[go: up one dir, main page]

JPH06224486A - Polarizing method for piezoelectric ceramics - Google Patents

Polarizing method for piezoelectric ceramics

Info

Publication number
JPH06224486A
JPH06224486A JP1083093A JP1083093A JPH06224486A JP H06224486 A JPH06224486 A JP H06224486A JP 1083093 A JP1083093 A JP 1083093A JP 1083093 A JP1083093 A JP 1083093A JP H06224486 A JPH06224486 A JP H06224486A
Authority
JP
Japan
Prior art keywords
polarization
voltage
polarizing
applying
piezoelectric ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1083093A
Other languages
Japanese (ja)
Inventor
Takenobu Sakai
酒井  武信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1083093A priority Critical patent/JPH06224486A/en
Publication of JPH06224486A publication Critical patent/JPH06224486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To easily form piezoelectric ceramics in which an aging change of a residual polarization is prevented. CONSTITUTION:A first polarizing step of polarizing piezoelectric ceramics by applying a voltage reverse to a voltage applying direction necessary to obtain a polarizing direction to be obtained to the ceramics, and a second polarizing step of polarizing the ceramics polarized in a reverse direction by applying a voltage of the voltage applying direction necessary to obtain a polarizing direction to be obtained are conducted. It is surmised that an internal bias electric field is generated by previously applying the voltage in the reverse direction, and it is considered that this field suppresses 90 deg. switching of a domain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電セラミックスを分
極する方法に関する。本発明の分極方法で得られた圧電
セラミックスは、自動車などに用いられる圧電アクチュ
エータとして最適である。
FIELD OF THE INVENTION This invention relates to a method of polarizing piezoelectric ceramics. The piezoelectric ceramic obtained by the polarization method of the present invention is optimal as a piezoelectric actuator used in automobiles and the like.

【0002】[0002]

【従来の技術】近年、電磁力を利用したアクチュエータ
に代わって、例えば特開昭62−291187号公報、
実開昭64−30865号公報などに開示されているよ
うに、チタン酸ジルコン酸鉛(以下PZTという)など
の圧電セラミックスを利用した圧電アクチュエータが提
案されている。
2. Description of the Related Art In recent years, instead of an actuator utilizing electromagnetic force, for example, Japanese Patent Laid-Open No. 62-291187,
As disclosed in Japanese Utility Model Laid-Open No. 64-30865, a piezoelectric actuator using a piezoelectric ceramic such as lead zirconate titanate (hereinafter referred to as PZT) has been proposed.

【0003】この圧電アクチュエータは低消費電力で発
熱が少なく、また小型で高速駆動が可能なため、各種の
機械的駆動素子として極めて有望である。ただ圧電効果
による機械的変位は本質的に極めて小さいので、大きな
変位量を得るために、板状の圧電体と電極板とを交互に
多重に積層した構造の圧電積層体として提供されてい
る。
This piezoelectric actuator is extremely promising as various mechanical drive elements because it has low power consumption, generates little heat, is small, and can be driven at high speed. However, since mechanical displacement due to the piezoelectric effect is essentially extremely small, it is provided as a piezoelectric laminate having a structure in which plate-shaped piezoelectric bodies and electrode plates are alternately laminated in order to obtain a large displacement amount.

【0004】ところでPZTなどの自発分極は、通常、
等方性である。そのため、圧電セラミックスとするため
には、高電圧を印加し自発分極の向きを特定方向に揃え
る分極処理を行って圧電性をもたせるようにしている。
しかしながら圧電セラミックス材料に分極処理を行って
も、得られる残留分極は単結晶の分極には及ばない。ま
た、残留分極は経時により漸減し易く、経時での圧電特
性の低下が生じたり、高圧力、高温、高電圧での使用に
よる高応力状態の場合には圧電特性が不安定となるとい
う不具合がある。そのため、例えばPZT圧電セラミッ
クスを用いた圧電アクチュエータでは、特に自動車用な
ど高温での使用中に変位量の低下(変位劣化)が生じ、
所望の変位量が得られなくなるという問題がある。
Incidentally, spontaneous polarization such as PZT is usually
Isotropic. Therefore, in order to obtain a piezoelectric ceramic, a high voltage is applied to perform polarization processing for aligning the direction of spontaneous polarization in a specific direction so as to have piezoelectricity.
However, even if the piezoelectric ceramic material is polarized, the obtained residual polarization does not reach the polarization of the single crystal. Further, the remanent polarization is apt to gradually decrease with the passage of time, and the piezoelectric characteristic is deteriorated with the passage of time, or the piezoelectric characteristic becomes unstable in a high stress state due to use at high pressure, high temperature and high voltage. is there. Therefore, for example, in a piezoelectric actuator using PZT piezoelectric ceramics, a decrease in displacement amount (displacement deterioration) occurs particularly during use at high temperature for automobiles,
There is a problem that a desired amount of displacement cannot be obtained.

【0005】そこで特開昭62−234381号公報に
は、圧電セラミックスの加圧焼結時または/およびアニ
ーリング処理時に、加圧焼結時の加圧方向に対して垂直
方向の電界を印加する圧電セラミックスの製造方法が開
示されている。
In view of this, Japanese Patent Application Laid-Open No. 62-234381 discloses a piezoelectric ceramic for applying an electric field in a direction perpendicular to the pressure direction during pressure sintering during pressure sintering or / and annealing treatment of piezoelectric ceramics. A method of manufacturing ceramics is disclosed.

【0006】[0006]

【発明が解決しようとする課題】上記公報にも記載され
ているように、圧電セラミックスには残留分極の経時変
化が少なからず生じていた。そのため圧電アクチュエー
タの変位量を一定とするためには、駆動用電源の電圧又
は電流を制御するための複雑な制御用電源回路や冷却装
置などが必要となり、コスト面などから圧電アクチュエ
ータの利用拡大の障害となっている。
As described in the above publication, the piezoelectric ceramic had a considerable change in remanent polarization with time. Therefore, in order to keep the displacement of the piezoelectric actuator constant, a complicated control power supply circuit for controlling the voltage or current of the drive power supply, a cooling device, etc. are required. It is an obstacle.

【0007】そこで本発明者らは、圧電アクチュエータ
の使用中に変位量が低下する原因を鋭意研究した結果、
圧電セラミックスの電気機械結合係数Kp(以下Kpと
いう)が使用中に低下することが大きな原因であること
を見出した。そしてKpは使用中の圧力,温度,電圧な
どの負荷によって低下し、このKpの低下は、主として
ドメインの90°スイッチングに起因していることも見
出した。しかしドメインの90°スイッチングを防止
し、Kpの低下を防止する手段は今のところ見つかって
いない。
Therefore, the inventors of the present invention have conducted extensive studies as to the cause of the decrease in displacement during use of the piezoelectric actuator.
It has been found that a major cause is that the electromechanical coupling coefficient Kp (hereinafter referred to as Kp) of the piezoelectric ceramic is lowered during use. It has also been found that Kp decreases due to loads such as pressure, temperature, and voltage during use, and this decrease in Kp is mainly due to 90 ° switching of domains. However, no means have so far been found to prevent 90 ° switching of the domains and prevent Kp degradation.

【0008】また上記特開昭62−234381号公報
に開示された製造方法では、加熱と電圧印加を同時に行
う必要があり、加熱時に溶融しない材料を選ばなければ
ならないなど、電極材料の選択の自由度が小さく工数も
多大となる。本発明はこのような事情に鑑みてなされた
ものであり、残留分極の経時変化が防止された圧電セラ
ミックスを容易に形成することを目的とする。
In the manufacturing method disclosed in JP-A-62-234381, it is necessary to perform heating and voltage application at the same time, and it is necessary to select a material that does not melt during heating. The degree is small and the man-hours are large. The present invention has been made in view of such circumstances, and an object of the present invention is to easily form a piezoelectric ceramic in which a change in remanent polarization with time is prevented.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の圧電セラミックスの分極方法は、圧電セラミックス
に電圧を印加して分極するにあたり、目的とする分極方
向を得る為に必要な電圧印加方向とは逆方向の電圧を圧
電セラミックスに印加して分極する第1分極工程と、逆
方向に分極された圧電セラミックスに目的とする分極方
向を得る為に必要な電圧印加方向の電圧を印加して分極
する第2分極工程と、を行うことを特徴とする。
A method for polarizing a piezoelectric ceramics according to the present invention which solves the above-mentioned problems is a voltage application direction necessary for obtaining a desired polarization direction when a voltage is applied to the piezoelectric ceramics for polarization. A first polarization step of applying a voltage in the opposite direction to the piezoelectric ceramics to polarize it, and applying a voltage in the direction of voltage application necessary to obtain the desired polarization direction to the piezoelectric ceramics polarized in the opposite direction. And a second polarization step of polarization.

【0010】[0010]

【作用】本発明の分極方法では、先ず第1分極工程で目
的とする分極方向を得る為に必要な電圧印加方向とは逆
方向の電圧が印加され、圧電セラミックスは逆方向に分
極される。次いで目的とする分極方向とするべく、第1
分極工程とは逆方向の電圧が印加されて第2分極工程が
行われる。これにより残留分極の経時変化が抑制された
分極状態をもつ圧電セラミックスが得られる。
In the polarization method of the present invention, first, a voltage in the direction opposite to the voltage application direction required to obtain the desired polarization direction in the first polarization step is applied, and the piezoelectric ceramic is polarized in the opposite direction. Then, the first polarization direction is set to the desired polarization direction.
The second polarization step is performed by applying a voltage in the opposite direction to the polarization step. As a result, a piezoelectric ceramic having a polarization state in which the change in residual polarization over time is suppressed can be obtained.

【0011】このようになる機構はまだ明らかではない
が、予め逆方向に電圧を印加することにより、圧電セラ
ミックス内部のポアや介在物の周りに内部バイアス電界
が生じ、この内部バイアス電界がドメインの90°スイ
ッチングを抑制しているものと考えられる。
Although the mechanism of this is not clear yet, by applying a voltage in the opposite direction beforehand, an internal bias electric field is generated around the pores and inclusions inside the piezoelectric ceramic, and this internal bias electric field is generated in the domain. It is considered that 90 ° switching is suppressed.

【0012】[0012]

【実施例】以下、実施例により具体的に説明する。 (実施例1)<試験片の作製>原料粉末としてのPb
O,ZrO2 ,TiO2 ,Sr2 3 ,Nb2 5 を、
Pb0.89Sr0.11(Zr0.55Ti0.44Nb0.01)O3
組成となるように秤量後、ボールミルで48時間粉砕
し、900℃で1時間焼成後、再びボールミルで粉砕・
乾燥した。この粉末にバインダとしてのPVA(ポリビ
ニルアルコール)を約5重量%加えて造粒後、1ton
/cm2 の圧力で直径約20mm、厚さ約15mmの円
柱状の成形体を20個形成した。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) <Preparation of test piece> Pb as raw material powder
O, ZrO 2 , TiO 2 , Sr 2 O 3 , Nb 2 O 5
Pb 0.89 Sr 0.11 (Zr 0.55 Ti 0.44 Nb 0.01 ) O 3 was weighed so as to have a composition, pulverized with a ball mill for 48 hours, baked at 900 ° C. for 1 hour, and then pulverized with a ball mill again.
Dried. About 5% by weight of PVA (polyvinyl alcohol) as a binder was added to this powder, and after granulation, 1 ton
Twenty cylindrical shaped bodies having a diameter of about 20 mm and a thickness of about 15 mm were formed at a pressure of / cm 2 .

【0013】得られた各成形体を、Pb雰囲気調整用P
bZrO3 粉末とともにアルミナ坩堝に入れ、電気炉内
で昇温速度300℃/hrで昇温し、1250℃で2時
間焼結した。この焼結体を直径15mm、厚さ1mmの
円板状に切り出し、表裏面に銀ペーストを塗布し550
℃で10分間焼き付けて電極を形成して、比誘電率(ε
33 T /ε0 )及びKp測定用試験片とした。 <第1分極工程>それぞれの試験片1について、図1
(a)に示すように、100℃のシリコンオイル2中で
3kv/mmの直流電圧を30分間印加して分極処理を
行った。 <第2分極工程>次に、図1(b)に示すように、第1
分極工程とは陽極と陰極を逆に、すなわち電圧印加方向
が逆になるように配線し、同様に100℃のシリコンオ
イル2中で3kv/mmの直流電圧を30分間印加して
分極処理を行った。 <試験>第2分極工程後24時間放置し、その後、第2
分極工程における電圧印加方向を正方向として、Kp及
び比誘電率(ε33 T /ε0 )を測定した。また正方向に
0〜700vの電圧を印加したときの、試験片厚さ1m
m当たりの変位量を測定した。結果を表1に示す。
Each of the obtained compacts was mixed with Pb for Pb atmosphere adjustment.
The powder was put into an alumina crucible together with bZrO 3 powder, heated in an electric furnace at a heating rate of 300 ° C./hr, and sintered at 1250 ° C. for 2 hours. This sintered body was cut into a disk shape having a diameter of 15 mm and a thickness of 1 mm, and silver paste was applied to the front and back surfaces of the disk, and then 550
After baking for 10 minutes at ℃ to form an electrode, the relative permittivity (ε
33 T / ε 0 ) and a test piece for Kp measurement. <First Polarizing Step> For each test piece 1, FIG.
As shown in (a), a polarization treatment was performed by applying a DC voltage of 3 kv / mm in silicon oil 2 at 100 ° C. for 30 minutes. <Second Polarizing Step> Next, as shown in FIG.
Polarization process is performed by arranging the anode and the cathode in reverse, that is, in such a manner that the voltage application directions are opposite, and similarly applying a DC voltage of 3 kv / mm for 30 minutes in 100 ° C. silicon oil 2 to perform polarization treatment. It was <Test> After standing for 24 hours after the second polarization process,
Kp and relative permittivity (ε 33 T / ε 0 ) were measured with the voltage application direction in the polarization step as the positive direction. The thickness of the test piece is 1 m when a voltage of 0 to 700 v is applied in the positive direction.
The displacement amount per m was measured. The results are shown in Table 1.

【0014】さらに、温度100℃にて分極正方向に2
0MPaの圧力を加えた状態で、0〜700vの電圧を
101 〜108 回繰り返し印加する耐久試験を行い、繰
り返し回数に対するKpと比誘電率の変化を図2に、試
験片厚さ1mm当たりの変位量の変化を図3に示す。 (実施例2)第1分極工程における処理温度を30℃と
したこと以外は実施例1と同様にして試験片を作製し、
同様に初期と耐久試験時のKp、比誘電率及び変位量を
測定し、結果を表1、図2及び図3に示す。 (実施例3)第2分極工程における処理温度を30℃と
したこと以外は実施例1と同様にして試験片を作製し、
同様に初期と耐久試験時のKp、比誘電率及び変位量を
測定し、結果を表1、図4及び図5に示す。 (実施例4)第1分極工程及び第2分極工程における処
理温度を、それぞれ30℃としたこと以外は実施例1と
同様にして試験片を作製し、同様に初期と耐久試験時の
Kp、比誘電率及び変位量を測定して、結果を表1、図
4及び図5に示す。 (従来例)第1分極工程を行わず第2分極工程のみを行
ったこと以外は実施例1と同様にして試験片を作製し、
同様に初期と耐久試験時のKp、比誘電率及び変位量を
測定して、結果を表1、図2、図3、図4及び図5に示
す。
Furthermore, at a temperature of 100 ° C., the polarization direction is increased by 2
A durability test in which a voltage of 0 to 700 v is repeatedly applied 10 1 to 10 8 times under a pressure of 0 MPa is performed, and changes in Kp and relative dielectric constant with respect to the number of repetitions are shown in FIG. The change in the amount of displacement is shown in FIG. (Example 2) A test piece was prepared in the same manner as in Example 1 except that the treatment temperature in the first polarization step was 30 ° C.
Similarly, Kp, relative permittivity and displacement amount were measured at the initial stage and the durability test, and the results are shown in Table 1, FIG. 2 and FIG. (Example 3) A test piece was prepared in the same manner as in Example 1 except that the treatment temperature in the second polarization step was 30 ° C.
Similarly, Kp, relative permittivity and displacement amount were measured at the initial stage and the durability test, and the results are shown in Table 1, FIG. 4 and FIG. Example 4 A test piece was prepared in the same manner as in Example 1 except that the treatment temperatures in the first polarization step and the second polarization step were 30 ° C., respectively, and Kp at the initial and endurance tests were similarly set. The relative permittivity and the amount of displacement were measured, and the results are shown in Table 1, FIG. 4 and FIG. (Conventional Example) A test piece was prepared in the same manner as in Example 1 except that the first polarization step was not performed and only the second polarization step was performed.
Similarly, Kp, relative permittivity and displacement amount were measured at the initial stage and the durability test, and the results are shown in Table 1, FIG. 2, FIG. 3, FIG. 4 and FIG.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例5〜9)第2分極工程における正
方向の印加電圧を、3.6〜1.2kv/mmの間で種
々選択したこと以外は実施例1と同様にして試験片を作
製し、同様に初期と108 回繰り返し耐久試験時のK
p、比誘電率及び変位量を測定し、結果を表2に示す。 (実施例10〜14)第1分極工程における逆方向の印
加電圧を、3.6〜1.2kv/mmの間で種々選択し
たこと以外は実施例1と同様にして試験片を作製し、同
様に初期と108 回繰り返し耐久試験時のKp、比誘電
率及び変位量を測定し、結果を表2に示す。
(Examples 5 to 9) Test pieces were prepared in the same manner as in Example 1 except that the positive applied voltage in the second polarization step was variously selected from 3.6 to 1.2 kv / mm. It was prepared and K in the initial and 10 8 times repeated durability test
p, relative permittivity and displacement were measured, and the results are shown in Table 2. (Examples 10 to 14) Test pieces were prepared in the same manner as in Example 1 except that the reverse applied voltage in the first polarization step was variously selected from 3.6 to 1.2 kv / mm. Similarly, Kp, relative permittivity, and displacement amount were measured at the initial stage and at the 10 8 times repeated durability test, and the results are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】(実施例15〜18)圧電セラミックスの
組成をPb0.89Sr0.11(Zr0.56Ti0.43Nb0.01
3 とし、かつ第2分極工程における正方向の印加電圧
を、3.6〜2kv/mmの間で種々選択したこと以外
は実施例1と同様にして試験片を作製し、同様に初期と
108 回繰り返し耐久試験時のKp、比誘電率及び変位
量を測定し、結果を表3に示す。
(Examples 15 to 18) of piezoelectric ceramics
The composition is Pb0.89Sr0.11(Zr0.56Ti0.43Nb0.01)
O 3And the applied voltage in the positive direction in the second polarization step
Except that various selections were made between 3.6 and 2 kv / mm.
Test piece was prepared in the same manner as in Example 1, and
108Kp, relative permittivity and displacement during repeated durability test
The amount was measured and the results are shown in Table 3.

【0019】なお、実施例1〜14の圧電セラミックス
の組成は正方晶系であり、実施例15〜18の圧電セラ
ミックスの組成は菱面晶系で、Pb0.89Sr0.11(Zr
0.60Ti0.39Nb0.01)O3 で表される。
The compositions of the piezoelectric ceramics of Examples 1 to 14 are tetragonal, the compositions of the piezoelectric ceramics of Examples 15 to 18 are rhombohedral, and Pb 0.89 Sr 0.11 (Zr
It is represented by 0.60 Ti 0.39 Nb 0.01 ) O 3 .

【0020】[0020]

【表3】 [Table 3]

【0021】(評価)表1〜3及び図2〜5の結果から
明らかなように、実施例で得られた圧電セラミックス
は、従来例で得られたものに比べて初期の変位量が大き
く、耐久試験に伴うKpの低下が小さいため変位量の変
化率が小さい。これは正方向に分極処理するに先立っ
て、逆方向に分極処理したことに起因することが明らか
である。
(Evaluation) As is clear from the results of Tables 1 to 3 and FIGS. 2 to 5, the piezoelectric ceramics obtained in the examples have a large initial displacement amount as compared with those obtained in the conventional examples. The change rate of the displacement amount is small because the decrease in Kp accompanying the durability test is small. It is clear that this is due to the fact that the polarization treatment was performed in the reverse direction prior to the polarization treatment in the positive direction.

【0022】[0022]

【発明の効果】すなわち本発明の分極方法により得られ
た圧電セラミックスは、大きな変位量を示し、かつ残留
分極の経時変化が抑制されているため耐久性に優れてい
る。したがってこの圧電セラミックスを用いて圧電アク
チュエータを製造すれば、変位低下補正のための電源回
路などが不要となり、また変位劣化防止のための冷却装
置などを不要とすることができ、低コスト化及び構造の
簡易化に貢献することが可能となる。
That is, the piezoelectric ceramics obtained by the polarization method of the present invention exhibit a large amount of displacement and suppress the change in remanent polarization over time, and thus have excellent durability. Therefore, if a piezoelectric actuator is manufactured using this piezoelectric ceramic, a power supply circuit for displacement reduction correction becomes unnecessary, and a cooling device for displacement deterioration prevention becomes unnecessary, which leads to cost reduction and structure reduction. It is possible to contribute to the simplification of.

【0023】そして本発明の分極方法によれば、従来の
分極方法を2回に分けて行うのとほとんど同様の工数で
あり、上記圧電セラミックスを極めて容易に、かつ安定
して形成することができる。
According to the polarization method of the present invention, the number of steps is almost the same as when the conventional polarization method is divided into two steps, and the piezoelectric ceramic can be formed extremely easily and stably. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の分極方法を説明する模式的
説明図である。
FIG. 1 is a schematic explanatory diagram illustrating a polarization method according to an embodiment of the present invention.

【図2】Kpと比誘電率の耐久試験回数に対する変化を
示すグラフである。
FIG. 2 is a graph showing changes in Kp and relative dielectric constant with respect to the number of durability tests.

【図3】厚さ1mm当たりの変位量の耐久試験回数に対
する変化を示すグラフである。
FIG. 3 is a graph showing a change in displacement amount per 1 mm of thickness with respect to the number of durability tests.

【図4】Kpと比誘電率の耐久試験回数に対する変化を
示すグラフである。
FIG. 4 is a graph showing changes in Kp and relative dielectric constant with respect to the number of durability tests.

【図5】厚さ1mm当たりの変位量の耐久試験回数に対
する変化を示すグラフである。
FIG. 5 is a graph showing changes in the amount of displacement per 1 mm of thickness with respect to the number of durability tests.

【符号の説明】[Explanation of symbols]

1:試験片(圧電セラミックス) 2:シリコンオイ
1: Test piece (piezoelectric ceramics) 2: Silicon oil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧電セラミックスに電圧を印加して分極
するにあたり、目的とする分極方向を得る為に必要な電
圧印加方向とは逆方向の電圧を該圧電セラミックスに印
加して分極する第1分極工程と、 逆方向に分極された該圧電セラミックスに目的とする分
極方向を得る為に必要な電圧印加方向の電圧を印加して
分極する第2分極工程と、を行うことを特徴とする圧電
セラミックスの分極方法。
1. A first polarization for applying a voltage to a piezoelectric ceramic to polarize the piezoelectric ceramic by applying a voltage in a direction opposite to a voltage application direction necessary to obtain a target polarization direction. Piezoelectric ceramics characterized by performing a step and a second polarization step of applying a voltage in a voltage application direction necessary for obtaining a desired polarization direction to the piezoelectric ceramics polarized in the opposite direction Polarization method.
JP1083093A 1993-01-26 1993-01-26 Polarizing method for piezoelectric ceramics Pending JPH06224486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083093A JPH06224486A (en) 1993-01-26 1993-01-26 Polarizing method for piezoelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083093A JPH06224486A (en) 1993-01-26 1993-01-26 Polarizing method for piezoelectric ceramics

Publications (1)

Publication Number Publication Date
JPH06224486A true JPH06224486A (en) 1994-08-12

Family

ID=11761282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083093A Pending JPH06224486A (en) 1993-01-26 1993-01-26 Polarizing method for piezoelectric ceramics

Country Status (1)

Country Link
JP (1) JPH06224486A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244208A (en) * 2004-01-30 2005-09-08 Toko Inc Piezoelectric ceramics and manufacturing method thereof
JP2007067125A (en) * 2005-08-31 2007-03-15 Toko Inc Single plate type piezoelectric bimorph element
JP2008050205A (en) * 2006-08-24 2008-03-06 Seiko Epson Corp Method for manufacturing piezoelectric material and piezoelectric element
JP2015536580A (en) * 2012-12-07 2015-12-21 エプコス アクチエンゲゼルシャフトEpcos Ag Manufacturing method of electronic parts
CN105655479A (en) * 2015-12-30 2016-06-08 中国科学院上海硅酸盐研究所 Polarization aging treatment method for obtaining large strain effect in piezoceramics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244208A (en) * 2004-01-30 2005-09-08 Toko Inc Piezoelectric ceramics and manufacturing method thereof
JP2007067125A (en) * 2005-08-31 2007-03-15 Toko Inc Single plate type piezoelectric bimorph element
JP2008050205A (en) * 2006-08-24 2008-03-06 Seiko Epson Corp Method for manufacturing piezoelectric material and piezoelectric element
JP2015536580A (en) * 2012-12-07 2015-12-21 エプコス アクチエンゲゼルシャフトEpcos Ag Manufacturing method of electronic parts
US9755138B2 (en) 2012-12-07 2017-09-05 Epcos Ag Method for producing an electronic component
CN105655479A (en) * 2015-12-30 2016-06-08 中国科学院上海硅酸盐研究所 Polarization aging treatment method for obtaining large strain effect in piezoceramics

Similar Documents

Publication Publication Date Title
EP1340731B1 (en) Piezoelectric ceramic
JP4929522B2 (en) Piezoelectric ceramic composition
EP2104152B1 (en) Piezoelectric ceramic and piezoelectric element employing it
EP1347073A1 (en) HIGH Cr FERRITIC HEAT RESISTANCE STEEL
JP4674405B2 (en) Piezoelectric ceramic
CN109956748A (en) A lead zirconate titanate-manganese-bismuth-based perovskite-lead-based composite perovskite multi-component low-temperature sintered high-power piezoelectric ceramic and preparation method thereof
US20050085373A1 (en) Compositions for high power piezoelectric ceramics
US5788876A (en) Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
JPH06224486A (en) Polarizing method for piezoelectric ceramics
JP2002265262A (en) Piezoelectric ceramic
JP2001294482A (en) Piezoelectric ceramic
KR20060031637A (en) Piezoelectric Composition, Piezoelectric Element
JP2002321975A (en) Piezoelectric ceramic
JP3214055B2 (en) Piezoelectric ceramic composition for actuator
JP2002326870A (en) Piezoelectric ceramic
JP2003081675A (en) Piezoelectric porcelain
JP2002201068A (en) Electrostrictive material and method of manufacturing the same
JP3070799B2 (en) Polarization method for piezoelectric ceramics
JP3087924B2 (en) Method of manufacturing piezoelectric ceramic
JP3061224B2 (en) Bismuth layered compound polarization method
JP3830345B2 (en) Piezoelectric ceramic
JP2001089235A (en) Production of piezoelectric ceramics
JP2007258597A (en) Method for polarizing piezoelectric element
JPH05139828A (en) Production of piezoelectric ceramic
JP3259321B2 (en) Piezoelectric ceramic composition for actuator