知することで被測定面10の上記スポツ
ト光の照射部分の部分面101の傾きを算出する。次
に、可動窓駆動手段6により可動窓5の位置を移動さ
せ、被測定面10の前記部分面101と隣接する部分面
102に平行光線スポツトを照射する。部分面102か
らの反射光線はCCDイメージセンサ7の光検知面に入
射し、同様にして部分面102の傾きを算出する。The CCD image sensor 7 detects the position of the incident light spot to calculate the inclination of the partial surface 101 of the portion to be measured 10 on which the spot light is irradiated. Then, the position of the movable window 5 is moved by the movable window driving means 6 to irradiate the partial surface 102 of the measured surface 10 adjacent to the partial surface 101 with the parallel light spot. The reflected light from the partial surface 102 is incident on the light detection surface of the CCD image sensor 7, and the inclination of the partial surface 102 is calculated in the same manner.
【0012】以下、可動窓駆動手段6により可動窓5を
移動させて被測定面10の測定領域全面にスポツト光を
走査させ、当該被測定面の測定領域全面の部分面につい
てその傾きを算出し、このデータを平面度計算処理手段
8で処理することで被測定面の平面度を測定する。この
平面度は次のようにして計算処理する。Then, the movable window 5 is moved by the movable window driving means 6 to scan spot light over the entire measurement area of the surface 10 to be measured, and the inclination of the partial surface of the entire measurement area of the surface to be measured is calculated. The flatness of the surface to be measured is measured by processing this data by the flatness calculation processing means 8. This flatness is calculated as follows.
【0013】図2は被測定面の平面度測定結果の1例を
示すグラフ図であって、横軸に部分面の所定方向長さ
を、縦軸に平面度を示す。ある部分面101の傾きを
θ、この部分面の長さをLとすると、当該部分面の両端
の高さの差はL・sinθである。すなわち、図1におけ
る各部分面の長さをΔLとし、部分面101の傾きをθ
1 とすると、この部分の両端の高さの差はΔL・sinθ1
であり、部分面102の傾きをθ2 とすると、この部分
の両端の高さの差はΔL・sinθ2である。FIG. 2 shows an example of the flatness measurement result of the surface to be measured.
It is a graph figure which shows, and the horizontal direction is a predetermined direction length of the partial surface.
And the vertical axis indicates the flatness. The inclination of a certain partial surface 101
If θ and the length of this partial surface are L, both ends of the partial surface
The difference in height is L · sin θ. That is, in FIG.
The length of each partial surface is ΔL, and the inclination of the partial surface 101 is θ.
1Then, the difference in height between both ends of this part is ΔL · sin θ1
And the inclination of the partial surface 102 is θ2Then, this part
The difference in height between the two ends is ΔL ・ sinθ2Is.
【0014】この計算処理を隣接する部分面の全てにつ
いて実行し、全てのデータをつなぎ合わせて積分するこ
とによって図2に示したような平面度dのグラフが得ら
れる。このとき得られる測定分解能は、測定する部分面
の長さΔLで決定される。例えばΔL=5mmで最小の
傾きの読み取り単位を1秒とした場合を例にとると、Δ
L・sin 1=0.024μmとなる。This calculation processing is executed for all adjacent partial surfaces, and all the data are connected and integrated to obtain a graph of flatness d as shown in FIG. The measurement resolution obtained at this time is determined by the length ΔL of the partial surface to be measured. For example, when ΔL = 5 mm and the reading unit of the minimum inclination is 1 second,
L · sin 1 = 0.024 μm.
【0015】図1における光源1、スリット2、ビーム
スプリッタ3、コリメータレンズ4、CCDイメージセ
ンサ7を一体化してなる平行光線照射機構9は市販の光
電式オートコリメータを利用できる。また、平面度計算
処理手段8は市販のパーソナルコンピユータを使用でき
る。なお、可動窓5を動かす可動窓駆動機構6は特に高
精度の位置決め機構を要しないので、低コストで簡単な
機構で構成できる。A commercially available photoelectric autocollimator can be used for the parallel light beam irradiation mechanism 9 in which the light source 1, the slit 2, the beam splitter 3, the collimator lens 4, and the CCD image sensor 7 in FIG. 1 are integrated. As the flatness calculation processing means 8, a commercially available personal computer can be used. Since the movable window drive mechanism 6 that moves the movable window 5 does not require a highly accurate positioning mechanism, it can be configured with a low cost and simple mechanism.
【0016】図3は本発明による平面度測定装置の他の
実施例の概略構成図であって、90はスリット窓50を
一体化した平行光線照射機構、11は例えばX方向精密
移動機構、12は例えばY方向精密移動機構である。被
測定面の面積が大きい場合には、この実施例のようにス
リット窓を一体化した平行光線照射機構90を被測定面
と平行なX方向およびY方向とに移動させるX方向精密
移動機構11,Y方向精密移動機構12で部分面に逐次
移動させる構成とする。FIG. 3 is a schematic configuration diagram of another embodiment of the flatness measuring apparatus according to the present invention, in which 90 is a parallel light beam irradiation mechanism in which a slit window 50 is integrated, 11 is, for example, an X-direction precision moving mechanism, and 12 is. Is a Y-direction precision moving mechanism, for example. When the area of the surface to be measured is large, the X-direction precision moving mechanism 11 for moving the parallel light beam irradiation mechanism 90 in which the slit window is integrated as in this embodiment in the X and Y directions parallel to the surface to be measured. , The Y-direction precision moving mechanism 12 is used to sequentially move to the partial surface.
【0017】なお、同実施例では平行光線照射機構90
を移動させる構成としているが、これに代えて被測定面
10側を同様の移動機構で移動させるようにしてもよ
い。以上の各実施例において、平行光線スポツトの大き
さ(照射面積)を小さくするか、その移動間隔ΔLを小
さくすることで、細かい間隔での平面度測定が可能とな
る。In this embodiment, the parallel light irradiation mechanism 90 is used.
However, instead of this, the surface to be measured 10 side may be moved by a similar moving mechanism. In each of the above embodiments, the flatness can be measured at a fine interval by reducing the size (irradiation area) of the parallel light spot or reducing the movement interval ΔL.
【0018】[0018]
【発明の効果】以上説明したように、本発明によれば、
反射光線の戻り位置を検知するのみで被測定面の平面度
を計算するため、当該被測定面の反射率のばらつきに影
響されずに滑らかな被測定面の平面度を測定可能な単純
構成の平面度測定装置を提供することができる。As described above, according to the present invention,
Since the flatness of the measured surface is calculated only by detecting the returning position of the reflected light beam, a simple structure that can measure the smoothness of the measured surface without being affected by the dispersion of the reflectance of the measured surface. A flatness measuring device can be provided.
【図1】 本発明による平面度測定装置の1実施例の構
成図である。FIG. 1 is a configuration diagram of an embodiment of a flatness measuring device according to the present invention.
【図2】 被測定面の平面度測定結果の1例を示すグラ
フ図である。FIG. 2 is a graph showing an example of a flatness measurement result of a surface to be measured.
【図3】 本発明による平面度測定装置の他の実施例の
概略構成図である。FIG. 3 is a schematic configuration diagram of another embodiment of the flatness measuring device according to the present invention.
1・・・・光源、2・・・・スリット、3・・・・ビー
ムスプリッタ、4・・・・コリメータレンズ、5・・・
・可動窓、6・・・・可動窓駆動手段、7・・・・CC
Dイメージセンサ、8・・・・平面度計算処理手段、9
・・・・平行光線照射機構、10・・・・被測定面、5
0・・・・スリット窓、90・・・・スリット窓を一体
化した平行光線照射機構、11・・・・X方向精密移動
機構、12・・・・Y方向精密移動機構。1 ... Light source, 2 ... Slit, 3 ... Beam splitter, 4 ... Collimator lens, 5 ...
・ Movable window, 6 ・ ・ ・ ・ Movable window driving means, 7 ・ ・ ・ ・ CC
D image sensor, 8 ... Flatness calculation processing means, 9
・ ・ ・ ・ Parallel light irradiation mechanism, 10 ・ ・ ・ ・ Measured surface, 5
0 ... Slit window, 90 ... Parallel light irradiation mechanism integrating slit window, 11 ... X direction precision movement mechanism, 12 ... Y direction precision movement mechanism.
Claims (1)
接触で測定する平面度測定装置において、 前記被測定面に対して平行光線スポツトを照射する平行
光線スポツト照射手段と、上記平行光線スポツトを前記
被測定面上に走査する平行光線スポツト走査手段と、上
記被測定面からの反射光を受光して前記被測定面上にお
ける上記平行光線スポツトの照射位置を検出する反射光
線戻り位置検出手段と、上記反射光線戻り位置検出手段
の検出出力から前記被測定面の平面度を計算する平面度
計算処理手段とから構成したことを特徴とする平面度測
定装置。1. A flatness measuring device for optically measuring the flatness of a smooth surface to be measured in a non-contact manner, comprising: parallel light spot irradiating means for irradiating the surface to be measured with parallel light spots; Parallel light spot scanning means for scanning a light spot on the surface to be measured, and a reflected light return position for receiving the reflected light from the surface to be measured and detecting the irradiation position of the parallel light spot on the surface to be measured. A flatness measuring device comprising: a detecting means; and a flatness calculation processing means for calculating the flatness of the surface to be measured from the detection output of the reflected light return position detecting means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1463493A JPH06229745A (en) | 1993-02-01 | 1993-02-01 | Planarity measuring equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1463493A JPH06229745A (en) | 1993-02-01 | 1993-02-01 | Planarity measuring equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06229745A true JPH06229745A (en) | 1994-08-19 |
Family
ID=11866635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1463493A Pending JPH06229745A (en) | 1993-02-01 | 1993-02-01 | Planarity measuring equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06229745A (en) |
-
1993
- 1993-02-01 JP JP1463493A patent/JPH06229745A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6094269A (en) | Apparatus and method for optically measuring an object surface contour | |
US7388674B2 (en) | Laser tracking interferometer | |
US7877227B2 (en) | Surface measurement instrument | |
US5929983A (en) | Optical apparatus for determining the height and tilt of a sample surface | |
JPH03267745A (en) | Surface property detecting method | |
JPS5999304A (en) | Method and apparatus for comparing and measuring length by using laser light of microscope system | |
US4498776A (en) | Electro-optical method and apparatus for measuring the fit of adjacent surfaces | |
JPH0652171B2 (en) | Optical non-contact position measuring device | |
US5432330A (en) | Two-stage detection noncontact positioning apparatus having a first light detector with a central slit | |
JP2907545B2 (en) | Method and apparatus for inspecting an optical element or system | |
JP3790961B2 (en) | Surface shape measuring device | |
JP3162364B2 (en) | Optical sensor device | |
JPH06229745A (en) | Planarity measuring equipment | |
CN101320218B (en) | Three scanning type silicon slice focusing and leveling measurement apparatus, system and method | |
JP2911283B2 (en) | Non-contact step measurement method and device | |
JPH0661115A (en) | Gap detection and setting device | |
JPS63138204A (en) | Shape measuring method | |
JP2009042128A (en) | Height measuring device | |
JP2022059662A (en) | Measurement device, measurement method, control method, and control program | |
JPH06137827A (en) | Optical level difference measuring apparatus | |
JPH10281732A (en) | Dimension measuring equipment | |
JP2008256463A (en) | Measurement apparatus and miller attitude rotation and monitoring apparatus | |
JPH02300617A (en) | Shape measuring instrument | |
JPH02259503A (en) | Surface detector | |
JPH1137733A (en) | Pattern measuring apparatus |