[go: up one dir, main page]

JPH06223359A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH06223359A
JPH06223359A JP5013605A JP1360593A JPH06223359A JP H06223359 A JPH06223359 A JP H06223359A JP 5013605 A JP5013605 A JP 5013605A JP 1360593 A JP1360593 A JP 1360593A JP H06223359 A JPH06223359 A JP H06223359A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
particle size
magnetic recording
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5013605A
Other languages
Japanese (ja)
Inventor
Noriyuki Kitaori
典之 北折
Osamu Yoshida
修 吉田
Hirohide Mizuno
博英 水野
Katsumi Sasaki
克己 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP5013605A priority Critical patent/JPH06223359A/en
Publication of JPH06223359A publication Critical patent/JPH06223359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

(57)【要約】 【構成】 保磁力が1400 Oe 以上で、且つ粒径が0.12μ
m 以下の針状のコバルト被着酸化鉄と結合剤とからなる
磁性層を有する磁気記録媒体。 【効果】 高密度記録が可能となり、しかも耐久性、耐
蝕性に優れており、製造コストも格段に低い。
(57) [Summary] [Structure] Coercive force of 1400 Oe or more and particle size of 0.12μ.
A magnetic recording medium having a magnetic layer composed of a needle-shaped cobalt-coated iron oxide having a particle size of m or less and a binder. [Effect] High-density recording is possible, durability and corrosion resistance are excellent, and the manufacturing cost is significantly low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体、更に詳し
くは、磁気ディスク、磁気テープ、磁気シート等の塗布
型の磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to a coating type magnetic recording medium such as a magnetic disk, a magnetic tape or a magnetic sheet.

【0002】[0002]

【従来の技術及びその課題】塗布型の磁気記録媒体は、
磁性粉末を結合剤と有機溶剤に分散してなる磁性塗料を
ポリエステル等の基材上に塗布、乾燥して得られるもの
であり、特に高画質のビデオテープ、大容量のフロッピ
ーディスク等には磁性粉末としてメタル粒子が用いられ
ている。その理由としては、磁気エネルギーは保磁力
(Hc)×残留磁束密度(Br)で求まるが、メタル粒子は
Hcが高く、また、飽和磁化(σs )が大きいのでBrが高
くなり、高磁気エネルギーが期待できるからである。し
かしながら、メタル粒子には、 (1) 磁性粒子が化学的に不安定で錆びやすい (2) 磁性体の磁化が大きく、塗液中で粒子が凝集しやす
いため、分散が難しい (3) また、粒子が凝集しやすいため、ノイズレベルが高
い 等の問題があり、これらの問題点は充分には解決されて
いない。
2. Description of the Related Art A coating type magnetic recording medium is
It is obtained by coating a magnetic coating material, which is made by dispersing magnetic powder in a binder and an organic solvent, on a substrate such as polyester and drying it. Especially for high-quality video tapes, large-capacity floppy disks, etc. Metal particles are used as the powder. The reason is that the magnetic energy can be calculated by the coercive force (Hc) × residual magnetic flux density (Br),
This is because Hc is high and the saturation magnetization (σs) is large, so that Br is high and high magnetic energy can be expected. However, in metal particles, (1) magnetic particles are chemically unstable and easily rusted (2) magnetic particles have a large magnetization, and particles are easily aggregated in the coating liquid, making it difficult to disperse (3) Since the particles easily aggregate, there are problems such as high noise level, and these problems have not been sufficiently solved.

【0003】また、高密度記録を行なうためには、磁性
粉末の粒子径を小さくする必要がある。なぜなら、S/N
は S/N∝ (1/Vp)1/2〔ここでVpは粒子の体積〕であ
り、高S/N を得るためには粒径を小さくする必要がある
からである。しかしながら、粒子が小さくなると、メタ
ル粉末の場合σs が極度に低下する。これは比表面積が
大きくなることによる熱ゆらぎのためである。また、粒
径を小さくすると耐食性が悪くなるため、耐食性を保持
するために更にメタル粒子の表面を酸化させる必要があ
り、その結果σs が低下することに起因する。このよう
に、耐食性を向上させるため、メタル粉末の表面を酸化
させると、一般にσsは125 (emu/g) 以下になってしま
う。
Further, in order to perform high density recording, it is necessary to reduce the particle size of the magnetic powder. Because S / N
Is S / N∝ (1 / Vp) 1/2 [where Vp is the volume of the particles], and it is necessary to reduce the particle size in order to obtain high S / N. However, as the particles become smaller, σs becomes extremely low in the case of metal powder. This is because of thermal fluctuation due to the increase in specific surface area. Further, if the particle size is reduced, the corrosion resistance deteriorates, so that it is necessary to further oxidize the surface of the metal particles in order to maintain the corrosion resistance, and as a result, σs decreases. As described above, when the surface of the metal powder is oxidized to improve the corrosion resistance, σs generally becomes 125 (emu / g) or less.

【0004】また、高密度記録を行なう場合には、必然
的に記録波長が短くなることもメタル粉末には障害とな
る。例えば、記録波長が 0.7μm 以下であるような高密
度記録をする場合にも、前述したように、磁気記録媒体
に用いる磁性粉末の粒径はできるだけ小さい方が好まし
く、0.2 μm 以下である必要があり、特に0.12μm 以下
が好ましい。ところが、メタル粉末の粒径を0.12μm 以
下にした場合、σs が低下して110 (emu/g) 程度とな
り、高密度化には対応できなくなる。
Further, when high-density recording is performed, the recording wavelength inevitably becomes short, which is an obstacle to the metal powder. For example, even when performing high-density recording with a recording wavelength of 0.7 μm or less, it is preferable that the particle size of the magnetic powder used in the magnetic recording medium is as small as possible, and it should be 0.2 μm or less, as described above. Yes, and particularly preferably 0.12 μm or less. However, when the particle size of the metal powder is 0.12 μm or less, σs decreases to about 110 (emu / g), which makes it impossible to cope with high density.

【0005】このように、メタル粉末を使用した高密度
記録には未だ問題点があり、コストの面からも更なる改
良が要望されている。また、メタル粉末以外の磁性粉末
では高密度記録は充分達成されていない。
As described above, the high density recording using the metal powder still has a problem, and further improvement is demanded in terms of cost. Moreover, high density recording has not been sufficiently achieved with magnetic powders other than metal powders.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、磁性粉末として、高保
磁力で且つ非常に微細な粒径の針状コバルト被着酸化鉄
を使用することにより、高密度記録が可能で且つ耐久性
にも優れ、しかも製造コストがメタル粉末に比べて格段
に安い磁気記録媒体が得られることを見出し、本発明を
完成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have used acicular cobalt-coated iron oxide having a high coercive force and a very fine particle size as the magnetic powder. By doing so, it was found that a magnetic recording medium capable of high-density recording, excellent in durability, and significantly lower in manufacturing cost than metal powder can be obtained, and the present invention has been completed.

【0007】すなわち本発明は、保磁力が1400 Oe 以上
で且つ粒径が0.12μm 以下の針状のコバルト被着酸化鉄
と結合剤とからなる磁性層を基材上に有する磁気記録媒
体を提供するものである。
That is, the present invention provides a magnetic recording medium having a magnetic layer, which has a coercive force of 1400 Oe or more and a particle size of 0.12 μm or less and is composed of acicular iron oxide coated with cobalt and a binder, on a substrate. To do.

【0008】本発明においては、磁性粉末として保磁力
が1400 Oe 以上で、且つ粒径が0.12μm 以下の針状のコ
バルト被着酸化鉄が使用される。ここで、粒径が0.12μ
m 以下とは平均長軸長が0.12μm 以下であることを意味
する。コバルト被着酸化鉄としては、主として、Co−γ
−Fe2O3、Co−γ−Fe3O4、Co−γ−FeOx(xは1.33〜1.
50)が使用される。斯かるコバルト被着酸化鉄の保磁力
が1400 Oe 以上でないと、最終製品において高い磁気エ
ネルギーが得られない。また、コバルト被着酸化鉄の粒
径が0.12μm 以下でないと高密度記録化、高S/N 化が達
成できない。また、より高エネルギーを得るためには、
コバルト被着酸化鉄の飽和磁化が72 emu/g以上が好まし
く、高密度化、高σs を得るためには針状比が短軸長:
長軸長=1:5〜1:10が好ましい。通常、本発明に係
るコバルト被着酸化鉄は、磁性層を形成するための磁性
塗料中に20〜40重量%程度配合される。
In the present invention, needle-shaped cobalt-coated iron oxide having a coercive force of 1400 Oe or more and a particle size of 0.12 μm or less is used as the magnetic powder. Here, the particle size is 0.12μ
“M or less” means that the average major axis length is 0.12 μm or less. The cobalt-coated iron oxide is mainly Co-γ
-Fe 2 O 3 , Co-γ-Fe 3 O 4 , Co-γ-FeO x (x is 1.33 to 1.
50) is used. If the coercive force of the cobalt-deposited iron oxide is not less than 1400 Oe, high magnetic energy cannot be obtained in the final product. Also, if the particle size of the iron oxide coated with cobalt is not more than 0.12 μm, high density recording and high S / N cannot be achieved. Also, in order to obtain higher energy,
The saturation magnetization of cobalt-coated iron oxide is preferably 72 emu / g or more, and in order to obtain high density and high σs, the acicular ratio has a short axis length:
The major axis length = 1: 5 to 1:10 is preferable. Usually, the cobalt-coated iron oxide according to the present invention is mixed in the magnetic coating material for forming the magnetic layer in an amount of about 20 to 40% by weight.

【0009】本発明に係る上記の如き保磁力が1400 Oe
以上で、且つ粒径が0.12μm 以下の針状のコバルト被着
酸化鉄は従来磁気記録媒体の製造には用いられておら
ず、通常のコバルト被着酸化鉄に比べて粒径が小さいに
も関わらず、非常に高い保磁力を有するものである。こ
のような特性を有するコバルト被着酸化鉄であれば、Co
−ドープ型、Co−吸着型、表面Co層生成型等のいずれも
が使用可能であり、コバルトの被着量も特に限定されな
い。
The above-mentioned coercive force according to the present invention is 1400 Oe.
The needle-shaped cobalt-adhered iron oxide particles having a particle size of 0.12 μm or less have not been used in the conventional production of magnetic recording media, and have a smaller particle size than ordinary cobalt-coated iron oxide particles. Nevertheless, it has a very high coercive force. If the cobalt-coated iron oxide has such characteristics, Co
Any of a -doped type, a Co-adsorption type, a surface Co layer generation type and the like can be used, and the amount of cobalt deposited is not particularly limited.

【0010】なお、本発明の磁気記録媒体には、上記の
如き本発明に係るコバルト被着酸化鉄のコバルト被着酸
化鉄や、通常磁気記録媒体に用いられる磁性金属粉末、
例えばFe、Fe−Co合金、Fe−Ni−Co合金、Co−Ni合金、
Co−Ni−P 合金、Fe−Ni−Zn合金等の粉末を少量用いる
ことも可能である。
The magnetic recording medium of the present invention includes a cobalt-coated iron oxide of the cobalt-coated iron oxide according to the present invention as described above, a magnetic metal powder usually used in a magnetic recording medium,
For example, Fe, Fe-Co alloy, Fe-Ni-Co alloy, Co-Ni alloy,
It is also possible to use a small amount of powder such as Co-Ni-P alloy and Fe-Ni-Zn alloy.

【0011】また、本発明に係る磁性塗料の結合剤とし
ては、ウレタン樹脂、特に SO3Na基等の極性基を含有す
るポリウレタン樹脂、塩化ビニル−酢酸ビニル共重合
体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル
−アクリロニトリル共重合体等の塩化ビニル系共重合体
であって、特に SO3Na基等の極性基を含有する塩化ビニ
ル共重合体、ブタジエン−アクリロニトリル共重合体、
ポリアミド樹脂、ポリビニルブチラール、セルロース誘
導体(セルロースアセテートブチレート、セルロースプ
ロピオネート、ニトロセルロース等)、スチレン−ブタ
ジエン共重合体、ポリエステル樹脂、各種の合成ゴム
系、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミ
ン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系反
応樹脂、高分子量ポリエステル樹脂とイソシアネートプ
レポリマーの混合物、ポリエステルポリオールとポリイ
ソシアネートの混合物、尿素ホルムアルデヒド樹脂、低
分子量グリコール/高分子量ジオール/イソシアネート
の混合物、及びこれらの混合物等が例示される。通常、
結合剤は磁性塗料中に 3.0〜10.0重量%程度配合され
る。
Further, as the binder of the magnetic paint according to the present invention, a urethane resin, particularly a polyurethane resin containing a polar group such as SO 3 Na group, a vinyl chloride-vinyl acetate copolymer, a vinyl chloride-vinylidene chloride copolymer is used. Polymers, vinyl chloride-copolymers such as vinyl chloride-acrylonitrile copolymers, especially vinyl chloride copolymers containing polar groups such as SO 3 Na groups, butadiene-acrylonitrile copolymers,
Polyamide resin, polyvinyl butyral, cellulose derivative (cellulose acetate butyrate, cellulose propionate, nitrocellulose, etc.), styrene-butadiene copolymer, polyester resin, various synthetic rubbers, phenol resin, epoxy resin, urea resin, melamine Resin, phenoxy resin, silicone resin, acrylic reaction resin, mixture of high molecular weight polyester resin and isocyanate prepolymer, mixture of polyester polyol and polyisocyanate, urea formaldehyde resin, mixture of low molecular weight glycol / high molecular weight diol / isocyanate, and these And the like. Normal,
The binder is mixed in the magnetic paint in an amount of about 3.0 to 10.0% by weight.

【0012】有機溶媒としては、シクロヘキサノン、メ
チルエチルケトン、メチルイソブチルケトン、酢酸エチ
ル、ベンゼン、トルエン、キシレン、ジメチルスルホキ
シド、テトラヒドロフラン、ジオキサン等、使用する結
合剤樹脂を溶解するのに適した溶剤が特に制限されるこ
となく単独又は二種以上混合して使用される。通常、有
機溶媒は磁性塗料中に20〜80重量%程度配合される。
As the organic solvent, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, benzene, toluene, xylene, dimethyl sulfoxide, tetrahydrofuran, dioxane, etc., which are suitable for dissolving the binder resin used, are particularly limited. It is used alone or as a mixture of two or more kinds without being used. Usually, the organic solvent is mixed in the magnetic coating material in an amount of about 20 to 80% by weight.

【0013】なお、磁性塗料中には、通常使用されてい
る各種添加剤、例えば分散剤、研磨剤、潤滑剤などを適
宜に添加使用してもよい。分散剤としては、レシチン、
ノニオン系界面活性剤、アニオン系界面活性剤、カチオ
ン系界面活性剤等が使用できる。研磨剤としては、α−
アルミナ、溶融アルミナ、炭化ケイ素、酸化クロム(Cr2
O3) 、コランダム、ダイヤモンド等の平均粒子径0.05〜
0.5 μの微粉末が使用でき、通常、前記したような結合
剤100 重量部に対し0.5 〜100 重量部加えられる。ま
た、潤滑剤としては、各種のポリシロキサン等のシリコ
ーンオイル、グラファイト、二硫化モリブデン等の無機
粉末、ポリエチレン、ポリテトラフルオロエチレン等の
プラスチック微粉末、高級脂肪酸、高級アルコール、高
級脂肪酸エステル、フルオロカーボン類などが前述した
ような結合剤100 重量部に対して0.1〜50重量部の
割合で添加される。
In addition, various additives that are usually used, such as a dispersant, an abrasive and a lubricant, may be appropriately added and used in the magnetic paint. As the dispersant, lecithin,
Nonionic surfactants, anionic surfactants, cationic surfactants and the like can be used. As an abrasive, α-
Alumina, fused alumina, silicon carbide, chromium oxide (Cr 2
O 3 ), corundum, diamond, etc. average particle size 0.05 ~
Fine powder of 0.5 μ can be used, and usually 0.5 to 100 parts by weight is added to 100 parts by weight of the binder as described above. Examples of lubricants include silicone oils such as various polysiloxanes, graphite, inorganic powders such as molybdenum disulfide, fine plastic powders such as polyethylene and polytetrafluoroethylene, higher fatty acids, higher alcohols, higher fatty acid esters, and fluorocarbons. And the like are added in an amount of 0.1 to 50 parts by weight based on 100 parts by weight of the binder as described above.

【0014】本発明の磁気記録媒体に用いられる基材と
しては、合成樹脂(例えばポリエステル、ポリアミド、
ポリオレフィン、セルロース系誘導体)、非磁性の金
属、ガラス、セラミック、紙等が挙げられ、その形態
は、フィルム、テープ、シート、カード、ディスク等で
使用される。
The base material used in the magnetic recording medium of the present invention is a synthetic resin (eg, polyester, polyamide,
Examples thereof include polyolefins, cellulose derivatives), non-magnetic metals, glass, ceramics, papers, etc., and their forms are used in films, tapes, sheets, cards, disks and the like.

【0015】本発明の磁気記録媒体の磁性層の厚さは、
0.3〜5μm程度である。また、本発明の磁気記録媒体に
はバックコート層、保護層、アンダーコート層、潤滑層
等が形成されていてもよく、この場合通常の材料を用い
て常法により形成される。
The thickness of the magnetic layer of the magnetic recording medium of the present invention is
It is about 0.3 to 5 μm. Further, the magnetic recording medium of the present invention may have a back coat layer, a protective layer, an undercoat layer, a lubricating layer, etc. formed, and in this case, it is formed by a usual method using a usual material.

【0016】[0016]

【実施例】以下実施例にて本発明を更に説明するが、本
発明はこれらの実施例に限定されるものではない。
The present invention will be further described in the following examples, but the present invention is not limited to these examples.

【0017】実施例1 針状で平均長軸長が0.10μm 、平均短軸長が0.010 μm
、σs =75emu/g のCo−γ−Fe2O3 粉末〔保磁力(H
c)=1400 (Oe) 、軸比=1:10(短軸長:長軸長、以
下同じ)〕と、以下に示す各成分を用いて、これらをサ
ンドミルにて塗料化した。 <磁性塗料成分> ・Co−γ−Fe2O3 粉末 24.6重量% ・塩化ビニル系樹脂 1.9重量% ・ポリウレタン系樹脂 2.8重量% ・イソシアネート 0.7重量% ・Al2O3 (粒径0.15μm ) 3.0重量% ・脂肪酸エステル 0.8重量% ・トルエン 29.8重量% ・メチルエチルケトン 29.8重量% ・シクロヘキサノン 6.6重量%。
Example 1 Needle-shaped and having an average major axis length of 0.10 μm and an average minor axis length of 0.010 μm
, S = 75 emu / g Co-γ-Fe 2 O 3 powder [coercive force (H
c) = 1400 (Oe), axial ratio = 1:10 (minor axis length: major axis length, the same applies hereinafter)], and each of the components shown below was used to form a paint in a sand mill. <Magnetic paint component> -Co-γ-Fe 2 O 3 powder 24.6% by weight-Vinyl chloride resin 1.9% by weight-Polyurethane resin 2.8% by weight-Isocyanate 0.7% by weight-Al 2 O 3 (particle size 0.15 μm) 3.0 % By weight-fatty acid ester 0.8% by weight-toluene 29.8% by weight-methyl ethyl ketone 29.8% by weight-cyclohexanone 6.6% by weight.

【0018】次いで、上記の磁性塗料を、ダイレクトグ
ラビア法により乾燥後の厚さが 2.9μm になるように厚
さ10μm のポリエチレンテレフタレートフィルム上に塗
布した。次いでカーボンを主成分とする塗料を裏面に乾
燥後の厚さが 0.5μm になるように塗布し乾燥した。こ
のフィルムを8mm幅のテープ状に裁断し、8mmカセット
ケースに入れて、市販の8mmVTR装置をノイズメータ
ーに接続し、Y-SN、C-SN (AM、PM) を測定し(記録波長
0.7μm )、市販のレファレンステープ(ソニー (株)
製)と比較してdB単位で表示した。また耐久性及び耐蝕
性を測定した。耐久性としてスチル耐久性を測定し、目
安とした。スチル耐久性は、上記の装置で1時間スチル
状態とし、出力の低下を測定した。耐蝕性は上記の磁気
テープを60℃、90%RHの条件下に1週間放置した後の飽
和磁束密度の減少率(ΔBs)を測定し、目安とした。こ
れらの結果を表1に示す。
Next, the above magnetic paint was applied onto a polyethylene terephthalate film having a thickness of 10 μm by the direct gravure method so that the thickness after drying was 2.9 μm. Next, a coating material containing carbon as a main component was applied to the back surface so that the thickness after drying was 0.5 μm, and dried. This film is cut into a tape with a width of 8 mm, placed in an 8 mm cassette case, a commercially available 8 mm VTR device is connected to the noise meter, and Y-SN and C-SN (AM, PM) are measured (recording wavelength
0.7 μm), commercially available reference tape (Sony Corporation)
It is displayed in dB as compared with (made by). The durability and corrosion resistance were also measured. Still durability was measured as the durability and used as a guide. The still durability was measured as a still state for 1 hour with the above apparatus, and the decrease in output was measured. The corrosion resistance was determined by measuring the decrease rate (ΔBs) of the saturation magnetic flux density after leaving the above magnetic tape for 1 week at 60 ° C. and 90% RH. The results are shown in Table 1.

【0019】実施例2 実施例1において、σs =78emu/g 、平均長軸長=0.12
μm 、軸比=1:5、Hc=1450 (Oe) の針状Co−γ−Fe
2O3 粉末を用いた以外は、実施例1と同様に磁気テープ
を製造し、同様の試験を行なった。その結果を表1に示
す。
Example 2 In Example 1, σ s = 78 emu / g, average major axis length = 0.12
Needle-like Co-γ-Fe with μm, axial ratio = 1: 5, Hc = 1450 (Oe)
A magnetic tape was manufactured in the same manner as in Example 1 except that 2 O 3 powder was used, and the same test was performed. The results are shown in Table 1.

【0020】実施例3 実施例1において、σs =72emu/g 、平均長軸長=0.08
μm 、軸比=1:8、Hc=1500 (Oe) の針状Co−γ−Fe
2O3 粉末を用いた以外は、実施例1と同様に磁気テープ
を製造し、同様の試験を行なった。その結果を表1に示
す。
Example 3 In Example 1, σ s = 72 emu / g, average major axis length = 0.08
Needle-like Co-γ-Fe with μm, axial ratio = 1: 8, Hc = 1500 (Oe)
A magnetic tape was manufactured in the same manner as in Example 1 except that 2 O 3 powder was used, and the same test was performed. The results are shown in Table 1.

【0021】比較例1 実施例1において、σs =68emu/g 、平均長軸長=0.19
μm 、軸比=1:10、Hc=1400 (Oe) の針状Co−γ−Fe
2O3 粉末を用いた以外は、実施例1と同様に磁気テープ
を製造し、同様の試験を行なった。その結果を表1に示
す。
Comparative Example 1 In Example 1, σs = 68 emu / g, average major axis length = 0.19.
Needle-like Co-γ-Fe with μm, axial ratio = 1: 10, Hc = 1400 (Oe)
A magnetic tape was manufactured in the same manner as in Example 1 except that 2 O 3 powder was used, and the same test was performed. The results are shown in Table 1.

【0022】比較例2 実施例1において、σs =74emu/g 、平均長軸長=0.11
μm 、軸比=1:4、Hc=1350 (Oe) の針状Co−γ−Fe
2O3 粉末を用いた以外は、実施例1と同様に磁気テープ
を製造し、同様の試験を行なった。その結果を表1に示
す。
Comparative Example 2 In Example 1, σ s = 74 emu / g, average major axis length = 0.11
Needle-like Co-γ-Fe with μm, axial ratio = 1: 4, Hc = 1350 (Oe)
A magnetic tape was manufactured in the same manner as in Example 1 except that 2 O 3 powder was used, and the same test was performed. The results are shown in Table 1.

【0023】比較例3 実施例1において、σs =98emu/g 、平均長軸長=0.12
μm 、軸比=1:8、Hc=1500 (Oe) の針状メタル粒子
を用いた以外は、実施例1と同様に磁気テープを製造
し、同様の試験を行なった。その結果を表1に示す。
Comparative Example 3 In Example 1, σ s = 98 emu / g, average major axis length = 0.12
A magnetic tape was produced in the same manner as in Example 1 except that acicular metal particles having a particle size of μm, an axial ratio of 1: 8, and Hc of 1500 (Oe) were used, and the same test was conducted. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例4 実施例1で得られた磁性塗料を厚さ75μm の PET(ポリ
エチレンテレフタレート)フィルムにランダムに配向さ
せて乾燥塗膜の厚さが2.0 μm となるように塗布した。
その後ディスク状に打ち抜き、シェルに入れて3.5 イン
チのフロッピーディスクを作製した。このフロッピーデ
ィスクの電磁変換特性を評価し、結果は表2に示す。
Example 4 The magnetic coating material obtained in Example 1 was randomly oriented on a PET (polyethylene terephthalate) film having a thickness of 75 μm and applied so that the dry coating film had a thickness of 2.0 μm.
After that, it was punched out into a disk and put into a shell to make a 3.5 inch floppy disk. The electromagnetic conversion characteristics of this floppy disk were evaluated, and the results are shown in Table 2.

【0026】比較例4 比較例3で得られた磁性塗料を用い、実施例4と同様に
フロッピーディスクを作製し、その電磁変換特性を評価
した。結果を表2に示す。
Comparative Example 4 Using the magnetic coating material obtained in Comparative Example 3, a floppy disk was prepared in the same manner as in Example 4, and its electromagnetic conversion characteristics were evaluated. The results are shown in Table 2.

【0027】比較例5 比較例3において、メタル粒子の代わりに、Hc=1300(O
e)、粒径=0.05μm の六角板状Baフェライト粒子を用い
て磁性塗料を調製し、これを用いて実施例4と同様にフ
ロッピーディスクを作製し、その電磁変換特性を評価し
た。結果を表2に示す。
Comparative Example 5 In Comparative Example 3, Hc = 1300 (O
e), a magnetic coating material was prepared using hexagonal plate-shaped Ba ferrite particles having a particle size of 0.05 μm, and a floppy disk was prepared in the same manner as in Example 4 and its electromagnetic conversion characteristics were evaluated. The results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】ここで、実用的に要求される基準として
は、10kBPIは10μV/μm 以上、O/Wは-28.0 dB以下、
消磁率は40%以下であり、本発明の磁気記録媒体は何れ
もこれをクリヤーしている。
Here, as practically required standards, 10 kBPI is 10 μV / μm or more, O / W is −28.0 dB or less,
The demagnetization rate is 40% or less, and all the magnetic recording media of the present invention clear this.

フロントページの続き (72)発明者 佐々木 克己 栃木県芳賀郡市貝町大字赤羽2606番地 花 王株式会社情報科学研究所内Front Page Continuation (72) Inventor Katsumi Sasaki 2606 Akabane, Kaigai-cho, Haga-gun, Tochigi Kao Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 保磁力が1400 Oe 以上で且つ粒径が0.12
μm 以下の針状のコバルト被着酸化鉄と結合剤とからな
る磁性層を基材上に有する磁気記録媒体。
1. A coercive force of 1400 Oe or more and a grain size of 0.12.
A magnetic recording medium having, on a substrate, a magnetic layer composed of a needle-shaped cobalt-coated iron oxide having a particle size of not more than μm and a binder.
【請求項2】 前記コバルト被着酸化鉄の飽和磁化が72
emu/g以上であり、針状比が短軸長:長軸長=1:5〜
1:10の範囲である請求項1記載の磁気記録媒体。
2. The saturation magnetization of the cobalt-coated iron oxide is 72.
emu / g or more, and the acicular ratio is minor axis length: major axis length = 1: 5
The magnetic recording medium according to claim 1, wherein the range is 1:10.
JP5013605A 1993-01-29 1993-01-29 Magnetic recording medium Pending JPH06223359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5013605A JPH06223359A (en) 1993-01-29 1993-01-29 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5013605A JPH06223359A (en) 1993-01-29 1993-01-29 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06223359A true JPH06223359A (en) 1994-08-12

Family

ID=11837870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5013605A Pending JPH06223359A (en) 1993-01-29 1993-01-29 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06223359A (en)

Similar Documents

Publication Publication Date Title
WO1983002520A1 (en) Disc-shaped magnetic recording medium
US7115331B2 (en) Magnetic recording medium having narrow pulse width characteristics
JP3864339B2 (en) Magnetic tape
US5094904A (en) Magnetic recording medium
JPH06223359A (en) Magnetic recording medium
JP3852198B2 (en) Magnetic recording medium
JPH06111282A (en) Magnetic recording medium
JPH06349051A (en) Magnetic recording medium
JPH06223360A (en) Magnetic recording medium
JP2722532B2 (en) Magnetic recording media
JPH08102035A (en) Magnetic recording medium, its production and device therefor
JPH06349052A (en) Magnetic recording medium
JP2942650B2 (en) Magnetic recording media
EP0623919B1 (en) Magnetic recording medium
JP3850106B2 (en) Magnetic recording medium
JPH0798847A (en) Magnetic recording medium
JP3033983B2 (en) Manufacturing method of magnetic recording medium
JPH0719366B2 (en) Magnetic recording medium
JP3512048B2 (en) Magnetic recording medium and method for manufacturing the same
JP2825263B2 (en) Magnetic recording media
JPH0729155A (en) Magnetic recording medium
JPH0773452A (en) Magnetic recording medium
JPH04106719A (en) Magnetic recording medium
JPH0785458A (en) Magnetic recording medium
JP2002025038A (en) Magnetic recording media