JPH06221836A - Surface defect inspection device - Google Patents
Surface defect inspection deviceInfo
- Publication number
- JPH06221836A JPH06221836A JP994193A JP994193A JPH06221836A JP H06221836 A JPH06221836 A JP H06221836A JP 994193 A JP994193 A JP 994193A JP 994193 A JP994193 A JP 994193A JP H06221836 A JPH06221836 A JP H06221836A
- Authority
- JP
- Japan
- Prior art keywords
- light
- defect
- line sensor
- reference signal
- threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007547 defect Effects 0.000 title claims abstract description 120
- 238000007689 inspection Methods 0.000 title claims description 42
- 239000002344 surface layer Substances 0.000 claims description 12
- 238000012935 Averaging Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 230000002950 deficient Effects 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 14
- 230000003287 optical effect Effects 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 12
- 238000000605 extraction Methods 0.000 abstract description 8
- 238000012545 processing Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 19
- 238000000576 coating method Methods 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 238000005070 sampling Methods 0.000 description 10
- 238000009499 grossing Methods 0.000 description 9
- 230000004069 differentiation Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012887 quadratic function Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、表面欠陥検査装置にか
かり、特に複写機,レーザープリンタ等の画像出力装置
に用いられる感光体の円周表面の欠陥を精度よく検出で
きるようにした表面欠陥検査装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface defect inspection apparatus, and more particularly to a surface defect capable of accurately detecting a defect on a circumferential surface of a photoconductor used in an image output device such as a copying machine or a laser printer. Regarding inspection equipment.
【0002】[0002]
【従来の技術】最近の複写機,レーザープリンタ等の画
像出力装置に用いられる感光体は、基材の上に表面層と
して有機感光体を被覆してなる構造を有したものが多
い。この種の有機感光体の欠陥には、溶剤を塗布する際
に発生する色むらや異物混入によるものと、感光体とし
て製造された後に発生した機械傷によるものとがある。2. Description of the Related Art In recent years, many photoconductors used in image output devices such as copying machines and laser printers have a structure in which an organic photoconductor is coated as a surface layer on a base material. Defects of this type of organic photoconductor include one caused by color unevenness and contamination of foreign substances which occur when a solvent is applied, and one caused by mechanical scratches produced after being manufactured as a photoconductor.
【0003】これらの欠陥は出力した画像の画質劣化と
なって現れ、特に溶剤の塗布むらによる欠陥は、ライト
レンズ複写機の中間調画像の形成に影響する。また、機
械傷による欠陥と塗布むらによる欠陥には、それぞれ特
徴としてラインセンサの受光素子方向と垂直方向に連続
して発生した帯状欠陥となるものがある。機械傷による
帯状欠陥は、感光体ドラムをドラムユニットとして組み
立てられたときのブレードクリーニングにより発生する
ラインセンサの受光素子方向と垂直方向に連続して発生
する。塗布工程での帯状欠陥は、塗布液からのドラムの
引き上げ時の振動などによるもので発生する。These defects appear as deterioration in the quality of the output image. In particular, defects due to uneven coating of the solvent affect the formation of halftone images in the light lens copying machine. Further, the defects due to mechanical scratches and the defects due to coating unevenness each have a characteristic that they become strip defects continuously generated in the direction perpendicular to the light receiving element direction of the line sensor. The band-shaped defects due to mechanical scratches occur continuously in the direction perpendicular to the light receiving element direction of the line sensor, which is generated by blade cleaning when the photosensitive drum is assembled as a drum unit. The band-like defects in the coating process are caused by vibrations when the drum is pulled up from the coating liquid.
【0004】図7は本出願人が既に出願した表面欠陥検
査装置の概念図であって、1はハロゲン光源等を備えた
投光器、2は投光器1から投射されたスリット光、3は
被検査体である感光体ドラム、4は感光体ドラム3の表
面の欠陥によって散乱された散乱光を集光する光学系、
5は上記散乱光を受光するラインセンサ、5aはライン
センサの画素列であり、例えば5000画素から形成さ
れている。そして、6はラインセンサの受光視野で、そ
の幅6aは約70μmである。FIG. 7 is a conceptual diagram of a surface defect inspection apparatus already filed by the present applicant, in which 1 is a light projector equipped with a halogen light source and the like, 2 is slit light projected from the light projector 1, and 3 is an object to be inspected. Is a photoconductor drum 4, which is an optical system for collecting scattered light scattered by defects on the surface of the photoconductor drum 3,
Reference numeral 5 is a line sensor that receives the scattered light, and reference numeral 5a is a pixel array of the line sensor, which is formed of, for example, 5000 pixels. 6 is a light-receiving visual field of the line sensor, and its width 6a is about 70 μm.
【0005】感光体ドラム3は、その全表面を走査する
ために、一定速度で矢印7の方向に1回転させられる。
これによって、副走査が行われる。一方、上記ラインセ
ンサ5は受光した情報を矢印8の方向に走査して出力す
る。これによって、主走査が行われる。上記副走査およ
び主走査に関し、既存の副走査は感光体ドラム3を5秒
で1回転させる割合で行い、主走査の周期は1m秒で行
っていた。この様な走査では、感光体ドラム3の軸方向
と平行な方向の線傷や打痕等の点傷はかなり精度よく検
出することができるが、円周方向傷は検出精度が低い。The photosensitive drum 3 is rotated once in the direction of arrow 7 at a constant speed in order to scan the entire surface thereof.
As a result, the sub-scan is performed. On the other hand, the line sensor 5 scans the received information in the direction of the arrow 8 and outputs it. As a result, main scanning is performed. Regarding the sub-scanning and the main scanning, the existing sub-scanning is performed at a rate of rotating the photosensitive drum 3 once in 5 seconds, and the main scanning period is 1 ms. With such scanning, line scratches and point scratches such as dents in the direction parallel to the axial direction of the photosensitive drum 3 can be detected with high accuracy, but circumferential scratches have low detection accuracy.
【0006】そこで、副走査の速度を一定としたまま主
走査の速度を遅くし、その周期を例えば6m秒とするこ
とで主走査方向の情報を間引きし、副走査方向である円
周方向傷を強調することになり、ラインセンサ5の出力
信号から感光体ドラムの円周方向傷も精度良く検出する
ことができる。図8は上記図7で説明した表面欠陥検査
装置の欠陥検出方法の説明図であって、(a)はライン
センサを、(b)は感光体ドラムの模式図である。Therefore, the speed of the main scanning is slowed down while keeping the speed of the sub scanning constant, and the period is set to, for example, 6 msec to thin out the information in the main scanning direction. Therefore, the flaw in the circumferential direction of the photoconductor drum can be accurately detected from the output signal of the line sensor 5. 8A and 8B are explanatory views of the defect detection method of the surface defect inspection apparatus described in FIG. 7, in which FIG. 8A is a line sensor and FIG. 8B is a schematic view of a photosensitive drum.
【0007】そして、11は感光体ドラム3に付いた円
周傷、12は感光体ドラム3の軸方向と平行な方向に付
いた横線傷、図7と同一符号は同一部分に対応する。同
図において、感光体ドラム3の円周長を250mmとす
ると、感光体ドラム32を5秒で1回転されている状態
で、主走査周期を1m秒とすると、この主走査周期の間
に感光体ドラム3の表面は副走査方向に約50μm移動
することになる。Reference numeral 11 denotes a circumferential scratch on the photosensitive drum 3, 12 is a horizontal scratch on the photosensitive drum 3 in a direction parallel to the axial direction, and the same reference numerals as those in FIG. 7 correspond to the same portions. In the figure, when the circumferential length of the photosensitive drum 3 is 250 mm, the main scanning period is 1 msec while the photosensitive drum 32 is rotated once in 5 seconds. The surface of the body drum 3 moves about 50 μm in the sub-scanning direction.
【0008】例えば、感光体ドラム3上の主走査の開始
点をpとし、1主走査の終了点をq 1 とすると、副走査
方向に計ったp−q1 間の長さは約50μmとなる。こ
れに対して、主走査方向の周期を約6m秒にする(つま
り、サンプリング比率を6分の1に粗くする)と、この
主走査周期の間に感光体ドラム3の表面は副走査方向に
約300μm移動する。For example, start of main scanning on the photosensitive drum 3.
Let p be the point and q be the end point of one main scan. 1Then subscan
Pq measured in the direction1The length between them is about 50 μm. This
On the other hand, the cycle in the main scanning direction is set to about 6 msec.
And make the sampling ratio coarser to 1/6)
During the main scanning period, the surface of the photoconductor drum 3 moves in the sub scanning direction.
Move about 300 μm.
【0009】すなわち、感光体ドラム3上の主走査の開
始点をp、1主走査の終了点をq2とすると、p−q2
間の長さは約300μmとなる。ここで、ラインセンサ
5の画素列5aが受光する信号に注目すると、第n+1
番目の画素は円周傷11を視野とし、第n+3,第n+
4盤面の画素は横線傷12を視野とすると、副走査方向
の移動距離が長くなるので、主走査周期毎に第n+1番
目の画素には円周傷11からの散乱光が連続して入射し
て蓄積されるのに対し、第n+3番目,第n+4番目の
画素には横線傷12からの散乱光は連続しては入射しな
い。That is, if the starting point of the main scanning on the photosensitive drum 3 is p and the ending point of the main scanning is q2, p−q 2
The length between them is about 300 μm. Here, focusing on the signal received by the pixel column 5a of the line sensor 5,
The th pixel has the visual field of the circumferential wound 11, and has the n + 3th and the n + th
When the horizontal line scratch 12 is used as a field of view for the pixels on the fourth board, the moving distance in the sub-scanning direction becomes long. Therefore, the scattered light from the circumferential scratch 11 continuously enters the (n + 1) th pixel in each main scanning cycle. However, the scattered light from the lateral ray flaw 12 does not continuously enter the n + 3th pixel and the n + 4th pixel.
【0010】したがって、円周傷11からの散乱光が第
n+1番目の画素に入射して蓄積される量は、横線傷1
2からの散乱光が第n+3番目,第n+4番目の画素に
入射して蓄積される量に比べ、相対的に大きくなる。こ
れにより、ラインセンサ5から出力される円周傷11に
対する出力信号は、横線傷12に対する信号出力より相
対的に大きくなり、それだけ検出精度が高くなる。Therefore, the amount of scattered light from the circumferential scratch 11 which is incident on the (n + 1) th pixel and accumulated therein is 1
The amount of scattered light from No. 2 is relatively larger than the amount of incident and accumulated in the (n + 3) th and (n + 4) th pixels. As a result, the output signal for the circumferential scratch 11 output from the line sensor 5 becomes relatively larger than the signal output for the horizontal scratch 12, and the detection accuracy increases accordingly.
【0011】このように、感光体ドラムをドラムユニッ
トとして組み立てられたときのブレードクリーニングに
より発生するラインセンサの受光素子方向に対して垂直
方向に連続して発生した帯状欠陥(円周傷)を、図8に
示したラインセンサの受光素子方向より垂直方向のサン
プリングの比率を荒くすることで精度良く検出すること
ができる。As described above, the band-shaped defects (circumferential scratches) continuously generated in the direction perpendicular to the light-receiving element direction of the line sensor, which are caused by the blade cleaning when the photosensitive drum is assembled as a drum unit, are shown in FIG. By making the sampling ratio in the vertical direction rougher than the light receiving element direction of the line sensor shown in FIG. 8, accurate detection can be performed.
【0012】なお、ハイパスフィルタにより帯状欠陥の
散乱光を確実に検出するようにしたものや、閾値自動追
従により光学系の光量分布や、被検査体個々の反射率の
違いに影響を受けない欠陥検出を行うものが知られてい
る。図9は閾値自動追従により光学系の光量分布や被検
査体個々の反射率の違いに影響を受けない欠陥検出を行
うようにした本出願人が既に出願した他の表面欠陥検査
挿入の概念図であって、図7,8と同一符号は同一部分
に対応し、13は駆動装置、14は欠陥抽出装置、15
は欠陥判定装置、50は受光器である。It should be noted that the high-pass filter is used to reliably detect the scattered light of the band-shaped defect, and the defect is not affected by the light quantity distribution of the optical system and the difference in the reflectance of each inspected object by the automatic threshold tracking. Those that perform detection are known. FIG. 9 is a conceptual diagram of another surface defect inspection insertion filed by the applicant of the present invention, in which the defect detection is performed by the automatic tracking of the threshold value without being affected by the difference in the light amount distribution of the optical system and the reflectance of each inspection object. 7 and 8, the same reference numerals correspond to the same portions, 13 is a driving device, 14 is a defect extracting device, and 15 is a defect extracting device.
Is a defect determination device, and 50 is a light receiver.
【0013】同図において、被検査体である有機感光体
を用いた感光体ドラム3の検査面に対し、光源に蛍光灯
を使用し、前面にスリットを設けた投光器1からのスリ
ット光を照射し、その反射光を主走査方向を有機感光体
ドラムの長手方向に設定した縮小光学系のCCDライン
センサを備えた受光器50で受光する。感光体ドラム
3、駆動装置4により回転され、受光器50で感光体ド
ラム全面を検査する。受光器50により受光されたドラ
ム全面の出力信号は、画像処理を行う欠陥抽出装置14
に取り込まれる。In FIG. 1, a fluorescent light is used as a light source and slit light is emitted from a projector 1 having a slit on the front surface of an inspection surface of a photosensitive drum 3 using an organic photosensitive member as an inspection object. Then, the reflected light is received by the light receiver 50 including the CCD line sensor of the reduction optical system whose main scanning direction is set to the longitudinal direction of the organic photosensitive drum. The photosensitive drum 3 is rotated by the driving device 4, and the entire surface of the photosensitive drum is inspected by the light receiver 50. The output signal of the entire surface of the drum, which is received by the light receiver 50, is used by the defect extraction device 14 for image processing.
Is taken into.
【0014】欠陥抽出装置14では、感光体ドラム3の
光量分布である閾値基準信号と平均光量とから、閾値と
測定された出力信号との間隔を一定に保つように閾値を
変化させる閾値自動追従により、光学系による光量分布
や、感光体ドラム個々の反射率の違いに影響を受けない
欠陥抽出を行う。更に、欠陥の面積,周囲長などの幾何
学的特徴量を算出する。閾値基準信号には、感光体ドラ
ム個々に全面データを時間平均して測定した平均光量分
布を使用することが最も閾値自動追従の効果を高くす
る。欠陥の幾何学的特徴量はホストコンピュータ等の欠
陥判定装置15に送られ、欠陥判定がなされる。In the defect extracting device 14, the threshold automatic tracking for changing the threshold so as to keep the interval between the threshold and the measured output signal constant from the threshold reference signal which is the light amount distribution of the photosensitive drum 3 and the average light amount. Thus, defect extraction that is not affected by the light amount distribution by the optical system and the difference in reflectance of each photoconductor drum is performed. Further, geometrical feature quantities such as the area of the defect and the perimeter are calculated. For the threshold value reference signal, it is most effective to use the average light intensity distribution obtained by time-averaging the entire surface data of each photoconductor drum to achieve the automatic thresholding effect. The geometrical feature amount of the defect is sent to the defect determining device 15 such as a host computer and the defect is determined.
【0015】[0015]
【発明が解決しようとする課題】しかしながら、上記図
7で説明した従来技術においては、ラインセンサの受光
素子方向より垂直方向のサンプリングの比率を粗くする
こと、またはハイパスフィルタを使用することは、ライ
ンセンサの受光素子方向と垂直方向に連続して発生した
帯状欠陥に専用の検査装置を新たに設ける必要があると
いう問題がある。However, in the prior art described with reference to FIG. 7, it is not necessary to make the sampling ratio in the vertical direction coarser than the light receiving element direction of the line sensor or to use the high pass filter. There is a problem that it is necessary to newly provide a dedicated inspection device for a strip defect continuously generated in the direction perpendicular to the light receiving element direction of the sensor.
【0016】また、ブレードにより傷つけられた帯状欠
陥は、幅0.3mm程度の高周波信号数となるが、塗布
むらによる帯状欠陥は、幅10mm以上の低周波信号数
となり、同じ帯状欠陥でも特徴が異なる。そして、上記
図9で説明した従来技術では、被検査体固有の反射率の
違いや、光学系による光量分布の影響を無くす閾値自動
追従の効果を高めるために、被検査体個々に平均光量分
布データの閾値基準信号を測定する。このため、ライン
センサの受光素子方向と垂直方向に連続して発生した帯
状欠陥が、ラインセンサの信号を垂直方向に時間平均し
て測定した閾値基準信号に残ってしまい検出ができない
という欠点があった。Further, the band-shaped defect damaged by the blade has a high frequency signal number of about 0.3 mm in width, but the band-shaped defect due to coating unevenness has a low frequency signal number of 10 mm or more in width, and the same band-shaped defect is also characteristic. different. In the conventional technique described with reference to FIG. 9 above, in order to improve the effect of the threshold automatic tracking that eliminates the difference in reflectance peculiar to the object to be inspected and the influence of the light amount distribution by the optical system, the average light amount distribution is individually measured for each object. Measure the threshold reference signal of the data. For this reason, there is a drawback in that strip defects continuously generated in the direction perpendicular to the light-receiving element direction of the line sensor remain in the threshold reference signal measured by averaging the signal of the line sensor in the vertical direction and cannot be detected. It was
【0017】すなわち、塗布むらによるドラム円周方向
の欠陥が発生した感光体ドラム3を検査するとき、欠陥
抽出装置14で測定された閾値基準信号は図3に示した
ようになる。この測定条件として、受光器50を構成す
るラインセンサの画素数は7μmピッチの5000画
素、光学倍率は6倍、光学系のレンズのFナンバーはF
4、A/D変換は4Vを256階調の分解能とした。That is, when inspecting the photosensitive drum 3 having a defect in the circumferential direction of the drum due to uneven coating, the threshold reference signal measured by the defect extracting device 14 is as shown in FIG. As the measurement conditions, the number of pixels of the line sensor that constitutes the light receiver 50 is 5000 pixels with a pitch of 7 μm, the optical magnification is 6 times, and the F number of the lens of the optical system is F.
4. For A / D conversion, 4V was used as the resolution of 256 gradations.
【0018】後述する図3に示す通り、感光体ドラム3
の全面データを時間平均して測定した閾値基準信号に
は、大きさが約1mm以下の点状や線状の独立している
通常の欠陥信号や高周波ノイズ成分は積算することで平
滑化され、信号上から無くなるが、感光体ドラム3の円
周方向の欠陥は積算されて同図の円周欠陥信号として現
れる。As shown in FIG. 3 described later, the photosensitive drum 3
In the threshold reference signal measured by averaging the entire surface data of, the point-like and linear independent defect signals and high-frequency noise components having a size of about 1 mm or less are smoothed by integrating. Although it disappears from the signal, defects in the circumferential direction of the photoconductor drum 3 are integrated and appear as a circumferential defect signal in the figure.
【0019】閾値基準信号にこのような欠陥信号が乗っ
てしまうと、図10に点線で示すように、閾値基準信号
が欠陥信号にそって変化してしまうため、欠陥抽出装置
5で欠陥抽出ができなくなる。すなわち、図10の
(a)は感光体ドラムの表面に1点の欠陥が存在する場
合の閾値基準信号波形図、(b)は感光体ドラムの表面
の円周方向に欠陥が存在する場合の閾値基準信号波形図
であり、共に閾値基準信号波形は上記欠陥の存在による
成分で変化してしまう。When such a defect signal is added to the threshold reference signal, the threshold reference signal changes along the defect signal as shown by the dotted line in FIG. become unable. That is, FIG. 10A shows a threshold reference signal waveform diagram when there is one defect on the surface of the photoconductor drum, and FIG. 10B shows a case where there is a defect in the circumferential direction on the surface of the photoconductor drum. FIG. 3 is a threshold reference signal waveform diagram, and both threshold reference signal waveforms change due to the component due to the presence of the defect.
【0020】本発明の目的は、上記後者の従来技術に開
示された欠陥検査装置に新たな検査工数を追加すること
無く、ラインセンサの受光素子方向と垂直方向に連続し
て発生した低周波数の帯状欠陥を精度よく検出すること
ができる表面欠陥検査装置を提供することにある。An object of the present invention is to provide a low-frequency signal generated continuously in the direction perpendicular to the light receiving element of the line sensor without adding new inspection man-hours to the defect inspection apparatus disclosed in the latter prior art. It is an object of the present invention to provide a surface defect inspection apparatus capable of accurately detecting band-shaped defects.
【0021】[0021]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、基材31の表面に被覆された表面層32
を有する円筒状の被検査体30をその軸回りに回転さ
せ、上記表面層32の表面に上記軸方向と平行な帯状光
21を投射し、上記表面層32の表面から反射する散乱
光22をラインセンサを備えた受光器50で受光して上
記被検査体30の表面欠陥を検査する表面欠陥検査装置
において、前記被検査体30の表面層32の表面に前記
帯状光21を照射する光照射装置10と、前記表面から
の前記帯状光21の散乱光22の反射光量を検出する多
数の受光素子が直線的に配置されたラインセンサを有す
る受光器50と、前記受光器50の出力信号を前記垂直
方向に時間平均する閾値基準信号測定装置60と、この
閾値基準信号測定装置60で生成した閾値基準信号を2
階微分して欠陥部分を一定閾値値で抽出する演算装置7
0と、前記受光器50と前記被検査体30とを前記ライ
ンセンサの受光素子が列設された方向に対して直交する
方向に相対的に移動させる移動装置13とを備え、前記
被検査体30の前記受光器50のラインセンサを構成す
る受光素子列設方向と直交する方向に連続して存在する
帯状欠陥を検出することを特徴とする。In order to achieve the above object, the present invention provides a surface layer 32 coated on the surface of a substrate 31.
The cylindrical inspection object 30 having the axis is rotated around its axis, the band-shaped light 21 parallel to the axial direction is projected on the surface of the surface layer 32, and the scattered light 22 reflected from the surface of the surface layer 32 is emitted. In a surface defect inspection device for inspecting a surface defect of the inspected object 30 by receiving light with a light receiver 50 including a line sensor, light irradiation for irradiating the surface of the surface layer 32 of the inspected object 30 with the band-shaped light 21. The device 10 and a light receiver 50 having a line sensor in which a large number of light receiving elements for detecting the reflected light amount of the scattered light 22 of the band-shaped light 21 from the surface are arranged, and an output signal of the light receiver 50. The threshold reference signal measuring device 60 for time averaging in the vertical direction and the threshold reference signal generated by the threshold reference signal measuring device 60 are 2
Arithmetic device 7 that performs a differential differentiation to extract a defective portion with a constant threshold value
0, and a moving device 13 that relatively moves the light receiver 50 and the device under test 30 in a direction orthogonal to the direction in which the light receiving elements of the line sensor are arranged. It is characterized in that band-like defects existing continuously in the direction orthogonal to the light-receiving element arraying direction constituting the line sensor of the light-receiving device 30 are detected.
【0022】[0022]
【作用】上記構成の表面欠陥検査装置においては、図2
に示したように、閾値基準信号測定装置60により測定
された被検査体全面の平均光量分布信号(閾値基準信
号)が生成される(S−1)。この平均光量分布信号
は、演算装置70により2階微分処理が行なわれ(S−
2)、光学系による光量分布を解消し、幅10mm以上
の低周波数の欠陥部分の信号成分のみを強調して残し、
閾値法により一定閾値による欠陥抽出が行われて(S−
3)、欠陥検出信号80が得られる。In the surface defect inspection apparatus having the above-mentioned structure,
As shown in (1), the average light intensity distribution signal (threshold reference signal) of the entire surface of the inspected object measured by the threshold reference signal measuring device 60 is generated (S-1). The average light intensity distribution signal is subjected to the second-order differential processing by the arithmetic unit 70 (S-
2), the light amount distribution due to the optical system is eliminated, and only the signal component of the low frequency defect portion with a width of 10 mm or more is emphasized and left,
Defects are extracted by a constant threshold by the threshold method (S-
3) The defect detection signal 80 is obtained.
【0023】これにより、被検査体30の反射光量の光
量分布と平均値から閾値を変更する閾値自動追従によ
り、光学系による光量分布や被検査体30の個々の反射
率の違いに影響を受けずに表面欠陥検査が行われる。As a result, the threshold value automatic tracking for changing the threshold value from the light quantity distribution and the average value of the reflected light quantity of the inspection object 30 is affected by the difference in the light amount distribution by the optical system and the individual reflectance of the inspection object 30. Instead, the surface defect inspection is performed.
【0024】[0024]
【実施例】以下、本発明の実施例につき、図面を参照し
て詳細に説明する。なお、以下では、被検査体を基体を
有機感光体で被覆した有機感光体ドラムとし、有機感光
体の塗布むらにより発生するドラム円周方向に連続し、
幅が10mm以上の低周波数な欠陥を検出する例につい
て説明する。Embodiments of the present invention will now be described in detail with reference to the drawings. In the following, the inspected object is an organic photoconductor drum whose substrate is coated with an organic photoconductor, and is continuous in the circumferential direction of the drum caused by uneven coating of the organic photoconductor,
An example of detecting a low-frequency defect having a width of 10 mm or more will be described.
【0025】図1は本発明による表面欠陥検査装置の1
実施例を説明する模式図であって、10は光照射装置、
13は駆動装置、21は帯状光、22は散乱光、30は
感光体ドラム、31は基体、32は表面層、50は受光
器、60は閾値基準信号測定装置、70は演算装置、8
0は欠陥検出信号である。同図において、検査体である
感光体ドラムの塗布むらにより発生する感光体ドラム3
0の円周方向の欠陥検出には、受光器3で受光する反射
光として、主に感光体ドラム30の鏡面反射による正反
射光と、正反射の受光位置からはずした散乱光とがあ
る。FIG. 1 shows a surface defect inspection apparatus 1 according to the present invention.
It is a schematic diagram explaining an Example, 10 is a light irradiation device,
13 is a driving device, 21 is band light, 22 is scattered light, 30 is a photosensitive drum, 31 is a base, 32 is a surface layer, 50 is a light receiver, 60 is a threshold reference signal measuring device, 70 is a computing device, 8
0 is a defect detection signal. In the figure, the photosensitive drum 3 generated by uneven coating on the photosensitive drum, which is the inspection body,
In the defect detection in the circumferential direction of 0, as the reflected light received by the light receiver 3, there are specularly reflected light mainly due to specular reflection of the photoconductor drum 30 and scattered light removed from the specularly reflected light receiving position.
【0026】図2は図1に示した表面欠陥検査装置の欠
陥検査手順を説明する概略フローチヤートであり、検査
がスタートすると、まず閾値基準信号測定装置60によ
り測定された被検査体全面の平均光量分布信号(閾値基
準信号)が生成される(S−1)。この平均光量分布信
号は、演算装置70により2階微分処理が行なわれ(S
−2)、光学系による光量分布を解消し、幅10mm以
上の低周波信号数の欠陥部分の信号成分のみを強調して
残し、閾値法により一定閾値による欠陥抽出が行われて
(S−3)、欠陥検出信号80が得られる。FIG. 2 is a schematic flow chart for explaining the defect inspection procedure of the surface defect inspection apparatus shown in FIG. 1. When the inspection is started, first, the average of the entire surface of the inspected object measured by the threshold reference signal measuring apparatus 60 is measured. A light amount distribution signal (threshold reference signal) is generated (S-1). The average light intensity distribution signal is subjected to second-order differentiation processing by the arithmetic unit 70 (S
-2), the light amount distribution by the optical system is eliminated, only the signal component of the defective portion having a low frequency signal number of 10 mm or more in width is emphasized and left, and the defect extraction is performed by the constant threshold by the threshold method (S-3. ), The defect detection signal 80 is obtained.
【0027】そこで、本発明は、図2の欠陥検査装置の
検査工程で測定される有機感光体ドラム個々の閾値基準
信号より、波形処理の手法を用いて塗布むらによるドラ
ム円周方向の欠陥を検出する。図3は塗布むらによる円
周方向欠陥が存在する感光体ドラムにおける閾値基準信
号波形図であって、反射散乱光の受光信号をA/D変換
した実線で示した閾値基準信号は、測定する受光器50
の光学系のコサイン4乗則による影響により、中央部の
光量に対して周辺部の光量が下がる分布となる。Therefore, according to the present invention, a defect in the circumferential direction of the drum due to coating unevenness is applied using a waveform processing method from the threshold reference signal of each organic photosensitive drum measured in the inspection process of the defect inspection apparatus of FIG. To detect. FIG. 3 is a threshold reference signal waveform diagram on the photosensitive drum in which there are circumferential defects due to coating unevenness. The threshold reference signal shown by the solid line obtained by A / D converting the received light signal of the reflected scattered light is the received light to be measured. Container 50
Due to the influence of the cosine fourth law of the optical system, the distribution becomes such that the light quantity in the peripheral part is lower than the light quantity in the central part.
【0028】塗布むらによるドラム円周方向の欠陥は、
この光量分布の中に幅10mm以上の低周波数な信号と
して現れる。そこで、閾値基準信号の分布を2階微分可
能な2次の関数に近似して、2階の導関数を求めること
により光量分布をキャンセルする。コサイン4乗則の光
量分布とは周波数の異なる欠陥信号が閾値基準信号に乗
ると、欠陥信号部分は2次以上の高次な関数成分とな
り、2階の導関数に欠陥信号が残るため、欠陥信号のみ
を一定閾値で抽出できる。Defects in the circumferential direction of the drum due to uneven coating are
It appears as a low-frequency signal having a width of 10 mm or more in this light amount distribution. Therefore, the light quantity distribution is canceled by approximating the distribution of the threshold reference signal to a quadratic function capable of differentiating the second order and obtaining the second derivative. When a defect signal having a frequency different from the light intensity distribution of the cosine fourth law is placed on the threshold reference signal, the defect signal portion becomes a higher-order function component of second or higher order, and the defect signal remains in the second derivative. Only the signal can be extracted with a constant threshold.
【0029】図4は図3に示した閾値基準信号を2次の
関数に近似したときの導関数の分布の説明図であって、
図5は図4に示した導関数に対する2階の導関数の分布
の説明図である。被検査体である感光体ドラムの塗布む
らにより発生するドラム円周方向の欠陥は、前記図7の
従来技術で説明したブレードによる機械傷の幅約0.3
mmの高周波数な欠陥に対して、幅が10mm〜30m
m,ラインセンサの画素幅で300〜600画素,出力
値は正常面レベルの7%程度の低周波数な欠陥信号とな
る。FIG. 4 is an explanatory diagram of the distribution of the derivative when the threshold reference signal shown in FIG. 3 is approximated to a quadratic function.
FIG. 5 is an explanatory diagram of the distribution of the second-order derivative with respect to the derivative shown in FIG. Defects in the circumferential direction of the drum caused by uneven coating on the photosensitive drum, which is the object to be inspected, are about 0.3 in width of mechanical scratches by the blade described in the prior art of FIG.
10 mm to 30 m width for high frequency defects of mm
m, the pixel width of the line sensor is 300 to 600 pixels, and the output value is a low frequency defect signal of about 7% of the normal surface level.
【0030】本発明者等は、上記の低周波な欠陥信号の
変化量を顕著に表すために、導関数と2階の導関数の分
布を、およそ欠陥幅の2分の1サンプリング間隔の差分
値を用いて算出するものが有効であることを実験により
確認した。図6は導関数分布の算出方法の説明図であ
り、同図(a)におけるD点の導関数の(b)に示した
分布D’は、D点を中心におよそ欠陥幅の2分の1のサ
ンプリング間隔のS1 点の階調値y1 とS2 点の階調値
y2 の差分値で求める。幅が例えば約550画素の欠陥
に対しては、サンプリング間隔を欠陥幅の約2分の1の
270画素で差分値を求める。The inventors of the present invention have made the distribution of the derivative and the second derivative the difference of about 1/2 the sampling interval of the defect width in order to express the variation of the low frequency defect signal remarkably. It was confirmed experimentally that the value calculated using the value is effective. FIG. 6 is an explanatory diagram of the method of calculating the derivative distribution, and the distribution D ′ shown in (b) of the derivative of the point D in FIG. 6A is about half the defect width centered at the point D. determined by the difference value of the gradation values y 2 gradation values y 1 and S 2 points S 1 point 1 sampling interval. For a defect having a width of, for example, about 550 pixels, the difference value is obtained by setting the sampling interval to 270 pixels, which is about one half of the defect width.
【0031】その結果、導関数の分布では、コサイン4
乗則の影響が1次の関数の要素として残り、一定閾値で
は高次な関数成分となる欠陥以外の場所も抽出してしま
う。しかし、2階の導関数の分布ではコサイン4乗則の
影響は定数となり、一定閾値により高次な関数成分の欠
陥のみを抽出できる。実際の測定では、更に高周波ノイ
ズを除去するために10点の単純移動平均も行った。As a result, the derivative distribution has a cosine of 4
The influence of the multiplication rule remains as an element of the first-order function, and a location other than the defect that becomes a higher-order function component is extracted at a certain threshold value. However, in the distribution of the second-order derivative, the influence of the cosine fourth law becomes a constant, and only a defect of a higher-order function component can be extracted by a constant threshold. In the actual measurement, a simple moving average of 10 points was also performed to further remove high frequency noise.
【0032】閾値基準信号の2階の導関数の求め方は、
2次多項式適合法による平滑化微分でも同様な結果が得
られる。この方法は平滑化の機能もあるため高周波ノイ
ズ除去のための単純移動平均は不要となるが、計算方法
が差分値を求めるのに比べて複雑となるため、演算時間
は長くなる。平滑化微分は、SavitzkyとGol
ayによって求められた係数表を用いてコンボリューシ
ョンを行う。To obtain the second derivative of the threshold reference signal,
Similar results can be obtained by smoothing differentiation by the quadratic polynomial fitting method. Since this method also has a smoothing function, the simple moving average for removing high frequency noise is unnecessary, but the calculation method is more complicated than obtaining the difference value, and the calculation time becomes long. The smoothing derivative is Savitzky and Gol.
Convolution is performed using the coefficient table obtained by ay.
【0033】欠陥幅の2分の1のサンプリング間隔で差
分値の算出する方法と同様に、平滑化微分を行うサンプ
リング間隔×平滑化点数がおよそ欠陥幅の2分の1とす
ると、平滑化効果が上がり、欠陥信号の変化量を顕著に
表すことができる。幅が約550画素の欠陥には、例え
ば、平滑化点数25点で平滑化微分を行う場合、サンプ
リング間隔×平滑化点数が欠陥幅の約2分の1になるよ
うにサンプリング間隔を10画素とすると良い。Similar to the method of calculating the difference value at the sampling interval of 1/2 of the defect width, if the sampling interval for smoothing differentiation × the number of smoothing points is approximately 1/2 of the defect width, the smoothing effect is obtained. Is increased, and the change amount of the defect signal can be remarkably expressed. For a defect having a width of about 550 pixels, for example, when performing smoothing differentiation with 25 smoothing points, the sampling interval is set to 10 pixels so that the sampling interval × the smoothing point becomes about ½ of the defect width. Good to do.
【0034】具体的な欠陥検査装置での動作は、閾値基
準信号測定装置60で測定された感光体ドラム個々の閾
値基準信号を演算装置70へコピーし、演算装置70で
2階の導関数の算出と一定閾値による欠陥抽出の演算処
理が行われる。よって、前記従来技術で説明した後者の
欠陥検査装置における従来の欠陥検出アルゴリズムにこ
の手法を取り入れることで、検査時間に演算処理時間の
約1秒が付加されるが、塗布むらにより発生するドラム
円周方向の幅10mm以上の低周波数な欠陥を検出する
ことが可能となる。A specific operation of the defect inspection apparatus is to copy the threshold reference signal of each photosensitive drum measured by the threshold reference signal measuring apparatus 60 to the arithmetic unit 70, and the arithmetic unit 70 calculates the second derivative of the derivative. Calculation and calculation processing of defect extraction with a fixed threshold value are performed. Therefore, by incorporating this method into the conventional defect detection algorithm in the latter defect inspection apparatus described in the above-mentioned prior art, the processing time of about 1 second is added to the inspection time, but the drum circle caused by uneven coating is generated. It is possible to detect a low frequency defect having a width of 10 mm or more in the circumferential direction.
【0035】以上の実施例は被検査体として有機感光体
ドラムを例とし、その表面欠陥を検査するものとして説
明したが、被検査体は上記の有機感光体ドラムに限られ
るものではなく、他の部材、例えば複写機の機能部品で
は、有機感光体ドラムと同様に基材に表面層を塗布する
ベルト状の有機感光体や定着装置に用いられるヒューザ
ーロールなどの円周方向帯状の表面欠陥の検査に適用で
きることは言うまでもない。In the above embodiments, the organic photosensitive drum is taken as an example of the object to be inspected, and the surface defect is inspected. However, the object to be inspected is not limited to the above-mentioned organic photosensitive drum, and other For example, in the case of a functional component of a copying machine, a belt-shaped organic photoconductor that applies a surface layer to a substrate similarly to an organic photoconductor drum, or a circumferential band-shaped surface defect such as a fuser roll used in a fixing device. It goes without saying that it can be applied to inspection.
【0036】[0036]
【発明の効果】以上説明したように、本発明によれば、
表面の欠陥抽出を行うために測定する被検査体個々の平
均光量分布データである閾値基準信号に乗った欠陥信号
を、閾値基準信号の2階微分処理と一定閾値の抽出処理
により欠陥抽出することで、ラインセンサからなる受光
器の上記ラインセンサを構成する受光素子の列設方向と
直交する方向に連続して発生した帯状の周波数の低い欠
陥の検出に有効な表面欠陥検査装置を提供することがで
きる。As described above, according to the present invention,
Defect extraction of a defect signal carried on a threshold reference signal, which is the average light intensity distribution data of each inspected object measured to perform surface defect extraction, by the second-order differential processing of the threshold reference signal and a fixed threshold extraction processing. In order to provide a surface defect inspection apparatus which is effective for detecting a band-shaped low frequency defect continuously generated in a direction orthogonal to a row direction of light receiving elements constituting the line sensor of the light receiver including the line sensor. You can
【図1】 本発明による表面欠陥検査装置の1実施例を
説明する模式図である。FIG. 1 is a schematic diagram illustrating one embodiment of a surface defect inspection apparatus according to the present invention.
【図2】 図1に示した表面欠陥検査装置の欠陥検査手
順を説明する概略フローチヤートである。FIG. 2 is a schematic flow chart illustrating a defect inspection procedure of the surface defect inspection apparatus shown in FIG.
【図3】 塗布むらによる円周方向欠陥が存在する感光
体ドラムにおける閾値基準信号波形図である。FIG. 3 is a threshold reference signal waveform diagram in a photosensitive drum in which a circumferential defect due to coating unevenness exists.
【図4】 図3に示した閾値基準信号を2次の関数に近
似したときの導関数の分布の説明図であるFIG. 4 is an explanatory diagram of a derivative distribution when the threshold reference signal shown in FIG. 3 is approximated to a quadratic function.
【図5】 図4に示した導関数に対する2階の導関数の
分布の説明図である。5 is an explanatory diagram of a distribution of second-order derivatives with respect to the derivatives shown in FIG.
【図6】 導関数分布の算出方法の説明図である。FIG. 6 is an explanatory diagram of a method of calculating a derivative distribution.
【図7】 本出願人が既に出願した表面欠陥検査装置の
概念図である。FIG. 7 is a conceptual diagram of a surface defect inspection apparatus that the applicant has already applied for.
【図8】 図7で説明した表面欠陥検査装置の欠陥検出
方法の説明図であって、(a)はラインセンサを、
(b)は感光体ドラムの模式図である。FIG. 8 is an explanatory diagram of a defect detection method of the surface defect inspection apparatus described in FIG. 7, in which (a) is a line sensor;
(B) is a schematic diagram of a photosensitive drum.
【図9】 閾値自動追従により光学系の光量分布や被検
査体個々の反射率の違いに影響を受けない欠陥検出を行
うようにした本出願人が既に出願した他の表面欠陥検査
挿入の概念図である。FIG. 9 is another concept of surface defect inspection insertion already filed by the present applicant, which detects defects without being affected by the difference in the light amount distribution of the optical system and the reflectance of each inspected object by the automatic threshold tracking. It is a figure.
【図10】 感光体ドラムの表面に1点の欠陥が存在す
る場合の閾値基準信号波形図(a)、感光体ドラムの表
面の円周方向に欠陥が存在する場合の閾値基準信号波形
図(b)である。FIG. 10 is a threshold reference signal waveform diagram when there is one defect on the surface of the photosensitive drum (a), and a threshold reference signal waveform diagram when there is a defect in the circumferential direction on the surface of the photosensitive drum ( b).
10 光照射装置、13 駆動装置、21 帯状光、2
2 散乱光、30 感光体ドラム、31 基体、32
表面層、50 受光器、60 閾値基準信号測定装置、
70 演算装置、80 欠陥検出信号。10 light irradiation device, 13 driving device, 21 strip light, 2
2 scattered light, 30 photoconductor drum, 31 substrate, 32
Surface layer, 50 light receiver, 60 threshold reference signal measuring device,
70 arithmetic unit, 80 defect detection signal.
Claims (1)
円筒状の被検査体をその軸回りに回転させ、上記表面層
の表面に上記軸方向と平行な帯状光を投射し、上記表面
層の表面から反射する散乱光をラインセンサを備えた受
光器で受光して上記被検査体の表面欠陥を検査する表面
欠陥検査装置において、 前記被検査体の表面層の表面に前記帯状光を照射する光
照射装置と、 前記表面からの前記帯状光の散乱光の反射光量を検出す
る多数の受光素子が直線的に配置されたラインセンサを
有する受光器と、 前記受光器の出力信号を前記垂直方向に時間平均する閾
値基準信号測定装置と、 上記閾値基準信号測定装置で生成した閾値基準信号を2
階微分して欠陥部分を一定閾値値で抽出する演算装置
と、前記受光器と前記被検査体とを前記ラインセンサの
受光素子が列設された方向に対して直交する方向に相対
的に移動させる移動装置とを備え、 前記被検査体の前記受光器のラインセンサを構成する受
光素子列設方向と直交する方向に連続して存在する帯状
欠陥を検出することを特徴とする表面欠陥検査装置。1. A cylindrical test object having a surface layer coated on the surface of a substrate is rotated around its axis, and band-shaped light parallel to the axial direction is projected onto the surface of the surface layer, In a surface defect inspection device for inspecting a surface defect of the inspection object by receiving scattered light reflected from the surface of the surface layer with a light receiver equipped with a line sensor, the band-shaped light on the surface of the surface layer of the inspection object A light irradiation device for irradiating, a light receiver having a line sensor in which a large number of light receiving elements for detecting the reflected light amount of scattered light of the band-shaped light from the surface are linearly arranged, and an output signal of the light receiver The threshold reference signal measuring device for time averaging in the vertical direction and the threshold reference signal generated by the threshold reference signal measuring device
An arithmetic unit for performing a differential operation to extract a defective portion with a constant threshold value, and the light receiver and the object to be inspected are relatively moved in a direction orthogonal to a direction in which the light receiving elements of the line sensor are arranged. A surface defect inspection apparatus, which includes a moving device for detecting a strip defect continuously existing in a direction orthogonal to a light receiving element arraying direction which constitutes a line sensor of the light receiver of the inspection object. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP994193A JPH06221836A (en) | 1993-01-25 | 1993-01-25 | Surface defect inspection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP994193A JPH06221836A (en) | 1993-01-25 | 1993-01-25 | Surface defect inspection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06221836A true JPH06221836A (en) | 1994-08-12 |
Family
ID=11734041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP994193A Pending JPH06221836A (en) | 1993-01-25 | 1993-01-25 | Surface defect inspection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06221836A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006214901A (en) * | 2005-02-04 | 2006-08-17 | Kochi Univ Of Technology | Bearing damage evaluation apparatus, bearing damage evaluation method, bearing damage evaluation program, and storage medium storing this program |
JP2007258140A (en) * | 2006-02-22 | 2007-10-04 | Toray Ind Inc | Inspection method, inspection device and manufacturing method of display panel |
JP2009531672A (en) * | 2006-03-30 | 2009-09-03 | マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Measuring method and measuring system for a component, for example a piston of a piston engine |
CN102998314A (en) * | 2012-11-26 | 2013-03-27 | 杭州电子科技大学 | Surface defect detecting device of copper-plating layer of gravure cylinder |
JP2013242399A (en) * | 2012-05-18 | 2013-12-05 | Ricoh Co Ltd | Image forming apparatus |
JP2014026204A (en) * | 2012-07-30 | 2014-02-06 | Ricoh Co Ltd | Fixing device, image forming apparatus, and method for evaluating surface state of fixing member |
US9128441B2 (en) | 2012-05-18 | 2015-09-08 | Ricoh Company, Limited | Image forming apparatus and image forming method |
-
1993
- 1993-01-25 JP JP994193A patent/JPH06221836A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006214901A (en) * | 2005-02-04 | 2006-08-17 | Kochi Univ Of Technology | Bearing damage evaluation apparatus, bearing damage evaluation method, bearing damage evaluation program, and storage medium storing this program |
JP2007258140A (en) * | 2006-02-22 | 2007-10-04 | Toray Ind Inc | Inspection method, inspection device and manufacturing method of display panel |
JP2009531672A (en) * | 2006-03-30 | 2009-09-03 | マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Measuring method and measuring system for a component, for example a piston of a piston engine |
US8660804B2 (en) | 2006-03-30 | 2014-02-25 | Mahle International Gmbh | Measuring method and system for components, in particular for pistons and piston engines |
JP2013242399A (en) * | 2012-05-18 | 2013-12-05 | Ricoh Co Ltd | Image forming apparatus |
US9128441B2 (en) | 2012-05-18 | 2015-09-08 | Ricoh Company, Limited | Image forming apparatus and image forming method |
US9442438B2 (en) | 2012-05-18 | 2016-09-13 | Ricoh Company, Ltd. | Image forming apparatus and image forming method |
JP2014026204A (en) * | 2012-07-30 | 2014-02-06 | Ricoh Co Ltd | Fixing device, image forming apparatus, and method for evaluating surface state of fixing member |
CN102998314A (en) * | 2012-11-26 | 2013-03-27 | 杭州电子科技大学 | Surface defect detecting device of copper-plating layer of gravure cylinder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01143945A (en) | Detecting method for defect in tape | |
EP1703274B1 (en) | Defect inspecting method | |
JPH06221836A (en) | Surface defect inspection device | |
JPH11311510A (en) | Method and apparatus for inspection of very small uneven part | |
JP4215473B2 (en) | Image input method, image input apparatus, and image input program | |
JPH09113245A (en) | Device for detecting abnormality of belt-shaped surface on web material | |
JPH08219999A (en) | Method and apparatus for calibrating surface defect-inspection optical system | |
JPH06118007A (en) | Method and device for inspecting defect on cylinder surface | |
JPH07239304A (en) | Detector for detecting defect of surface layer | |
JPH07128240A (en) | Inspection device of electrophotographic photoreceptor defect | |
JP3060523B2 (en) | Circumferential surface flaw inspection method and device | |
JP4212702B2 (en) | Defect inspection apparatus, defect inspection method, and storage medium | |
KR20240067222A (en) | Device for measuring irregularities in sheet-shaped objects, method for measuring irregularities in sheet-shaped objects | |
JP3442199B2 (en) | Surface inspection equipment | |
JPH08145848A (en) | Apparatus for inspection of defect of liquid crystal panel | |
JPH1194750A (en) | Method and apparatus for inspecting photoreceptor drum | |
JP2005043222A (en) | Object surface inspection device and object surface inspection method | |
JP4068740B2 (en) | Apparatus and method for scanning the surface of an object | |
JP2982473B2 (en) | Painted surface inspection equipment | |
JPH06123707A (en) | Method for inspecting surface defect and its device | |
JPH06148088A (en) | Method for detecting defect of hard disk | |
JPH09304286A (en) | Apparatus and method for detection-processing of flaw | |
JP4216062B2 (en) | Defect inspection method | |
JP3289487B2 (en) | Surface inspection method and inspection apparatus used for the method | |
JPH09113463A (en) | Surface defect inspection apparatus |