JPH0621455A - Thin-film transistor - Google Patents
Thin-film transistorInfo
- Publication number
- JPH0621455A JPH0621455A JP4173117A JP17311792A JPH0621455A JP H0621455 A JPH0621455 A JP H0621455A JP 4173117 A JP4173117 A JP 4173117A JP 17311792 A JP17311792 A JP 17311792A JP H0621455 A JPH0621455 A JP H0621455A
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- gate
- film
- semiconductor
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、アクティブマトリクス
型液晶ディスプレーなどに用いられる薄膜トランジスタ
(TFT)に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor (TFT) used for an active matrix type liquid crystal display or the like.
【0002】[0002]
【従来の技術】近年、シリコン基板上もしくは、絶縁基
板上にTFTを形成する研究が活発に行われている。そ
の目的の一つには、薄型、高品位、大口径のアクティブ
マトリクス型ディスプレイの実現が挙げられる。即ち、
基板上にTFTをマトリクス状に形成し、そのスイッチ
ング特性を応用して液晶等の薄型ディスプレイを目指す
ものである。そのようにして構成されたアクティブマト
リクス型液晶ディスプレイのトランジスタに関しては、
「フラットパネル・ディスプレイ91’」(日経BP社
刊)をはじめ、多くの報告がある。2. Description of the Related Art In recent years, active research has been conducted on forming TFTs on a silicon substrate or an insulating substrate. One of the aims is to realize a thin, high-quality, large-diameter active matrix display. That is,
TFTs are formed in a matrix on a substrate, and the switching characteristics of the TFTs are applied to achieve thin displays such as liquid crystals. Regarding the transistors of the active matrix type liquid crystal display configured in this way,
There are many reports, including "Flat Panel Display 91 '" (published by Nikkei BP).
【0003】このようなディスプレーの中でも、特に、
液晶テレビについては、高精彩化に対応するため、画素
の占有面積を大幅に縮小する必要がある。これを実現す
るため、ゲート電極、ビデオ信号線の細線化、及びスイ
ッチングトランジスタのサイズ縮小などが求められてい
る。Among such displays, in particular,
For liquid crystal televisions, it is necessary to significantly reduce the area occupied by pixels in order to support high definition. In order to realize this, it is required to reduce the gate electrode, the video signal line, and the size of the switching transistor.
【0004】このように、今後TFTの微細化は避けら
れないが、この時TFTの小型化、微細化、及びチャン
ネル幅の縮小に伴い、TFTの電流駆動能力が低下する
という問題が生じる。As described above, the miniaturization of the TFT is unavoidable in the future, but at this time, there arises a problem that the current driving capability of the TFT is reduced due to the miniaturization and miniaturization of the TFT and the reduction of the channel width.
【0005】それを回避するために、TFTの半導体活
性領域の上面のみならず下面にもゲート電極を設けて、
TFTのチャンネル幅を実質的に大きくできる所謂ダブ
ルゲート型TFTが提案されている。In order to avoid this, a gate electrode is provided not only on the upper surface of the semiconductor active region of the TFT but also on the lower surface,
So-called double gate type TFTs have been proposed which can substantially increase the channel width of the TFT.
【0006】しかしながら、ダブルゲート型TFTで
は、実質的なチャンネル幅拡大効果に限界があるばかり
か、TFTの厚みが大きくなる事を抑制する目的で上下
両ゲート電極の膜厚を薄く形成する結果、このゲート電
極が短絡する事故が発生しやくなる欠点があった。However, in the double gate type TFT, not only is there a practical limit to the effect of widening the channel width, but also the upper and lower gate electrodes are formed thin to suppress the increase in the thickness of the TFT. This has a drawback that an accident of short-circuiting the gate electrode is likely to occur.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上記従来技
術に鑑みてなされたものであり、TFTの微細化に伴う
ゲート電極の短絡事故を回避しながら、チャンネル幅を
実質的に大きくできるTFTを実現するものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned prior art, and it is possible to substantially increase the channel width while avoiding a short circuit of the gate electrode due to the miniaturization of the TFT. Is realized.
【0008】[0008]
【課題を解決するための手段】本発明のTFTは、薄膜
状の半導体領域、該半導体領域の上下及び対向する側面
を連続的に被覆した環状のゲート絶縁膜、該ゲート絶縁
膜の表面を連続的に被覆した環状のゲート電極、上記半
導体領域の一端に連結したソース電極、並びに上記半導
体領域の他端に連結したドレイン電極を具備したもので
ある。A TFT of the present invention is a thin-film semiconductor region, a ring-shaped gate insulating film that continuously covers the upper and lower and opposite side surfaces of the semiconductor region, and the surface of the gate insulating film is continuous. And a source electrode connected to one end of the semiconductor region, and a drain electrode connected to the other end of the semiconductor region.
【0009】[0009]
【作用】本発明のTFTによれば、TFTの半導体領域
の上側及び下側のみならず、対向する側面をも連続的に
被覆したゲート絶縁膜及びゲート電極膜を設けることに
より、半導体領域の2つの側面部分の存在によってチャ
ンネル幅を実効的に拡大できると共に上側と下側のゲー
ト電極が2つの側面部分ゲート電極で電気的に結合され
ているので、一方の電極が短絡して電気的に孤立してし
まう事故を回避できる。According to the TFT of the present invention, not only the upper and lower sides of the semiconductor region of the TFT, but also the opposite side surfaces are continuously covered with the gate insulating film and the gate electrode film. The presence of the two side portions enables the channel width to be effectively expanded, and the upper and lower gate electrodes are electrically coupled by the two side portion gate electrodes, so that one electrode is short-circuited and electrically isolated. You can avoid accidents.
【0010】[0010]
【実施例】図1は本発明の実施例に係るTFTの平面図
を模式的に示している。更に、図2は図1のTFTのA
−A’断面図、図3は図1のTFTのB−B’断面図を
夫々工程順に示している。EXAMPLE FIG. 1 schematically shows a plan view of a TFT according to an example of the present invention. Further, FIG. 2 shows the TFT A of FIG.
-A 'sectional view, FIG. 3 shows the BB' sectional view of the TFT of FIG. 1 in order of process.
【0011】これらの図に於て、1はシリコン基板、2
は絶縁膜、3は第1ゲート電極膜、4は第1ゲート絶縁
膜、5は半導体膜、5aは半導体活性領域、5bはドー
プ半導体領域、6は第2ゲート絶縁膜、7はゲート絶縁
膜4に設けられたコンタクト穴、8は第2ゲート電極
膜、9は膜間絶縁膜、10はソース電極もしくはドレイ
ン電極として用いられる金属電極である。In these figures, 1 is a silicon substrate, 2 is
Is an insulating film, 3 is a first gate electrode film, 4 is a first gate insulating film, 5 is a semiconductor film, 5a is a semiconductor active region, 5b is a doped semiconductor region, 6 is a second gate insulating film, and 7 is a gate insulating film. 4 is a contact hole, 8 is a second gate electrode film, 9 is an inter-membrane insulating film, and 10 is a metal electrode used as a source electrode or a drain electrode.
【0012】以下に、図2の各(イ)〜(ニ)と図3の
各(イ)〜(ニ)の製造工程断面図に基づいて、本発明
のTFTの製造方法を説明する。The manufacturing method of the TFT of the present invention will be described below with reference to the sectional views of the manufacturing steps of (a) to (d) in FIG. 2 and (a) to (d) in FIG.
【0013】図2(イ)並びに図3(イ)に於て、シリ
コン基板1の表面には、熱酸化法を用いて絶縁膜2が形
成されている。この熱酸化処理における基板温度は約1
000度で、絶縁膜2の膜厚は約200nmである。3
は第1ゲート電極膜であり、減圧CVD法を用いて前記
絶縁膜2上に膜厚約200nmの多結晶シリコン膜を堆
積し、更にリン酸拡散法を用いてシート抵抗値を約10
0%にして形成する。In FIG. 2A and FIG. 3A, an insulating film 2 is formed on the surface of the silicon substrate 1 by using a thermal oxidation method. The substrate temperature in this thermal oxidation process is about 1
At 000 degrees, the thickness of the insulating film 2 is about 200 nm. Three
Is a first gate electrode film, a polycrystalline silicon film having a thickness of about 200 nm is deposited on the insulating film 2 by using a low pressure CVD method, and a sheet resistance value is about 10 by using a phosphoric acid diffusion method.
It is formed with 0%.
【0014】図2(ロ)並びに図3(ロ)に於て、上記
の工程で得られた積層体の第1ゲート電極膜3をフォト
リソエッチングを用いて、帯形状にエッチング形成す
る。4は第1ゲート絶縁膜であり、前記積層体表面に熱
酸化法を用いて形成する。その際の基板温度は約100
0度で、膜厚は約50nmである。5は半導体膜であ
り、減圧CVD法を用いて、多結晶シリコン膜を膜厚2
00nmで積層体表面に堆積し、更にフォトリソエッチ
ングを用いて、上記第1ゲート電極膜3と交差するよう
な帯形状にエッチング形成する。In FIG. 2B and FIG. 3B, the first gate electrode film 3 of the laminated body obtained in the above step is formed into a band shape by photolithography. Reference numeral 4 is a first gate insulating film, which is formed on the surface of the stacked body by a thermal oxidation method. The substrate temperature at that time is about 100.
At 0 degrees, the film thickness is about 50 nm. Reference numeral 5 is a semiconductor film, and a polycrystalline silicon film having a film thickness of 2 is formed by using the low pressure CVD method.
It is deposited to a thickness of 00 nm on the surface of the stacked body, and is further photolithographically etched to form a strip shape that intersects the first gate electrode film 3.
【0015】図2(ハ)並びに図3(ハ)に於て、積層
体の第2ゲート絶縁膜6を半導体膜5の露出全表面上に
熱酸化法を用いて形成する。その際の基板温度は約10
00度で、膜厚は約50nmである。尚、これで半導体
膜5の上下の絶縁膜4、6と対向する側面の絶縁膜6、
6が連続的に、この半導体膜5の周囲を被覆した環状の
ゲート絶縁膜が形成されたことになる。7、7はコンタ
クト穴であり、フォトリソエッチングを用いて、第2ゲ
ート絶縁膜6に所定形状の開口を設ける。8は第2ゲー
ト電極膜であり、減圧CVD法を用いて、膜厚200n
mの多結晶シリコン膜を堆積した後、フォトリソエッチ
ングを用いて、上記第1ゲート電極膜3の延在方向に沿
った帯形状にエッチング形成する。この時、前記コンタ
クト穴7、7により第1ゲート電極膜3及び第2ゲート
電極膜8が導通し、環状のゲート電極が形成されたこと
になる。続いて、イオン注入法を用いて、半導体膜5及
び第2ゲート電極8にリンをドーピングすると、該半導
体膜5にはノンドープの半導体活性領域5a、及びTF
Tのドレイン領域またはソース領域となるドープ半導体
領域5bが夫々形成される。2C and 3C, the second gate insulating film 6 of the laminated body is formed on the entire exposed surface of the semiconductor film 5 by the thermal oxidation method. The substrate temperature at that time is about 10
At 00 degrees, the film thickness is about 50 nm. In this case, the insulating films 6 on the side surfaces facing the insulating films 4 and 6 above and below the semiconductor film 5,
6 continuously forms an annular gate insulating film covering the periphery of the semiconductor film 5. Reference numerals 7 and 7 are contact holes, and openings of a predetermined shape are provided in the second gate insulating film 6 by using photolithography etching. Reference numeral 8 is a second gate electrode film, which has a film thickness of 200 n using a low pressure CVD method.
After depositing a polycrystalline silicon film of m, photolithography is used to form a strip shape along the extending direction of the first gate electrode film 3. At this time, the contact holes 7, 7 bring the first gate electrode film 3 and the second gate electrode film 8 into conduction, thereby forming an annular gate electrode. Then, when phosphorus is doped into the semiconductor film 5 and the second gate electrode 8 by using an ion implantation method, the semiconductor film 5 has non-doped semiconductor active regions 5a and TF.
Doped semiconductor regions 5b serving as T drain regions or source regions are formed, respectively.
【0016】最後に、図2(ニ)並びに図3(ニ)に於
て、積層体の上層の膜間絶縁膜9は、CVD法を用い
て、酸化シリコンを膜厚300nmで積層体表面に堆積
し、更にフォトリソエッチングを用いて、ソース電極及
びドレイン電極を形成するために所定形状の開口を設け
る。10はソース電極及びドレイン電極であり、通常の
アルミニウムのスパッタ法を用いて、上記開口から露出
しているドープ半導体領域5bに夫々連結されている。2 (d) and 3 (d), the inter-layer insulating film 9 in the upper layer of the laminated body is formed of silicon oxide on the surface of the laminated body with a thickness of 300 nm by the CVD method. Deposition and photolithography are used to provide openings of predetermined shape to form the source and drain electrodes. Reference numeral 10 denotes a source electrode and a drain electrode, which are respectively connected to the doped semiconductor regions 5b exposed from the opening by using a usual aluminum sputtering method.
【0017】このようにして得られたTFTは、半導体
活性領域5aの上側及び下側のみならず、対向する側面
をも連続的に被覆したゲート絶縁膜4、6及びゲート電
極膜3、8を設けることにより、半導体活性領域5aの
2つの側面部分にもゲート絶縁膜とゲート電極が備えら
れる事になる。このため半導活性領域5aの両側面部分
を加えたことでチャンネル幅を確実に拡大できると共
に、上側と下側のゲート電極が2つの側面部分ゲート電
極で電気的に結合されているので、一方の電極が短絡し
て電気的に孤立してしまう事故を回避できる。The TFT thus obtained has the gate insulating films 4 and 6 and the gate electrode films 3 and 8 which continuously cover not only the upper and lower sides of the semiconductor active region 5a but also the opposite side faces. By providing the gate insulating film and the gate electrode, the two side surfaces of the semiconductor active region 5a are provided. Therefore, the channel width can be surely expanded by adding both side surface portions of the semiconductor active region 5a, and the upper and lower gate electrodes are electrically coupled by the two side surface partial gate electrodes. It is possible to avoid an accident in which the electrodes of 2 are short-circuited and electrically isolated.
【0018】上述の実施例に於ては、基板としてシリコ
ン基板を用いたが、石英ガラス等の絶縁基板上に形成さ
れるTFTにも本発明の採用は可能である。Although the silicon substrate is used as the substrate in the above-mentioned embodiments, the present invention can be applied to a TFT formed on an insulating substrate such as quartz glass.
【0019】[0019]
【発明の効果】本発明のTFTは、半導体活性領域の上
側及び下側のみならず、対向する側面をも連続的に被覆
したゲート絶縁膜及びゲート電極膜を設けることによ
り、半導体活性領域の2つの側面部分の存在によってチ
ャンネル幅を実効的に拡大できると共に、上側と下側の
ゲート電極が2つの側面部分ゲート電極で電気的に結合
されているので、一方の電極が短絡して電気的に孤立し
てしまう事故を回避でき、トランジスタとしての信頼性
の向上に寄与するところは大きい。According to the TFT of the present invention, not only the upper and lower sides of the semiconductor active region, but also the opposite side faces are continuously covered with the gate insulating film and the gate electrode film, so that the semiconductor active region is covered with the gate insulating film. The presence of two side surface portions can effectively increase the channel width, and since the upper and lower gate electrodes are electrically coupled by the two side surface portion gate electrodes, one of the electrodes is short-circuited and electrically connected. It is possible to avoid the accident of isolation and contribute to the improvement of reliability as a transistor.
【図1】本発明のTFTの平面図。FIG. 1 is a plan view of a TFT of the present invention.
【図2】本発明のTFTの図1におけるA−A’方向工
程断面図。FIG. 2 is a process cross-sectional view of the TFT of the present invention in the AA ′ direction in FIG.
【図3】本発明のTFTの図1におけるB−B’方向工
程断面図。FIG. 3 is a process cross-sectional view of the TFT of the present invention in the BB ′ direction in FIG.
1 :シリコン基板 2 :絶縁膜 3 :第1ゲート電極膜 4 :第1ゲート絶縁膜 5 :半導体膜 5a:半導体活性領域 5b:ドープ半導体領域 6 :第2ゲート絶縁膜 7 :コンタクト穴 8 :第2ゲート電極膜 9 :半導体領域 10:膜間絶縁膜 11:金属電極 1: Silicon substrate 2: Insulating film 3: First gate electrode film 4: First gate insulating film 5: Semiconductor film 5a: Semiconductor active region 5b: Doped semiconductor region 6: Second gate insulating film 7: Contact hole 8: Second 2 gate electrode film 9: semiconductor region 10: inter-membrane insulating film 11: metal electrode
Claims (1)
下及び対向する側面を連続的に被覆した環状のゲート絶
縁膜、該ゲート絶縁膜の表面を連続的に被覆した環状の
ゲート電極、上記半導体領域の一端に連結したソース電
極、並びに上記半導体領域の他端に連結したドレイン電
極を具備してなる薄膜トランジスタ。1. A thin-film semiconductor region, a ring-shaped gate insulating film continuously covering upper and lower and opposite side surfaces of the semiconductor region, a ring-shaped gate electrode continuously covering the surface of the gate insulating film, A thin film transistor comprising a source electrode connected to one end of a semiconductor region, and a drain electrode connected to the other end of the semiconductor region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4173117A JPH0621455A (en) | 1992-06-30 | 1992-06-30 | Thin-film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4173117A JPH0621455A (en) | 1992-06-30 | 1992-06-30 | Thin-film transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0621455A true JPH0621455A (en) | 1994-01-28 |
Family
ID=15954459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4173117A Pending JPH0621455A (en) | 1992-06-30 | 1992-06-30 | Thin-film transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0621455A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001313395A (en) * | 2000-04-28 | 2001-11-09 | Takehide Shirato | Misfet and method of manufacturing the same |
JP2001313394A (en) * | 2000-04-28 | 2001-11-09 | Takehide Shirato | Semiconductor device |
JP2007180214A (en) * | 2005-12-27 | 2007-07-12 | Seiko Epson Corp | Semiconductor device manufacturing method, semiconductor device, and electronic apparatus |
JP2007281188A (en) * | 2006-04-06 | 2007-10-25 | Seiko Epson Corp | Transistor, pixel electrode substrate, electro-optical device, electronic apparatus, and method for manufacturing semiconductor element |
WO2011096263A1 (en) * | 2010-02-05 | 2011-08-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP2011181896A (en) * | 2010-03-03 | 2011-09-15 | Soitec Silicon On Insulator Technologies | DATA PATH CELL ON SeOI SUBSTRATE WITH BURIED BACK CONTROL GATE BENEATH INSULATING LAYER |
CN101887914B (en) | 2009-05-12 | 2012-06-27 | 杰力科技股份有限公司 | Transistor unit |
KR20150007231A (en) * | 2013-07-10 | 2015-01-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device and display device including the semiconductor device |
JP2019083341A (en) * | 1999-08-31 | 2019-05-30 | 株式会社半導体エネルギー研究所 | Semiconductor device |
-
1992
- 1992-06-30 JP JP4173117A patent/JPH0621455A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019083341A (en) * | 1999-08-31 | 2019-05-30 | 株式会社半導体エネルギー研究所 | Semiconductor device |
JP2001313394A (en) * | 2000-04-28 | 2001-11-09 | Takehide Shirato | Semiconductor device |
JP2001313395A (en) * | 2000-04-28 | 2001-11-09 | Takehide Shirato | Misfet and method of manufacturing the same |
JP2007180214A (en) * | 2005-12-27 | 2007-07-12 | Seiko Epson Corp | Semiconductor device manufacturing method, semiconductor device, and electronic apparatus |
JP2007281188A (en) * | 2006-04-06 | 2007-10-25 | Seiko Epson Corp | Transistor, pixel electrode substrate, electro-optical device, electronic apparatus, and method for manufacturing semiconductor element |
CN101887914B (en) | 2009-05-12 | 2012-06-27 | 杰力科技股份有限公司 | Transistor unit |
US12113074B2 (en) | 2010-02-05 | 2024-10-08 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
TWI552346B (en) * | 2010-02-05 | 2016-10-01 | 半導體能源研究所股份有限公司 | Semiconductor device and method for manufacturing the same |
JP2013232657A (en) * | 2010-02-05 | 2013-11-14 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
US8878180B2 (en) | 2010-02-05 | 2014-11-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US11749686B2 (en) | 2010-02-05 | 2023-09-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9202923B2 (en) | 2010-02-05 | 2015-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including oxide semiconductor |
JP2016054325A (en) * | 2010-02-05 | 2016-04-14 | 株式会社半導体エネルギー研究所 | Semiconductor device |
JP2011181913A (en) * | 2010-02-05 | 2011-09-15 | Semiconductor Energy Lab Co Ltd | Semiconductor device and manufacturing method of semiconductor device |
TWI559556B (en) * | 2010-02-05 | 2016-11-21 | 半導體能源研究所股份有限公司 | Semiconductor device and method for manufacturing the same |
US9728555B2 (en) | 2010-02-05 | 2017-08-08 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9991288B2 (en) | 2010-02-05 | 2018-06-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
WO2011096263A1 (en) * | 2010-02-05 | 2011-08-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US10615179B2 (en) | 2010-02-05 | 2020-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US11101295B2 (en) | 2010-02-05 | 2021-08-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US11469255B2 (en) | 2010-02-05 | 2022-10-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP2011181896A (en) * | 2010-03-03 | 2011-09-15 | Soitec Silicon On Insulator Technologies | DATA PATH CELL ON SeOI SUBSTRATE WITH BURIED BACK CONTROL GATE BENEATH INSULATING LAYER |
KR20150007231A (en) * | 2013-07-10 | 2015-01-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device and display device including the semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5430320A (en) | Thin film transistor having a lightly doped drain and an offset structure for suppressing the leakage current | |
US5757030A (en) | Thin film transistor with an insulating film having an increased thickness on a periphery of a semiconductor island | |
JPH06148685A (en) | Liquid crystal display device | |
JPH05129608A (en) | Semiconductor device | |
GB2197985A (en) | Liquid crystal display | |
EP0683525B1 (en) | Thin-film transistor array for display | |
US5523865A (en) | Liquid-crystal display top gate thin film transistor with particular connection between the drain and the display electrode | |
WO2010119689A1 (en) | Semiconductor device and manufacturing method therefor | |
JPH0621455A (en) | Thin-film transistor | |
JPH09146118A (en) | Semiconductor device and liquid crystal display device | |
JP3452981B2 (en) | Semiconductor integrated circuit and manufacturing method thereof | |
US5897344A (en) | Method of making a thin film semiconductor device | |
JPH1065174A (en) | Thin-film transistor and its manufacture | |
JPH06175154A (en) | Production of liquid crystal display device | |
JPH1197699A (en) | Thin-film transistor | |
JPH04366924A (en) | Manufacture of active matrix substrate | |
JPH08172195A (en) | Thin film transistor | |
US5648146A (en) | Metallic wiring substrate | |
JP3291069B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH05232506A (en) | Liquid crystal display device | |
JP4197270B2 (en) | Method for manufacturing semiconductor integrated circuit | |
JPH10200125A (en) | Thin-film transistor and its manufacture | |
JPS6380570A (en) | Manufacturing method of thin film transistor | |
JP3011210B2 (en) | Active matrix substrate manufacturing method | |
JPH0936370A (en) | Method for manufacturing coplanar type thin-film transistor |