[go: up one dir, main page]

JPH06228602A - Metallic beryllium pebble - Google Patents

Metallic beryllium pebble

Info

Publication number
JPH06228602A
JPH06228602A JP5017554A JP1755493A JPH06228602A JP H06228602 A JPH06228602 A JP H06228602A JP 5017554 A JP5017554 A JP 5017554A JP 1755493 A JP1755493 A JP 1755493A JP H06228602 A JPH06228602 A JP H06228602A
Authority
JP
Japan
Prior art keywords
pebbles
metal beryllium
pebble
closed vessel
sphericity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5017554A
Other languages
Japanese (ja)
Other versions
JP2607338B2 (en
Inventor
Kiyotoshi Nishida
精利 西田
Naoki Sakamoto
直樹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5017554A priority Critical patent/JP2607338B2/en
Publication of JPH06228602A publication Critical patent/JPH06228602A/en
Application granted granted Critical
Publication of JP2607338B2 publication Critical patent/JP2607338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a metallic beryllium pebble enhanced in tritium breeding ratio, which is hardly bridged when filled in a closed vessel and with the generation of a cavity liable to form a hot spot reduced in the closed vessel to prevent the local overheating. CONSTITUTION:This metallic beryllium pebble 16 has 0.1-5mm average grain diameter, 0.001-0.05mm sphericity and 0.1-0.4mum surface roughness Ra, Since the pebble has the relatively small average grain diameter, relatively high sphericity and relatively low surface roughness, the pebbles are easily filled in a closed vessel, the pebbles are not bridged, and the filling factor in the closed vessel is increased. Consequently, as a large cavity is not locally formed in the closed vessel packed with the pebbles, the generation of a hot spot is reduced, and local overheating is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小石状の金属ベリリウ
ム(以下、「金属ベリリウムペブル」という)に関する
もので、特に、その大きさ、真球度、表面粗さ等の特性
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to pebble metal beryllium (hereinafter referred to as "metal beryllium pebbles"), and particularly to characteristics such as size, sphericity, surface roughness and the like. .

【0002】[0002]

【従来の技術】従来より、金属ベリリウムペブルは、マ
グネシウム還元法により製造されている。このマグネシ
ウム還元法により製造される金属ベリリウムペブルは、
真球度が例えば0.1〜0.5mmであり、表面にクレ
ータ状の凹凸を有している。またこの金属ベリリウムペ
ブルの表面は粗い。
2. Description of the Related Art Conventionally, metal beryllium pebbles have been manufactured by a magnesium reduction method. Metal beryllium pebbles produced by this magnesium reduction method,
The sphericity is, for example, 0.1 to 0.5 mm, and has crater-like irregularities on the surface. The surface of this metal beryllium pebble is rough.

【0003】[0003]

【発明が解決しようとする課題】このように従来のマグ
ネシウム還元法により製造された金属ベリリウムペブル
によると、金属ベリリウムペブルの表面にクレータ状の
凹凸があるため、密閉容器内にこのような金属ベリリウ
ムペブルを充填するとき、金属ベリリウムペブル間に引
っ掛かり状態を生じて、図3(A)に示すように、密閉
容器5内で棚吊り現象が発生する。すなわち金属ベリリ
ウムペブル6同士が引っかかり、内部に大きな空隙8が
発生する現象をいう。この場合の密閉容器内の空隙率は
例えば30〜50体積%である。この結果、金属ベリリ
ウムペブル6を密閉容器5内に高密度に充填することが
困難となる。そのため、このような金属ベリリウムペブ
ルを充填した密閉容器を用いる核融合炉ブランケットに
おいては、トリチウム増殖率が低下し、核融合炉燃料サ
イクルの効率が低下するという問題が生じる。
According to the metal beryllium pebbles produced by the conventional magnesium reduction method as described above, since the metal beryllium pebbles have crater-like irregularities on the surface, such metal beryllium pebbles are contained in the closed container. When filling the pebble, a trapped state occurs between the metal beryllium pebbles, and a hanging phenomenon occurs in the closed container 5 as shown in FIG. That is, it refers to a phenomenon in which the metal beryllium pebbles 6 are caught by each other and a large void 8 is generated inside. The porosity in the closed container in this case is, for example, 30 to 50% by volume. As a result, it becomes difficult to fill the metal beryllium pebbles 6 in the closed container 5 with high density. Therefore, in a fusion reactor blanket that uses such a sealed container filled with metal beryllium pebbles, there is a problem that the tritium breeding rate is reduced and the efficiency of the fusion reactor fuel cycle is reduced.

【0004】さらに金属ベリリウムペブル6の形態につ
いては、図2(A)に模式図を示すように、金属ベリリ
ウムペブル6の表面6aが荒いことから、ペブル同士の
接触部に応力集中が発生し、このペブル6同士の接触部
を起点としてクラックが発生しやすく、金属ベリリウム
の微粉発生あるいはそれら微粉と周囲の雰囲気との反応
(酸化)が促進されやすいという問題が生じる。
Further, regarding the form of the metal beryllium pebbles 6, as shown in the schematic view of FIG. 2A, since the surface 6a of the metal beryllium pebbles 6 is rough, stress concentration occurs at the contact portion between the pebbles, There is a problem that cracks are likely to occur starting from the contact portion between the pebbles 6 and the generation of fine particles of metal beryllium or the reaction (oxidation) between the fine particles and the surrounding atmosphere is easily promoted.

【0005】本発明は、このような問題点を解決するた
めになされたもので、密閉容器内に充填する金属ベリリ
ウムペブルの棚吊り現象が発生しにくく、密閉容器内に
ホットスポットとなりやすい空隙を少なくして局部過熱
を防止するとともに、トリチウム増殖率を高めるように
した金属ベリリウムペブルを提供することを目的とす
る。
The present invention has been made in order to solve such a problem, and a metal beryllium pebbles to be filled in a hermetically sealed container is less likely to be suspended, and a void is apt to become a hot spot in the hermetically sealed container. An object of the present invention is to provide a metal beryllium pebble whose amount is reduced to prevent local overheating and to increase the tritium breeding rate.

【0006】[0006]

【課題を解決するための手段】本発明の金属ベリリウム
ペブルは、平均粒径が0.1〜5mmであって、真球度
が0.001〜0.05mmであることを特徴とする。
またこの金属ベリリウムペブルは表面粗さRaがRa=
0.1〜0.4μmであることが望ましい。
The metal beryllium pebbles of the present invention are characterized by having an average particle size of 0.1 to 5 mm and a sphericity of 0.001 to 0.05 mm.
Further, this metal beryllium pebble has a surface roughness Ra of Ra =
It is preferably 0.1 to 0.4 μm.

【0007】[0007]

【作用】本発明の金属ベリリウムペブルによると、相対
的に小径の平均粒径をもつ金属ベリリウムペブルであ
り、その真球度が相対的に高く、かつ表面粗さが相対的
に平滑であることから、密閉容器内への充填作業が容易
となり、棚吊り現象発生率が低下し、密閉容器内への充
填率が高くなる。このため、金属ベリリウムペブルを充
填した密閉容器内における局所的に大きな空隙の発生が
抑えられるので、ホットスポットの発生が低減され、局
部過熱が防止される。
According to the metal beryllium pebbles of the present invention, the metal beryllium pebbles have a relatively small average particle diameter, their sphericity is relatively high, and their surface roughness is relatively smooth. Therefore, the filling work into the closed container becomes easy, the occurrence rate of the hanging phenomenon decreases, and the fill ratio into the closed container increases. For this reason, the occurrence of locally large voids in the closed container filled with metal beryllium pebbles is suppressed, so that the occurrence of hot spots is reduced and local overheating is prevented.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。金属ベリリウムペブルの製造を実施するための装
置は図4に示すとおりである。金属ベリリウムペブル
は、例えば図4に示す回転電極方による装置27により
製造される。この方法は、不活性ガス中の密閉容器内に
アーク溶解電極またはプラズマ溶解電極からなる電極と
金属ベリリウムからなる消耗電極とを設け、両電極間に
アークまたはプラズマを発生させて消耗電極を溶解させ
つつ遠心力により金属ベリリウム溶滴を飛散させて冷却
凝固し、金属ベリリウムの球状粒子(ペブル)を得る方
法である。図4において、21は密閉容器、22は金属
ベリリウムからなる消耗電極、23は水冷タングステン
のアーク溶解電極またはプラズマ溶解電極である。密閉
容器21内のガスは、排気孔4より外部に排気されると
ともに、導入孔25から不活性ガスが密閉容器21内に
導入される。消耗電極22は、回転装置26により回転
駆動される。消耗電極22と溶解電極23との間にアー
クまたはプラズマを発生させ、金属ベリリウム製の消耗
電極22を溶解させる。溶解した金属ベリリウムは、一
定の大きさになると遠心力により遠心方向に飛散し、不
活性ガス中を通過する間に冷却凝固し球状金属ベリリウ
ム粒子となる。密閉容器21内の不活性ガスには、例え
ばアルゴンガス、ヘリウムガスあるいはこれらの混合ガ
ス等が用いられる。
Embodiments of the present invention will be described below with reference to the drawings. An apparatus for carrying out the production of metal beryllium pebble is as shown in FIG. The metal beryllium pebbles are manufactured, for example, by a device 27 according to the rotating electrode method shown in FIG. In this method, an electrode composed of an arc melting electrode or a plasma melting electrode and a consumable electrode composed of metal beryllium are provided in a closed container in an inert gas, and arc or plasma is generated between both electrodes to melt the consumable electrode. Meanwhile, metallic beryllium droplets are scattered by centrifugal force and cooled and solidified to obtain spherical particles (pebbles) of metallic beryllium. In FIG. 4, 21 is a closed vessel, 22 is a consumable electrode made of metal beryllium, and 23 is a water-cooled tungsten arc melting electrode or plasma melting electrode. The gas in the closed container 21 is exhausted to the outside through the exhaust hole 4, and the inert gas is introduced into the closed container 21 through the introduction hole 25. The consumable electrode 22 is rotationally driven by the rotating device 26. An arc or plasma is generated between the consumable electrode 22 and the melting electrode 23 to melt the consumable electrode 22 made of metal beryllium. When the dissolved metal beryllium has a certain size, it is scattered in the centrifugal direction by centrifugal force, and is cooled and solidified while passing through an inert gas to form spherical metal beryllium particles. As the inert gas in the closed container 21, for example, argon gas, helium gas, or a mixed gas thereof is used.

【0009】上記装置27によって得られる金属ベリリ
ウムペブルは、その粒径が相対的に小さく真球度が高
く、かつ表面粗さが平滑である。平均粒径については、
0.1〜5mmである。真球度については、0.001
〜0.05mmである。上記回転電極法によって得られ
る金属ベリリウムペブルは優れた真球度を有しており、
その真球度の値は0.001〜0.05の範囲内のもの
が多量に得られる。そのため、密閉容器への充填率が高
められる。
The metal beryllium pebbles obtained by the above apparatus 27 have a relatively small particle size, a high sphericity, and a smooth surface roughness. For the average particle size,
It is 0.1 to 5 mm. For sphericity, 0.001
~ 0.05 mm. The metal beryllium pebble obtained by the rotating electrode method has an excellent sphericity,
A large amount of sphericity values within the range of 0.001 to 0.05 are obtained. Therefore, the filling rate in the closed container is increased.

【0010】表面粗さについては、Ra=0.1〜0.
4μm、Rmax =0.9〜1.4μmである。このた
め、密閉容器への金属ベリリウム充填時には、金属ベリ
リウムペブル表面への応力集中が回避され、充填時にお
ける容器内を流通するガスとの反応(酸化)が抑制され
る。また、充填した際の棚吊り現象の発生率を大幅に低
減することができた。
Regarding the surface roughness, Ra = 0.1 to 0.
4 μm and Rmax = 0.9 to 1.4 μm. Therefore, when metal beryllium is filled in the closed container, stress concentration on the metal beryllium pebble surface is avoided, and reaction (oxidation) with the gas flowing in the container at the time of filling is suppressed. In addition, it was possible to significantly reduce the occurrence rate of the hanging phenomenon during filling.

【0011】棚吊り現象発生率と真球度との関係を示す
と図1のとおりとなる。この図から、真球度が0.05
を超えると棚吊り現象発生率が大幅に上昇することが分
かる。この実施例の金属ベリリウムペブル充填状態の模
式図を図3(B)に示す。従来の密閉容器内の各所に棚
吊り状態が発生した比較例による金属ベリリウムペブル
充填状態を図3(A)に示す。本発明の実施例による
と、図3(B)に示すように、密閉容器5内で金属ベリ
リウムペブル16の棚吊り現象が発生しにくいことか
ら、密閉容器内に均一に金属ベリリウムペブル16が充
填され、大きな空隙が発生していないことが理解され
る。本実施例による空隙率は20〜40体積%である。
これに対し、図3(A)に示す比較例についての密閉容
器内の空隙率は30〜50体積%である。
The relationship between the occurrence rate of the hanging phenomenon and the sphericity is shown in FIG. From this figure, the sphericity is 0.05
It can be seen that the rate of occurrence of the hanging phenomenon increases significantly when the value exceeds. A schematic view of the metal beryllium pebble filling state of this example is shown in FIG. FIG. 3 (A) shows a metal beryllium pebble filled state according to a comparative example in which a hanging state occurs in various places in a conventional closed container. According to the embodiment of the present invention, as shown in FIG. 3B, since the metal beryllium pebbles 16 are less likely to be suspended in the closed container 5, the closed container is filled with the metal beryllium pebbles 16 uniformly. It is understood that no large void is generated. The porosity according to this embodiment is 20 to 40% by volume.
On the other hand, the porosity in the closed container for the comparative example shown in FIG. 3 (A) is 30 to 50% by volume.

【0012】従って、本発明の実施例による金属ベリリ
ウムペブルによると、密閉容器内に金属ベリリウムペブ
ルを供給するときに密閉容器内に棚吊り現象が発生しに
くいため、ペブルの充填操作性が良好になるという効果
がある。従って、核融合炉作動時のトリチウム増殖率が
向上し、核融合炉の燃料サイクルの効率が増大するとと
もに、局所的な過熱による事故からも回避される。
Therefore, according to the metal beryllium pebbles according to the embodiment of the present invention, when the metal beryllium pebbles are supplied into the closed container, a hanging phenomenon is unlikely to occur in the closed container. There is an effect that. Therefore, the tritium breeding rate during the operation of the fusion reactor is improved, the efficiency of the fuel cycle of the fusion reactor is increased, and the accident due to local overheating is avoided.

【0013】次に、金属ベリリウムペブルを充填する核
融合ブランケットの構造例を図5に示す。図5におい
て、核融合炉プラズマの周囲に設けられるブランケット
容器の模式的断面図を示す。図5においてAは酸化リチ
ウム(Li2 O)ペブル、Bは金属ベリリウムペブル、
Cはステンレス鋼を示す。また、符号1で示される部分
はブランケット容器、符号2で示される部分は中性子増
倍域、符号3で示される部分は第一壁である。
Next, FIG. 5 shows a structural example of a fusion blanket filled with metal beryllium pebbles. In FIG. 5, a schematic cross-sectional view of a blanket container provided around the fusion reactor plasma is shown. In FIG. 5, A is a lithium oxide (Li 2 O) pebble, B is a metal beryllium pebble,
C indicates stainless steel. Further, a portion indicated by reference numeral 1 is a blanket container, a portion indicated by reference numeral 2 is a neutron multiplication region, and a portion indicated by reference numeral 3 is a first wall.

【0014】[0014]

【発明の効果】以上説明したように本発明の金属ベリリ
ウムペブルによると、平均粒径が小径であり真球度が高
くかつ表面粗さが滑らかであることから、密閉容器内へ
の充填時に棚吊り現象が発生しにくいので空隙部での局
所過熱が防止され安全性が高められるという効果があ
る。また、金属ベリリウムペブルの表面粗さが滑らかな
ことから、金属ベリリウムペブル間接触部の応力集中が
避けられ、クラックが発生しにくいので、金属ベリリウ
ムペブルの微粉による目詰まりが発生しにくく、また金
属ベリリウムの酸化が抑制されるので、金属ベリリウム
ペブルの寿命が長くなるという効果がある。
As described above, according to the metal beryllium pebbles of the present invention, the average particle size is small, the sphericity is high, and the surface roughness is smooth. Since the hanging phenomenon is unlikely to occur, there is an effect that local overheating is prevented in the void portion and safety is enhanced. In addition, since the surface roughness of the metal beryllium pebbles is smooth, stress concentration at the contact area between the metal beryllium pebbles is avoided, and cracks are less likely to occur, so clogging with fine particles of the metal beryllium pebbles is less likely to occur, and Since the oxidation of beryllium is suppressed, the life of the metal beryllium pebble is extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実験例による真球度と棚吊り現象発生
率の関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between a sphericity and a hanging phenomenon occurrence rate according to an experimental example of the present invention.

【図2】(A)は従来例による金属ベリリウムペブルの
形状を示す模式図である。(B)は本発明の実施例によ
る金属ベリリウムペブルを示す模式図である。
FIG. 2A is a schematic view showing a shape of a metal beryllium pebble according to a conventional example. (B) is a schematic diagram showing a metal beryllium pebble according to an embodiment of the present invention.

【図3】(A)は従来例の金属ベリリウムペブルを密閉
容器に充填したときの状態を示す模式図である。(B)
は本発明の実施例による金属ベリリウムペブルを密閉容
器に充填したときの状態を示す模式図である。
FIG. 3A is a schematic view showing a state in which a metal beryllium pebble of a conventional example is filled in a closed container. (B)
FIG. 3 is a schematic diagram showing a state in which a metal beryllium pebble according to an embodiment of the present invention is filled in a closed container.

【図4】金属ベリリウムペブルの製造装置を示す概略構
成図である。
FIG. 4 is a schematic configuration diagram showing an apparatus for producing metal beryllium pebbles.

【図5】核融合炉ブランケットの断面を示す模式的断面
図である。
FIG. 5 is a schematic cross-sectional view showing a cross section of a fusion reactor blanket.

【符号の説明】[Explanation of symbols]

1 ブランケット容器 16 金属ベリリウムペブル 1 Blanket Container 16 Metal Beryllium Pebble

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が0.1〜5mmであって、真
球度が0.001〜0.05mmであることを特徴とす
る金属ベリリウムペブル。
1. A metal beryllium pebble having an average particle diameter of 0.1 to 5 mm and a sphericity of 0.001 to 0.05 mm.
【請求項2】 表面粗さRa=0.1〜0.4μmであ
る請求項1記載の金属ベリリウムペブル。
2. The metal beryllium pebbles according to claim 1, having a surface roughness Ra = 0.1 to 0.4 μm.
JP5017554A 1993-02-04 1993-02-04 Metal beryllium pebble Expired - Lifetime JP2607338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5017554A JP2607338B2 (en) 1993-02-04 1993-02-04 Metal beryllium pebble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5017554A JP2607338B2 (en) 1993-02-04 1993-02-04 Metal beryllium pebble

Publications (2)

Publication Number Publication Date
JPH06228602A true JPH06228602A (en) 1994-08-16
JP2607338B2 JP2607338B2 (en) 1997-05-07

Family

ID=11947137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5017554A Expired - Lifetime JP2607338B2 (en) 1993-02-04 1993-02-04 Metal beryllium pebble

Country Status (1)

Country Link
JP (1) JP2607338B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011557A1 (en) * 1996-09-11 1998-03-19 Japan Atomic Energy Research Institute Process for preparing metallic beryllium pebbles
JP2002296387A (en) * 2001-04-02 2002-10-09 Ngk Insulators Ltd Production method for h-shape beryllium frame member
JP2010019608A (en) * 2008-07-08 2010-01-28 Japan Atomic Energy Agency Beryllium material filling body, and molding method of beryllium material filling body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011557A1 (en) * 1996-09-11 1998-03-19 Japan Atomic Energy Research Institute Process for preparing metallic beryllium pebbles
WO1998011556A1 (en) * 1996-09-11 1998-03-19 Japan Atomic Energy Research Institute Metallic beryllium pebbles for nuclear fusion reactors
US5958105A (en) * 1996-09-11 1999-09-28 Japan Atomic Energy Research Institute Process for preparing metallic beryllium pebbles
JP2002296387A (en) * 2001-04-02 2002-10-09 Ngk Insulators Ltd Production method for h-shape beryllium frame member
JP4565766B2 (en) * 2001-04-02 2010-10-20 日本碍子株式会社 Method for manufacturing H-shaped beryllium frame member
JP2010019608A (en) * 2008-07-08 2010-01-28 Japan Atomic Energy Agency Beryllium material filling body, and molding method of beryllium material filling body

Also Published As

Publication number Publication date
JP2607338B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US3005246A (en) Method of producing high-quality ingots of reactive metals
US2909778A (en) Method and means for bare electrode welding
US4468299A (en) Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon
JPH0647581A (en) Electrode with core reduced in fume
US4001461A (en) Method of producing electrode units for plasmatrons
JP2607338B2 (en) Metal beryllium pebble
JP2653963B2 (en) Manufacturing method of metal beryllium pebble
US4145562A (en) DC Arc furnace melt electrode
CA2502389C (en) Multi-core fuel rod for research reactor and manufacturing method thereof
US2899294A (en) Purification melting process for metal-
JPS57146466A (en) Casting method for titanium casting consisting of pure titanium or alloy consisting essentially of titanium
JP2741829B2 (en) Metal beryllium pebble
US3672428A (en) Power partition control for consumable electrode furnaces
US3758746A (en) Hafnium electrode with inclusion used in an active medium
Minkoff Materials processes: a short introduction
JP3076067B2 (en) Metal beryllium pebbles for fusion reactors
JPH03226508A (en) Manufacture of beryllium spherical particle
JPS63210206A (en) Apparatus for producing metal powder
Kurtulmus et al. Activated flux TIG welding of non-ferrous metals
JP2648655B2 (en) Method for producing electrode for producing metal beryllium pebble
JPS62227007A (en) Production of powder
Jackson Vacuum-induction melting, refining, and casting of uranium and its alloys
JPS5914084B2 (en) Method for manufacturing metal particles
JPS63145703A (en) Apparatus for producing powder
JPS58217651A (en) Preparation of material for storing hydrogen

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

EXPY Cancellation because of completion of term