[go: up one dir, main page]

JPH06223824A - Electrode of hydrogen storage alloy - Google Patents

Electrode of hydrogen storage alloy

Info

Publication number
JPH06223824A
JPH06223824A JP5072727A JP7272793A JPH06223824A JP H06223824 A JPH06223824 A JP H06223824A JP 5072727 A JP5072727 A JP 5072727A JP 7272793 A JP7272793 A JP 7272793A JP H06223824 A JPH06223824 A JP H06223824A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
nickel
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5072727A
Other languages
Japanese (ja)
Inventor
Akihiro Ogino
彰広 荻野
Nobuaki Chiba
信昭 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP5072727A priority Critical patent/JPH06223824A/en
Publication of JPH06223824A publication Critical patent/JPH06223824A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the deterioration of a battery with hydrogen storage alloy electrode due to the rise of the internal pressure at the time of quick charging, wherein the electrode is made of a hydrogen storage alloy powder provided with a composite plating consisting of fluoric resin powder and nickel. CONSTITUTION:An alloy ingot is formed from high purity rare earth element(s), Ni, Co, Mn. and Al through the high frequency melting process. The ingot is turned in fine powder, which is dispersed in an nonelectrolytic nickel bath containing fine particles of PTFE, and the alloy surface is provided with composite film plating of PTFE and nickel. A binding agent, conductive agent, and water are added to this powder of hydrogen storage alloy, followed by mixing together and adjustment of the paste. Negative electrode 1 is fabricated by applying the paste to punch metal, drying, pressing, and cutting. The negative electrode 1 is together with positive electrode 2 wound round with a separator 3 interposed, and they are inserted in a battery can 4, and a potasium hydroxide solution is poured in, followed by sealing, and thus an alkaline secondary battery is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ二次電池に用い
る水素吸蔵合金電極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in hydrogen storage alloy electrodes used in alkaline secondary batteries.

【0002】[0002]

【従来の技術】現在、可逆的に水素を吸収・放出させる
ことが可能な水素吸蔵合金を負極に用い、従来のニッケ
ル−カドミウム二次電池に用いられるニッケル酸化物を
正極として使用したニッケル−水素二次電池は、大容量
化を可能にするという点で注目されている。このニッケ
ル−水素電池の充放電時の反応は次の通りである。
2. Description of the Related Art At present, nickel-hydrogen using a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen as a negative electrode and nickel oxide used as a positive electrode in a conventional nickel-cadmium secondary battery. Secondary batteries are drawing attention because they enable large capacity. The reactions during charge / discharge of this nickel-hydrogen battery are as follows.

【0003】[0003]

【化1】 [Chemical 1]

【0004】このニッケル−水素電池では理論的にはガ
ス発生は起らないが、過充電時は次のような反応がおこ
る。
In theory, no gas is generated in this nickel-hydrogen battery, but the following reactions occur during overcharge.

【0005】[0005]

【化2】 [Chemical 2]

【0006】このように正極から酸素ガス、負極から水
素ガスが発生する。この場合ガス発生後正極から発生し
た酸素ガスは負極の水素吸蔵合金中の水素と反応し水と
なる。しかし、急速充電(大電流での充電)時は、正極
の酸素ガスの発生速度が大きく、負極中で還元しきれな
くなり、電池内の内圧が上昇する。このような問題点を
解決するために、正負極の容量バランスを調整し、負極
容量を大きくしたり、カーボン還元性の触媒として負極
に添加したりしていた。また、水素吸蔵合金電極にポリ
テトラフルオロエチレン(PTFE)を塗布して、水素
吸蔵合金電極の撥水性を向上させることにより、電極と
電解液と酸素ガスの三相界面が形成され、酸素の還元反
応を速やかに行うようにする方法など考えられている。
Thus, oxygen gas is generated from the positive electrode and hydrogen gas is generated from the negative electrode. In this case, the oxygen gas generated from the positive electrode after gas generation reacts with hydrogen in the hydrogen storage alloy of the negative electrode to become water. However, during rapid charging (charging with a large current), the generation rate of oxygen gas in the positive electrode is high, the reduction in the negative electrode is no longer possible, and the internal pressure in the battery rises. In order to solve such a problem, the capacity balance of the positive and negative electrodes is adjusted to increase the capacity of the negative electrode, or it is added to the negative electrode as a carbon reducing catalyst. Further, by coating the hydrogen storage alloy electrode with polytetrafluoroethylene (PTFE) to improve the water repellency of the hydrogen storage alloy electrode, a three-phase interface between the electrode, the electrolytic solution and oxygen gas is formed to reduce oxygen. A method for promptly performing the reaction has been considered.

【0007】さらに、水素吸蔵合金粉末に水素吸蔵・放
出特性の向上、合金粒子の崩壊・脱落の防止のため、無
電解メッキ処理を行い、メッキ被覆したマイクロカプセ
ル化水素吸蔵合金を使用し、電極を製造することも提案
されている。
Furthermore, in order to improve the hydrogen storage / release characteristics of the hydrogen storage alloy powder and prevent the alloy particles from collapsing / falling off, an electroless plating treatment is carried out, and a microcapsulated hydrogen storage alloy coated with a plating is used for the electrode. It has also been proposed to manufacture

【0008】[0008]

【発明が解決しようとする課題】しかしなから、負極容
量を大きくし酸素ガスの吸収を大とすると、電池容量自
体の低下招く。また、カーボンを触媒として負極に添加
した場合、カーボンの分散状態が悪くなると、水素吸蔵
合金粒子相互の電気的接触が悪くなり、負極容量を低下
させ、さらに水素吸蔵合金粒子の電気的接触が悪いと、
水素の吸蔵・放出に関与しない粒子が存在し、酸素との
反応を低下させ、電池の内圧を上昇させる等の問題点が
あった。またフッ素樹脂粉のディスパージョンを水素吸
蔵合金電極に塗布した場合、フッ素樹脂は絶縁性物質で
あるため電池の内部抵抗が増加する。
However, if the negative electrode capacity is increased and the oxygen gas absorption is increased, the battery capacity itself is lowered. Further, when carbon is added as a catalyst to the negative electrode, when the dispersed state of carbon deteriorates, the electrical contact between the hydrogen storage alloy particles deteriorates, the capacity of the negative electrode decreases, and the electrical contact between the hydrogen storage alloy particles deteriorates. When,
There are particles that are not involved in hydrogen absorption and desorption, which lowers the reaction with oxygen and raises the internal pressure of the battery. Further, when the dispersion of fluororesin powder is applied to the hydrogen storage alloy electrode, the fluororesin is an insulating substance, so that the internal resistance of the battery increases.

【0009】またニッケルメッキを1〜2μm行った水
素吸蔵合金を使用した場合、ペースト調整時の混練によ
り繊維化したフッ素樹脂が合金表面に被覆されたり、合
金粉粒子間に介在するので、電極の撥水性は向上する
が、メッキの効果である導電性の向上が得難い等の不都
合があった。
Further, when a hydrogen storage alloy plated with nickel of 1 to 2 μm is used, the fluororesin formed into fibers by the kneading at the time of adjusting the paste is coated on the alloy surface or intervenes between the alloy powder particles. Although the water repellency is improved, there are inconveniences such that it is difficult to improve the conductivity which is the effect of plating.

【0010】本発明はこのような従来の問題の課題を解
決するためになされたもので、急速充電(大電流の充
電)時の酸素ガスの発生、すなわち電池内圧の上昇によ
る電池の劣化を抑制し得る水素吸蔵合金電極を提供しよ
うとするものである。
The present invention has been made in order to solve the problems of the conventional problems as described above, and suppresses the generation of oxygen gas during rapid charging (charging with a large current), that is, the deterioration of the battery due to an increase in the internal pressure of the battery. It is intended to provide a hydrogen storage alloy electrode that can be used.

【0011】[0011]

【課題を解決するための手段】本発明は、無電解分散ニ
ッケルメッキ法により、フッ素樹脂粉末とニッケルとの
複合被覆メッキを形成した水素吸蔵合金粉末に、結着剤
と導電剤と水とを添加したペーストを金属基板に塗布し
てなる水素吸蔵合金電極である。
According to the present invention, a hydrogen storage alloy powder on which a composite coating plating of a fluororesin powder and nickel is formed by an electroless dispersion nickel plating method, a binder, a conductive agent and water are added. It is a hydrogen storage alloy electrode obtained by applying the added paste to a metal substrate.

【0012】[0012]

【作用】本発明の水素吸蔵合金電極は、無電解分散ニッ
ケルメッキ法により、フッ素樹脂粉末とニッケルの複合
被覆を形成することにより、水素吸蔵合金電極の表面に
均一にテフロンを分散させることができ、高撥水性かつ
導電性の良い水素吸蔵合金電極を得ることができる。
In the hydrogen storage alloy electrode of the present invention, Teflon can be uniformly dispersed on the surface of the hydrogen storage alloy electrode by forming a composite coating of fluororesin powder and nickel by the electroless dispersion nickel plating method. Thus, a hydrogen storage alloy electrode having high water repellency and good conductivity can be obtained.

【0013】[0013]

【実施例】以下本発明の実施例を示す。 実施例1 純度99.9%の希土類元素Lm(La45.1重量
%,Ce4.6重量%,Pr12.1重量%,Nd3
7.0重量%,その他の希土類元素1.1重量%)、N
iとCoとMn及びAlを構成成分とし、高周波溶解に
よって、LmNi4.0Co0.4Mn0.3Al
0.3の組成を有する合金インゴットを作成した。この
インゴットを機械粉砕により微粉化し、200mesh
パスした粉末(平均粒径約35μm)を作成する。この
合金粉末を平均粒径3μmのPTFEを含む無電解ニッ
ケル浴中に分散し、合金表面にPTFEとニッケルとの
複合被膜として厚さ2μmになるようにメッキした。こ
の時メッキ皮膜の組成は、Ni=83重量%,PTFE
=23容積%,P=9重量%となった。
EXAMPLES Examples of the present invention will be shown below. Example 1 Rare earth element Lm having a purity of 99.9% (La 45.1% by weight, Ce 4.6% by weight, Pr 12.1% by weight, Nd 3
7.0% by weight, other rare earth elements 1.1% by weight), N
i, Co, Mn, and Al as constituent components, and LmNi 4.0 Co 0.4 Mn 0.3 Al by high frequency melting
An alloy ingot having a composition of 0.3 was prepared. This ingot is pulverized by mechanical crushing to 200 mesh.
A passed powder (average particle size of about 35 μm) is prepared. This alloy powder was dispersed in an electroless nickel bath containing PTFE having an average particle size of 3 μm, and the alloy surface was plated as a composite coating of PTFE and nickel to a thickness of 2 μm. At this time, the composition of the plating film is Ni = 83% by weight, PTFE
= 23% by volume and P = 9% by weight.

【0014】負極及び正極の作製 これらの水素吸蔵合金粉末のそれぞれに、結着剤として
ポリテトラフルオロエチレン、ポリアクリル酸ナトリウ
ム及びカルボキシメチルセルロースナトリウム塩を併用
し、導電剤としてカーボンブラックならびに水を添加し
て混合することにより、ペーストを調製した。このペー
ストをパンチドメタルに塗布・乾燥・プレスし、裁断す
ることにより、負極を作製した。一方、水酸化ニッケル
及び酸化コバルトを含有するペーストを調製した。この
ペーストをニッケル焼結繊維基板に充填・乾燥・プレス
し、裁断することにより、非焼結式ニッケル酸化物正極
を作製した。
Preparation of Negative Electrode and Positive Electrode To each of these hydrogen storage alloy powders, polytetrafluoroethylene, sodium polyacrylate and carboxymethylcellulose sodium salt were used together as a binder, and carbon black and water were added as a conductive agent. A paste was prepared by mixing by mixing. The paste was applied to a punched metal, dried, pressed, and cut to prepare a negative electrode. On the other hand, a paste containing nickel hydroxide and cobalt oxide was prepared. A non-sintered nickel oxide positive electrode was prepared by filling, drying, and pressing this paste on a nickel sintered fiber substrate and cutting it.

【0015】次に図1に示すように、水素吸蔵合金電極
からなる負極1を、非焼結式ニッケル酸化物電極からな
る正極2と共にセパレータ3を介してそれぞれ捲回し、
AAサイズの電池缶4に挿入し、8規定の水酸化カリウ
ム溶液を注液し、封口し電池を作成した。前記電池缶4
の上部開口部には中央に穴6を有する正極端子を兼ねる
封口板7が絶縁ガスケット8を介して支持固定されてい
る。前記封口板7には安全弁9及び該安全弁9を保持す
るキャップ10からなる防爆機構が設けられている。な
お負極1は前記負極端子を兼ねる電池缶4内面に直接接
触して接続され、前正極2はタブ5を介して前記正極端
子を兼ねる封口板7に接続されている。
Next, as shown in FIG. 1, a negative electrode 1 made of a hydrogen storage alloy electrode is wound together with a positive electrode 2 made of a non-sintered nickel oxide electrode via a separator 3,
The battery was prepared by inserting it into an AA size battery can 4 and injecting 8N potassium hydroxide solution and sealing it. The battery can 4
A sealing plate 7 having a hole 6 in the center and also serving as a positive electrode terminal is supported and fixed via an insulating gasket 8 in the upper opening of the. The sealing plate 7 is provided with an explosion-proof mechanism including a safety valve 9 and a cap 10 that holds the safety valve 9. The negative electrode 1 is directly connected to the inner surface of the battery can 4 which also functions as the negative electrode terminal, and the front positive electrode 2 is connected through a tab 5 to a sealing plate 7 which also functions as the positive electrode terminal.

【0016】比較例 実施例1に用いた水素吸蔵合金電極をNiメッキ槽浸漬
せず、以下同様に作成した電池を比較品とした。上記実
施例、及び比較例の電池を20個づつ用意し、それぞれ
1C150%充電及び1A放電を200サイクル繰り返
し、この時の安全弁作動の有無を調査した。弁作動の有
無は充放電前後のセル重量により、重量減少の著しいも
のは弁作動有りとした。各実施例につき20個評価した
時の弁作動数を表1に示す。
Comparative Example The hydrogen storage alloy electrode used in Example 1 was not immersed in a Ni plating bath, and a battery prepared in the same manner as described below was used as a comparative product. Twenty batteries of each of the above-mentioned examples and comparative examples were prepared, and 1 C 150% charge and 1 A discharge were repeated 200 cycles, and the presence or absence of the safety valve operation at this time was investigated. The presence or absence of valve actuation depends on the cell weight before and after charging and discharging, and the one with a significant weight reduction was marked as valve actuation. Table 1 shows the number of valve actuations when 20 valves were evaluated for each example.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】表1から明らかなように、本発明の無電
解分散ニッケルメッキ法により、フッ素樹脂粉末とニッ
ケルとの複合被覆メッキをした水素吸蔵合金粉末より作
製した水素吸蔵合金電極を用いることにより、急速充電
時での電池の内圧上昇を防ぎ、サイクル寿命の長い電池
を提供することができる。
As is apparent from Table 1, the use of the hydrogen storage alloy electrode made of the hydrogen storage alloy powder which has been subjected to the composite coating plating of the fluororesin powder and nickel by the electroless dispersion nickel plating method of the present invention. As a result, it is possible to prevent an increase in the internal pressure of the battery during rapid charging and provide a battery with a long cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例であるニッケル水素二次電池の
断面図である。
FIG. 1 is a cross-sectional view of a nickel-hydrogen secondary battery that is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…負極 2…正極 3…セパレータ 6…穴 9…安全弁 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 6 ... Hole 9 ... Safety valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無電解分散ニッケルメッキ法により、フ
ッ素樹脂粉末とニッケルとの複合被覆メッキを形成した
水素吸蔵合金粉末に、結着剤と導電剤と水とを添加した
ペーストを金属基板に塗布してなる水素吸蔵合金電極。
1. A metal substrate is coated with a paste prepared by adding a binder, a conductive agent, and water to a hydrogen-absorbing alloy powder on which composite coating plating of fluororesin powder and nickel has been formed by electroless dispersed nickel plating. Hydrogen storage alloy electrode formed by.
JP5072727A 1993-01-27 1993-01-27 Electrode of hydrogen storage alloy Pending JPH06223824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5072727A JPH06223824A (en) 1993-01-27 1993-01-27 Electrode of hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5072727A JPH06223824A (en) 1993-01-27 1993-01-27 Electrode of hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH06223824A true JPH06223824A (en) 1994-08-12

Family

ID=13497683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5072727A Pending JPH06223824A (en) 1993-01-27 1993-01-27 Electrode of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH06223824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429222B2 (en) 2013-11-21 2016-08-30 Meritor Heavy Vehicle Systems Cameri Spa Drive unit assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429222B2 (en) 2013-11-21 2016-08-30 Meritor Heavy Vehicle Systems Cameri Spa Drive unit assembly

Similar Documents

Publication Publication Date Title
WO2007004703A1 (en) Nickel-hydrogen battery
JPH11162505A (en) Nickel-hydrogen battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JP3104230B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JP4187438B2 (en) Positive electrode for alkaline storage battery, alkaline storage battery, and production method thereof
JPH06223824A (en) Electrode of hydrogen storage alloy
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3567021B2 (en) Alkaline secondary battery
JP3429684B2 (en) Hydrogen storage electrode
JP3514491B2 (en) Metal oxide / hydrogen secondary batteries
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3184607B2 (en) Metal oxide / hydrogen battery
JP3343413B2 (en) Alkaline secondary battery
JP3151379B2 (en) Manufacturing method of alkaline secondary battery
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JPH0677450B2 (en) Sealed nickel-hydrogen battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2854920B2 (en) Nickel-metal hydride battery
JPH09213363A (en) Manufacture of alkali storage battery
JPH10172552A (en) Hydrogen storage alloy powder and its manufacture
JP3504350B2 (en) Manufacturing method of alkaline secondary battery
JPH07147161A (en) Metal oxide-hydrogen secondary battery
JPS62291862A (en) Enclosed nickel-hydrogen storage battery