JPH06228809A - High strength polyethylene fiber - Google Patents
High strength polyethylene fiberInfo
- Publication number
- JPH06228809A JPH06228809A JP1645193A JP1645193A JPH06228809A JP H06228809 A JPH06228809 A JP H06228809A JP 1645193 A JP1645193 A JP 1645193A JP 1645193 A JP1645193 A JP 1645193A JP H06228809 A JPH06228809 A JP H06228809A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- porous
- polyethylene
- strength
- high strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Artificial Filaments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、樹脂強化材、セメント
強化材等の機械的強度が要求される分野の使用に適する
新規な補強用の高強力ポリエチレン繊維に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new reinforcing high-strength polyethylene fiber suitable for use in fields requiring mechanical strength such as resin reinforcement and cement reinforcement.
【0002】[0002]
【従来の技術】ポリエチレンの高強力繊維の製造方法と
しては次のような方法が知られている。第一はゲル延伸
方法であり、具体的にはpolymer Bullet
in,1巻,133ページ(1979年)に記載されて
いる。この方法は溶剤を使用するためコストが高く、ま
た溶剤が残存する問題がある。2. Description of the Related Art The following method is known as a method for producing a polyethylene high-strength fiber. The first is a gel stretching method, specifically, a polymer bullet.
in, Vol. 1, page 133 (1979). Since this method uses a solvent, there is a problem that the cost is high and the solvent remains.
【0003】第二の方法はダイ延伸法であり、英国特許
第2060469号明細書に開示されている。この方法
では溶剤を使用しない特徴を有するものの、非多孔質で
あるため、強化用材料として使用するにはマトリックス
材料との接着が不良と言う致命的欠点がある。The second method is the die drawing method, which is disclosed in British Patent No. 2060469. Although this method has a characteristic of not using a solvent, it has a fatal defect that its adhesion to a matrix material is poor when it is used as a reinforcing material because it is non-porous.
【0004】[0004]
【発明が解決しようとする課題】強化用材料として高強
力繊維に要求される重要な特性はマトリックス材料との
接着性である。接着力が不充分な繊維では強度の発現が
不充分である。従来の材料ではこの点に課題があり、接
着性を向上させるためにプラズマエッチング処理等の表
面処理を行なっておりコスト高の要因になっている。An important property required of high-strength fibers as a reinforcing material is adhesiveness with a matrix material. Fibers with insufficient adhesive strength do not exhibit sufficient strength. Conventional materials have a problem in this respect, and surface treatment such as plasma etching treatment is performed to improve adhesiveness, which is a factor of high cost.
【0005】ポリエチレンは他のポリマー素材に比較し
て軽量であると言う大きな特徴を有し強度材料として広
く採用されているが、更に軽量でマトリックス材料との
接着性に優れた低コストの繊維材料が望まれている。そ
こで本発明者らはこのような課題を解決するために、軽
量で且つ接着性に優れるポリエチレンから成る高強力の
多孔質繊維を得るべく鋭意検討した結果本発明に到達し
た。Polyethylene is widely used as a strength material because it has a great feature that it is lighter than other polymer materials. However, it is a low-cost fiber material that is lighter in weight and excellent in adhesiveness with a matrix material. Is desired. In order to solve such a problem, the present inventors have earnestly studied to obtain a high-strength porous fiber made of polyethylene which is lightweight and has excellent adhesiveness, and has arrived at the present invention.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は、中心部
が実質的に非多孔質であり、繊維表面から0.2〜5μ
mの領域に平均的孔径0.01〜2μmの微孔が開孔率
20〜90%で存在することを特徴とする繊維直径1〜
500μm、引張り強度8g/d以上の高強力ポリエチ
レン繊維にある。The gist of the present invention is that the central portion is substantially non-porous, and 0.2 to 5 .mu.m from the fiber surface.
In the region of m, fine pores having an average pore diameter of 0.01 to 2 μm are present with a porosity of 20 to 90%.
It is a high-strength polyethylene fiber of 500 μm and a tensile strength of 8 g / d or more.
【0007】以下本発明を更に詳しく説明する。本発明
で用いるポリエチレンは、分岐の少ない高密度ポリエチ
レンであることが好ましく、密度が0.960g/cm
3 以上、好ましくは0.965g/cm3 以上のもので
ある。The present invention will be described in more detail below. The polyethylene used in the present invention is preferably high-density polyethylene with few branches, and has a density of 0.960 g / cm.
It is 3 or more, preferably 0.965 g / cm 3 or more.
【0008】本発明に用いるポリエチレンの分子量は1
5万〜100万の範囲であり、より好ましくは20万〜
100万の範囲である。分子量が15万未満のポリエチ
レンを用いた場合には、本発明の引張り強度が8g/d
以上の多孔質繊維は得られない。また分子量が100万
を越えるポリエチレンでは繊維表面の微孔形成が困難で
ある。The molecular weight of polyethylene used in the present invention is 1
The range is 50,000 to 1,000,000, and more preferably 200,000 to
It is in the range of 1 million. When polyethylene having a molecular weight of less than 150,000 is used, the tensile strength of the present invention is 8 g / d.
The above porous fibers cannot be obtained. Further, it is difficult to form fine pores on the fiber surface with polyethylene having a molecular weight exceeding 1,000,000.
【0009】本発明の繊維には、繊維表面から中心部へ
0.2〜5μm、好ましくは0.2〜2μmの領域で微
孔が開いている。このような微孔が繊維表面に開孔して
いるためマトリックスとはアンカー効果により強固に接
着する。In the fiber of the present invention, micropores are opened from the surface of the fiber to the central portion in a region of 0.2 to 5 μm, preferably 0.2 to 2 μm. Since such fine pores are formed on the fiber surface, they firmly adhere to the matrix by the anchor effect.
【0010】繊維表面から0.2μm未満の領域で開孔
しているだけではマトリックスとの接着力が不足する。
5μmを越える領域迄開孔すると繊維の強度発現が不充
分となる。Adhesive strength with the matrix is insufficient only by opening pores in a region of less than 0.2 μm from the fiber surface.
When the pores are opened up to a region exceeding 5 μm, the strength development of the fiber becomes insufficient.
【0011】繊維の強度発現と接着力とのバランスを考
えると、中心部の非多孔質部分は、非多孔質部分/繊維
の半径 が60〜99.92%より好ましくは65〜9
0%最も好ましくは70〜80%であり、残り表面部分
が微孔の開いている領域である。Considering the balance between the strength development of the fiber and the adhesive force, the non-porous portion in the central portion has a non-porous portion / fiber radius of 60 to 99.92%, more preferably 65 to 9%.
0% most preferably 70 to 80%, and the remaining surface area is an area where micropores are formed.
【0012】微孔の平均的孔径は0.01〜2μmであ
る。0.01μm未満の微孔ではマトリックスとの接着
性が不良である。2μmを越える微孔では繊維の強度発
現が不充分である。The average pore size of the fine pores is 0.01 to 2 μm. If the pores are less than 0.01 μm, the adhesion to the matrix will be poor. If the pores are more than 2 μm, the strength development of the fiber is insufficient.
【0013】微孔の開孔率は20〜90%である。より
好ましくは25〜80%である。開孔率が20%未満で
はマトリックスとの接着性が不良であり且つ軽量化の効
果も少い。90%を越える開孔率では強度発現が不充分
である。The porosity of the fine holes is 20 to 90%. It is more preferably 25 to 80%. If the porosity is less than 20%, the adhesion to the matrix is poor and the effect of weight reduction is small. If the porosity exceeds 90%, strength development is insufficient.
【0014】微孔の形は限定されないが、繊維軸方向に
延びたスリット状の微孔がマトリックスとの接着性の観
点から特に好ましい形である。The shape of the micropores is not limited, but slit-shaped micropores extending in the fiber axis direction are particularly preferable from the viewpoint of adhesiveness to the matrix.
【0015】繊維の直径は1〜500μmである。より
好ましくは3〜200μmであり、更に好ましくは5〜
100μmである。The diameter of the fibers is 1 to 500 μm. It is more preferably 3 to 200 μm, still more preferably 5 to
It is 100 μm.
【0016】繊維の強度は8g/d以上より好ましくは
10g/d以上である。The strength of the fiber is 8 g / d or more, preferably 10 g / d or more.
【0017】本発明の繊維はいかなる方法で製造されて
もいいが、特に溶融賦形・延伸法が低コストで高強力の
表面多孔性の繊維を得る方法として優れる。以下本発明
の繊維を製造するための一方法を説明する。The fiber of the present invention may be produced by any method, but the melt shaping / drawing method is particularly excellent as a method for obtaining a high-strength surface porous fiber at low cost. Hereinafter, one method for producing the fiber of the present invention will be described.
【0018】本発明の繊維を安定して得るためには、紡
糸温度はポリマーの融点より40〜150℃高い範囲の
温度に設定するのが望ましい。この温度範囲より低温領
域で紡糸した場合は、ポリマーの溶融が不完全となりメ
ルトフラクチャーが起こりやすく、延伸工程での安定性
が低下する。また逆にこの温度範囲より高い温度領域で
紡糸を行なう場合は、多孔質化が困難となる。In order to stably obtain the fiber of the present invention, it is desirable to set the spinning temperature to a temperature in the range of 40 to 150 ° C. higher than the melting point of the polymer. When spinning is carried out in a temperature range lower than this temperature range, the polymer is incompletely melted and melt fracture tends to occur, resulting in a decrease in stability in the drawing step. On the contrary, when spinning is performed in a temperature range higher than this temperature range, it becomes difficult to make it porous.
【0019】適当な紡糸温度で吐出されたポリマーは、
紡糸ドラフト5〜6000の範囲で引き取るのが望まし
い。紡糸ドラフトが6000を越えると400%以上の
総延伸が可能な未延伸繊維が得られない。紡糸ドラフト
が5未満では高配向の未延伸繊維が得られず延伸多孔質
化が不可能である。The polymer discharged at the appropriate spinning temperature is
It is desirable to pick up in the range of spinning draft 5 to 6000. If the spinning draft exceeds 6000, unstretched fibers capable of total stretching of 400% or more cannot be obtained. If the spinning draft is less than 5, highly oriented unstretched fibers cannot be obtained, and stretching porous cannot be performed.
【0020】かくして得られた未延伸繊維は、ラメラ晶
が繊維軸方向に高度に配向積層した未延伸繊維である。
この未延伸繊維は100〜130℃、より好ましくは1
15〜130℃の温度条件下で熱処理し延伸に供され
る。必要な熱処理(アニール処理)時間は1分以上1時
間以下である。The unstretched fiber thus obtained is an unstretched fiber in which lamella crystals are highly oriented and laminated in the fiber axis direction.
This unstretched fiber has a temperature of 100 to 130 ° C., more preferably 1
It heat-processes on temperature conditions of 15-130 degreeC, and is used for extending | stretching. The necessary heat treatment (annealing) time is 1 minute or more and 1 hour or less.
【0021】1分未満のアニール処理では20%以上の
開孔率を達成できない。1時間を越えるアニール処理で
は、繊維の中心部まで延伸時に開孔するので好ましくな
い。An annealing rate of less than 1 minute cannot achieve a porosity of 20% or more. Annealing for more than 1 hour is not preferable because it will open up to the center of the fiber during drawing.
【0022】次いで室温付近で10〜100%程度延伸
する。その後90〜130℃の温度範囲で、変形速度が
1秒につき10%以上で総延伸量が10倍以上になるよ
うに熱延伸を行ない、繊維表面を多孔化する。かくし
て、繊維強度が8g/d以上の繊維表面が開孔した不均
質構造の高強力繊維が得られる。繊維の形状は円形、楕
円形、三角形等の異形等適宜採用しえる。Then, the film is stretched at about room temperature by about 10 to 100%. Then, in the temperature range of 90 to 130 ° C., thermal stretching is performed so that the deformation rate is 10% or more per second and the total stretching amount is 10 times or more, and the fiber surface is made porous. Thus, a high-strength fiber having a heterogeneous structure in which the fiber surface has pores having a fiber strength of 8 g / d or more can be obtained. The shape of the fiber may be circular, elliptical, triangular, or any other irregular shape.
【0023】[0023]
【実施例】以下実施例により本発明を具体的に説明す
る。 実施例1 密度が0.960g/cm3 、分子量が22万の高密度
ポリエチレンを紡糸温度232℃でノズルから押し出し
ドラフト比185で直径が38μmの繊維を巻取った。The present invention will be described in detail with reference to the following examples. Example 1 High-density polyethylene having a density of 0.960 g / cm 3 and a molecular weight of 220,000 was extruded from a nozzle at a spinning temperature of 232 ° C. and a fiber having a draft ratio of 185 and a diameter of 38 μm was wound.
【0024】この未延伸繊維を125℃で2分間アニー
ル処理を施した後、室温で70%延伸し次いで125℃
に加熱した加熱凾中で1秒につき12%の変形速度で総
延伸量が13倍になるまで延伸を行ない、連続的に表面
を多孔化した繊維を製造した。This unstretched fiber was annealed at 125 ° C. for 2 minutes, then stretched 70% at room temperature and then at 125 ° C.
Stretching was carried out in a heating oven heated at 1% at a deformation rate of 12% per second until the total stretching amount became 13 times, to produce a fiber having a continuously porous surface.
【0025】得られた繊維は直径が26μmであり、繊
維表面から1.8μm厚みで平均的孔径0.31μmの
微孔が65%の開孔率で開いており、中心部は実質的に
非多孔質であった。引張り強度は14g/dであった。The fiber thus obtained had a diameter of 26 μm, fine pores having an average pore diameter of 0.31 μm and a fine pore having a thickness of 1.8 μm from the fiber surface were opened with a porosity of 65%, and the central portion was substantially non-porous. It was porous. The tensile strength was 14 g / d.
【0026】実施例2 密度が0.960g/cm3 、分子量が28万の高密度
ポリエチレンを紡糸温度240℃でノズルから押し出し
ドラフト比92で直径が75μmの繊維を巻取った。Example 2 A high-density polyethylene having a density of 0.960 g / cm 3 and a molecular weight of 280,000 was extruded from a nozzle at a spinning temperature of 240 ° C. and a fiber having a draft ratio of 92 and a diameter of 75 μm was wound.
【0027】この未延伸繊維を120℃で5分間アニー
ル処理し、室温で50%延伸し次いで125℃に加熱し
た加熱凾中で1秒につき15%の変形速度で総延伸量が
16倍になるまで延伸を行ない、連続的に表面を多孔化
した繊維を製造した。The unstretched fibers were annealed at 120 ° C. for 5 minutes, stretched 50% at room temperature and then heated in a heating oven heated to 125 ° C. at a deformation rate of 15% per second to give a total stretch of 16 times. Was continuously stretched to produce a fiber having a continuously porous surface.
【0028】得られた繊維は直径が61μmであり、繊
維表面から1.2μmの厚みで平均的孔径0.15μm
の微孔が59%の開孔率で開いており、中心部は実質的
に非多孔質であった。引張り強度は17g/dであっ
た。The obtained fiber has a diameter of 61 μm, and an average pore diameter of 0.15 μm at a thickness of 1.2 μm from the fiber surface.
Micropores were open with a porosity of 59%, and the central part was substantially non-porous. The tensile strength was 17 g / d.
【0029】[0029]
【発明の効果】本発明の高強力ポリエチレン繊維は、繊
維表面側が多孔質の構造で中心側は非多孔質の構造であ
るので、軽量且つマトリックスとの接着性に優れるた
め、特に補強用繊維として極めて優れるものである。The high-strength polyethylene fiber of the present invention has a porous structure on the fiber surface side and a non-porous structure on the center side. Therefore, it is lightweight and has excellent adhesiveness to the matrix. It is extremely excellent.
Claims (1)
表面から0.2〜5μmの領域に平均的孔径0.01〜
2μmの微孔が開孔率20〜90%で存在することを特
徴とする繊維直径1〜500μm、引張り強度8g/d
以上の高強力ポリエチレン繊維。1. A center part is substantially non-porous, and an average pore diameter of 0.01 to 5 μm in a region of 0.2 to 5 μm from the fiber surface.
Fiber diameter 1 to 500 μm, tensile strength 8 g / d, characterized in that 2 μm micropores are present with a porosity of 20 to 90%
High strength polyethylene fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1645193A JPH06228809A (en) | 1993-02-03 | 1993-02-03 | High strength polyethylene fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1645193A JPH06228809A (en) | 1993-02-03 | 1993-02-03 | High strength polyethylene fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06228809A true JPH06228809A (en) | 1994-08-16 |
Family
ID=11916613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1645193A Pending JPH06228809A (en) | 1993-02-03 | 1993-02-03 | High strength polyethylene fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06228809A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003085176A1 (en) * | 2002-04-09 | 2003-10-16 | Toyo Boseki Kabushiki Kaisha | Polyethylene fiber and process for producing the same |
WO2006006330A1 (en) * | 2004-07-08 | 2006-01-19 | Toyo Boseki Kabushiki Kaisha | High-strength polyethylene fiber |
WO2011049026A1 (en) | 2009-10-23 | 2011-04-28 | 東洋紡績株式会社 | Highly functional polyethylene fibers, woven or knit fabric, and cut-resistant glove |
-
1993
- 1993-02-03 JP JP1645193A patent/JPH06228809A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003085176A1 (en) * | 2002-04-09 | 2003-10-16 | Toyo Boseki Kabushiki Kaisha | Polyethylene fiber and process for producing the same |
US7247372B2 (en) | 2002-04-09 | 2007-07-24 | Toyo Boseki Kabushiki Kaisha | Polyethylene filament and a process for producing the same |
CN100376730C (en) * | 2002-04-09 | 2008-03-26 | 东洋纺织株式会社 | Polyethylene fiber and process for producing the same |
US7736564B2 (en) | 2002-04-09 | 2010-06-15 | Toyo Boseki Kabushiki Kaisha | Process of making a high strength polyolefin filament |
WO2006006330A1 (en) * | 2004-07-08 | 2006-01-19 | Toyo Boseki Kabushiki Kaisha | High-strength polyethylene fiber |
WO2011049026A1 (en) | 2009-10-23 | 2011-04-28 | 東洋紡績株式会社 | Highly functional polyethylene fibers, woven or knit fabric, and cut-resistant glove |
US9546446B2 (en) | 2009-10-23 | 2017-01-17 | Toyo Boseki Kabushiki Kaisha | Highly functional polyethylene fibers, woven or knit fabric, and cut-resistant glove |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0526528B2 (en) | ||
JPH0240254B2 (en) | ||
JP2628788B2 (en) | Method for producing microporous membrane and fusing resistant microporous membrane produced by the method | |
JPH06228809A (en) | High strength polyethylene fiber | |
JPS6279806A (en) | Porous separation membrane and its manufacturing method | |
JPH06246139A (en) | Heterogeneous hollow fiber membrane and its production | |
JPH07243120A (en) | High-strength, high-modulus polypropylene fiber and its production | |
JPH04265132A (en) | Manufacturing method of porous hollow fiber membrane | |
JPS61146811A (en) | Production of porous hollow fiber of thermoplastic resin | |
JPH06246140A (en) | Method for producing hollow fiber heterogeneous membrane | |
KR20080069933A (en) | Method for manufacturing polyvinylidene fluoride hollow fiber membrane by melt spinning and stretching method | |
JP3332248B2 (en) | Method for producing high-strength polyethylene porous fiber | |
JPH07124451A (en) | Production of polyethylene porous hollow yarn membrane | |
JPH04265133A (en) | Manufacturing method of porous hollow fiber membrane | |
JPH07216646A (en) | Polylactic acid porous yarn and its production | |
JPS61146522A (en) | Preparation of porous body made of polytetrafluoroethylene resin | |
JP3547780B2 (en) | High strength, high modulus polypropylene fiber | |
JPH01270907A (en) | Production of porous polypropylene hollow fiber or film | |
JPS6047933B2 (en) | Method for producing fibers with good defibration properties | |
JP2934902B2 (en) | Manufacturing method of composite hollow fiber membrane | |
JPH073525A (en) | High-strength polyethylene porous fiber and production of thereof | |
JPH0780263A (en) | Production of polypropylene porous hollow fiber membrane | |
JP2002253940A (en) | Method for manufacturing hollow fiber membrane | |
JP2942867B2 (en) | Multilayer composite membrane | |
JP3219800B2 (en) | Manufacturing method of battery separator |