JPH06213548A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH06213548A JPH06213548A JP590193A JP590193A JPH06213548A JP H06213548 A JPH06213548 A JP H06213548A JP 590193 A JP590193 A JP 590193A JP 590193 A JP590193 A JP 590193A JP H06213548 A JPH06213548 A JP H06213548A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- temperature
- refrigerator
- cooler
- refrigerating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004804 winding Methods 0.000 claims abstract description 22
- 238000001816 cooling Methods 0.000 claims description 28
- 238000001514 detection method Methods 0.000 claims description 17
- 238000007710 freezing Methods 0.000 claims description 9
- 230000008014 freezing Effects 0.000 claims description 9
- 239000007858 starting material Substances 0.000 claims description 2
- 230000002354 daily effect Effects 0.000 claims 2
- 230000003203 everyday effect Effects 0.000 claims 1
- 238000005057 refrigeration Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 13
- 235000013305 food Nutrition 0.000 description 11
- 230000007423 decrease Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Compressor (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
(57)【要約】
【目的】 始動時での圧縮機モータの補助巻線の通電時
間を最小にし、始動時での騒音の発生を低減する。
【構成】 マイコン6は、スイッチ3,2を閉じて圧縮
機モータ1を始動させ、予め設定した時間後、スイッチ
3をオフにし、始動検出器4によってモータ電流値を検
出する。このとき、モータ電流値が大きいならば、始動
が良好になされなかったことになり、再度スイッチ3,
2を閉じて圧縮機モータ1を始動させ、上記設定時間よ
りも長い時間を設定してスイッチ3をオフさせる。この
ようにして、順次設定時間を変化させながら始動検出器
4でモータ電流を検出し、始動開始時の電流値よりも充
分小さい電流値が検出されると、このとき良好な始動が
行なわれたことになり、このときの設定時間を最小始動
時間とし、以後、この最小始動時間で始動させるように
する。
(57) [Summary] [Purpose] Minimize the energization time of the auxiliary winding of the compressor motor at start-up, and reduce the generation of noise at start-up. [Structure] The microcomputer 6 closes the switches 3 and 2 to start the compressor motor 1, turns off the switch 3 after a preset time, and detects a motor current value by a start detector 4. At this time, if the motor current value is large, it means that the starting was not performed properly, and the switch 3,
2 is closed, the compressor motor 1 is started, a time longer than the set time is set, and the switch 3 is turned off. In this way, the motor current is detected by the start detector 4 while sequentially changing the set time, and when a current value that is sufficiently smaller than the current value at the start of the start is detected, good start is performed at this time. Therefore, the set time at this time is set as the minimum starting time, and thereafter the engine is started at this minimum starting time.
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷却器用圧縮機を備え
た冷蔵庫に係り、特に、この冷却器用圧縮機の始動方法
及び冷蔵庫の温度制御に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator provided with a compressor for a cooler, and more particularly to a method of starting the compressor for a cooler and temperature control of the refrigerator.
【0002】[0002]
【従来の技術】従来の冷却器用圧縮機を備えた冷蔵庫に
おいては、実公昭61−35753号公報に記載のよう
に、正特性サ−ミスタを用いた始動装置が設けられ、こ
れによって始動を行なっていたため、始動時間は正特性
サ−ミスタの抵抗値及び体積によって決まる一定の時間
であって、外気温度の変動や冷却器用圧縮機のばらつき
を考慮し、これらによる冷却器用圧縮機の始動不良を防
止できる程度の時間に設定されていた。また、冷蔵室内
の温度制御も、庫内温度が一定となるように行なわれ
る。2. Description of the Related Art In a conventional refrigerator having a compressor for a cooler, as described in Japanese Utility Model Publication No. 61-35753, a starting device using a positive temperature coefficient thermistor is provided for starting a refrigerator. Therefore, the starting time is a fixed time determined by the resistance value and volume of the positive temperature coefficient thermistor, and in consideration of the fluctuation of the outside air temperature and the variation of the compressor for the cooler, the starting failure of the compressor for the cooler due to these is considered. It was set to a time that could be prevented. Further, the temperature control in the refrigerating compartment is also performed so that the temperature inside the refrigerating compartment becomes constant.
【0003】[0003]
【発明が解決しようとする課題】このため、上記従来の
冷却器用圧縮機の始動装置によると、始動に要する時間
が非常に長くなる。冷却器用圧縮機モータには、主巻線
のほかに、始動時にのみ通電する補助巻線が設けられて
おり、上記のことから、始動時には、長時間補助巻線に
電流が流れることになり、これによって大きな騒音が発
生することになる。即ち、従来の冷蔵庫では、始動時の
騒音が大きいという問題があった。Therefore, according to the conventional starter for a compressor for a cooler described above, the time required for starting is extremely long. In addition to the main winding, the compressor motor for a cooler is provided with an auxiliary winding that is energized only at the time of starting.From the above, at the time of starting, a current flows through the auxiliary winding for a long time. This causes a large amount of noise. That is, the conventional refrigerator has a problem that noise at the time of starting is large.
【0004】また、冷蔵庫内の温度も一定となるように
制御されるため、大量の負荷(食品などの貯蔵物)を投
入した場合、これによって庫内温度が上昇してダンパ−
等が開き、庫内冷却ファンにより、庫内に冷気が送られ
て庫内温度が下降するが、大量の負荷のため、負荷の温
度がその貯蔵に必要な温度まで下降する前に庫内温度が
設定温度にまで下降してしまい、これを庫内温度センサ
が検出してダンパ−等を閉じ、冷気の供給が停止してし
まう。このため、負荷の温度としては、貯蔵に必要な温
度まで下降しないことになってしまう。Further, since the temperature in the refrigerator is controlled to be constant, when a large amount of load (stored material such as food) is put in, the temperature in the refrigerator rises, and the damper.
Etc., and the cooling fan sends cold air to the inside to lower the temperature inside the chamber, but due to a large amount of load, the temperature inside the chamber is lowered before the temperature of the load drops to the temperature required for storage. Falls to the set temperature, and the inside temperature sensor detects this and closes the damper etc., and the supply of cold air is stopped. Therefore, the temperature of the load will not fall to the temperature required for storage.
【0005】本発明の目的は、かかる問題を解消し、必
要最小の時間で始動し、始動時の騒音を低減することが
できるようにした冷蔵庫を提供することにある。An object of the present invention is to provide a refrigerator which solves such a problem, can be started in a minimum required time, and can reduce noise at the time of starting.
【0006】本発明の他の目的は、庫内に投入された負
荷量に拘らず、負荷温度を所定に設定できるようにした
冷蔵庫を提供することにある。Another object of the present invention is to provide a refrigerator in which the load temperature can be set to a predetermined value irrespective of the load amount put in the refrigerator.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、冷却器用圧縮機の始動不良を検出する該
検出器の検出出力を用いて該冷却器用圧縮機の始動時間
を学習し、最小始動時間を設定する制御手段を設け、該
制御手段で設定された最小始動時間で該冷却器用圧縮機
を始動させるようにする。In order to achieve the above object, the present invention learns the starting time of a compressor for a cooler by using a detection output of the detector for detecting a starting failure of the compressor for a cooler. However, the control means for setting the minimum start time is provided, and the compressor for the cooler is started at the minimum start time set by the control means.
【0008】また、本発明は、冷蔵室内の熱負荷量を推
定し、該冷蔵室内の設定温度を該推定熱負荷量に応じた
温度とする手段を設ける。Further, the present invention is provided with means for estimating the heat load amount in the refrigerating compartment and setting the set temperature in the refrigerating compartment to a temperature corresponding to the estimated heat load amount.
【0009】[0009]
【作用】冷却器用圧縮機の始動時間を種々変更させて、
その都度検出器によって始動不良か否かを判定する学習
を行ない、始動不良が生じない最も短かい始動時間を探
索する。そして、見つけ出された最も短かい時間を最小
始動時間とし、冷却器用圧縮機の始動はこの最小始動時
間で行なうようにする。また、外気温度毎に最小始動時
間を探索し、使用時の外気温度に応じた最小始動時間で
始動させる。以上により、常に、冷却器用圧縮機の補助
巻線に電流が流れる時間が必要最小のものとなり、始動
不良が生ずることなく冷却器用圧縮機が始動し、始動時
の騒音を低減できる。[Function] By changing the starting time of the compressor for the cooler variously,
Each time, the detector performs learning to determine whether or not the starting is defective, and the shortest starting time that does not cause the defective starting is searched for. Then, the shortest time found is set as the minimum starting time, and the compressor for the cooler is started at this minimum starting time. Further, the minimum starting time is searched for each outside air temperature, and the engine is started with the minimum starting time according to the outside air temperature during use. As described above, the time during which the current flows through the auxiliary winding of the cooler compressor is always the minimum required, and the cooler compressor is started without starting failure, and the noise at the start can be reduced.
【0010】また、冷蔵室内に投入された負荷量は、冷
蔵室内温度と外気温度と冷蔵室扉の開閉頻度等で推定で
きる。このようにして推定された負荷量に応じて冷蔵室
内温度設定がなされるものであるから、負荷温度を貯蔵
に必要な温度とすることができる。Further, the amount of load introduced into the refrigerating compartment can be estimated by the temperature of the refrigerating compartment, the outside air temperature, the opening / closing frequency of the refrigerating compartment door and the like. Since the refrigerating room temperature is set according to the load amount estimated in this way, the load temperature can be set to a temperature required for storage.
【0011】[0011]
【実施例】以下、本発明の実施例を図面により説明す
る。図1は本発明による冷蔵庫の一実施例を示す回路
図,ブロック図であって、同図(a)は冷却器用圧縮機
モータの駆動回路を、同図(b)はその制御系を夫々示
しており、1は冷却器用圧縮機モ−タ(以下、特別の場
合を除いて単にモータという)、1aは主巻線、1bは
補助巻線、2は冷却器用圧縮機断続用開閉器、3は始動
用開閉器、4は検出器、5は商用電源、6はマイクロコ
ンピュ−タ、7は始動用開閉器駆動回路、8は断続用開
閉器駆動回路である。Embodiments of the present invention will be described below with reference to the drawings. 1 is a circuit diagram and a block diagram showing an embodiment of a refrigerator according to the present invention. FIG. 1A shows a drive circuit of a compressor motor for a cooler, and FIG. 1B shows a control system thereof. 1 is a compressor motor for a cooler (hereinafter, simply referred to as a motor unless otherwise specified), 1a is a main winding, 1b is an auxiliary winding, 2 is a switch for connecting and disconnecting the compressor for the cooler, 3 Is a start switch, 4 is a detector, 5 is a commercial power source, 6 is a microcomputer, 7 is a start switch drive circuit, and 8 is an intermittent switch drive circuit.
【0012】図1(a)において、モ−タ1は主巻線1
aと補助巻線1bとを備えている。この補助巻線1bは
モータ1の始動時にのみ通電され、このために、補助巻
線1bに直列に始動用開閉器3が設けられている。ま
た、モータ1は冷却器用圧縮機断続用開閉器2を介して
商用電源5に接続されている。検出器4は、モータ1に
ながれる電流により、モータ1の始動の良不良を検出す
るためのものである。モータ1の始動時の電流は図2に
示すように変化する。即ち、始動開始時にモータ1に大
電流が流れるが、正常始動の場合には、実線で示すよう
に、時間経過とともに電流値が低下し、例えば約4秒後
には、始動直後の約1割程度に減少して安定化する。し
かし、始動不良の場合には、破線で示すように、電流値
は始動直後から低下せず、そのまま大電流が流れ続け
る。従って、これにより、モータ1の始動が良好である
か、不良であるかを判定することができる。In FIG. 1A, a motor 1 is a main winding 1
a and an auxiliary winding 1b. The auxiliary winding 1b is energized only when the motor 1 is started, and for this purpose, the starting switch 3 is provided in series with the auxiliary winding 1b. Further, the motor 1 is connected to a commercial power supply 5 via a switch 2 for connecting and disconnecting the compressor for the cooler. The detector 4 is for detecting whether the starting of the motor 1 is good or bad by the current flowing to the motor 1. The current at the time of starting the motor 1 changes as shown in FIG. That is, a large current flows through the motor 1 at the start of starting, but in the case of normal starting, the current value decreases with the passage of time as shown by the solid line. For example, after about 4 seconds, about 10% immediately after starting. It decreases and stabilizes. However, in the case of a start failure, the current value does not decrease immediately after the start and a large current continues to flow as it is, as indicated by the broken line. Therefore, this makes it possible to determine whether the starting of the motor 1 is good or bad.
【0013】図1(b)において、始動用開閉器駆動回
路7は始動用開閉器3を、断続用開閉器駆動回路8は冷
却器用圧縮機断続用開閉器2を夫々オン,オフ駆動する
ものであって、マイクロコンピュータ6により、検出器
4や外気温度検出器9の検出出力に応じて制御される。
冷却器用圧縮機断続用開閉器2は、冷蔵庫が使用稼動状
態にあるとき、この冷蔵庫の冷凍室内の温度を一定にた
持つために、オン,オフ制御されるものであって、冷凍
室内の温度が設定温度よりも低くなり過ぎると、オフし
てモータ1を停止させ、高くなり過ぎると、オンしてモ
ータ1を回転させる。In FIG. 1 (b), a starting switch driving circuit 7 drives a starting switch 3 and an intermittent switching drive circuit 8 drives a compressor compressor intermittent switch 2 on and off, respectively. The microcomputer 6 is controlled according to the detection outputs of the detector 4 and the outside air temperature detector 9.
The compressor on / off switch 2 for the cooler is controlled to be turned on and off in order to maintain a constant temperature in the freezer compartment of the refrigerator when the refrigerator is in use and operation. If the temperature becomes lower than the set temperature, the motor 1 is turned off to stop the motor 1, and if the temperature becomes too high, the motor 1 is turned on to rotate the motor 1.
【0014】次に、図3により、この実施例の動作を説
明する。まず、冷却器用圧縮機の始動時において、マイ
クロコンピュ−タ6が始動用開閉器駆動回路7及び断続
用開閉器駆動回路8を制御することにより、始動用開閉
器3及び断続用開閉器2をオンし(ステップ300,3
01)、モータ1の主巻線1a及び補助巻線1bに電流
が流れてモータ1が急速に始動する。そして、マイクロ
コンピュータ6は時間を計測し、始動開始から最小始動
時間とみて予め定めたN秒(例えば、4秒)経過する
と、始動用開閉器駆動回路7を制御して始動用開閉器3
をオフにし(ステップ302)、これとともに、始動検
出器4の検出出力を取り込んで、図2に示した電流の状
態から始動の良否を判定する(ステップ303)。Next, the operation of this embodiment will be described with reference to FIG. First, at the time of starting the compressor for the cooler, the microcomputer 6 controls the starting switch drive circuit 7 and the intermittent switch drive circuit 8 so that the starting switch 3 and the intermittent switch 2 are connected. Turn on (Steps 300, 3
01), a current flows through the main winding 1a and the auxiliary winding 1b of the motor 1 to start the motor 1 rapidly. Then, the microcomputer 6 measures the time, and when a predetermined start time N seconds (for example, 4 seconds) has elapsed from the start of the start, it controls the start switch drive circuit 7 to start the start switch 3.
Is turned off (step 302), and at the same time, the detection output of the start detector 4 is taken in, and the quality of the start is judged from the current state shown in FIG. 2 (step 303).
【0015】始動状態が良好であった場合には、このN
秒を最小始動時間と決定して、マイクロコンピュータ6
はこのN秒をそのまま保持するが(ステップ306)、
始動状態が良好でなかった場合には、マイクロコンピュ
−タ6は断続用開閉器駆動回路8を制御して断続用開閉
器2をオフにし(ステップ304)、上記の予め設定し
た最小始動時間N秒に例えば0.1秒を加えて新たな最
小始動時間N秒とし(ステップ305)、再びステップ
300からの制御動作を行なう。If the starting condition is good, this N
The second is determined as the minimum starting time, and the microcomputer 6
Holds this N seconds as it is (step 306),
If the starting condition is not good, the microcomputer 6 controls the disconnecting switch driving circuit 8 to turn off the disconnecting switch 2 (step 304), and the preset minimum starting time N is set. For example, 0.1 second is added to the second to make a new minimum starting time N seconds (step 305), and the control operation from step 300 is performed again.
【0016】そして、以上の制御動作が繰返し行なわれ
ることによって正常な始動動作が行なわれるようになる
と、そのとき最小始動時間としたN秒を最小時間と決定
し、これをそのまま保持する。When a normal starting operation is performed by repeating the above control operation, N seconds, which is the minimum starting time at that time, is determined as the minimum time, and this is held as it is.
【0017】このように学習が行なわれて最小始動時間
が決定されるが、この学習は、冷蔵庫の使用とは独立に
行なうようにしてもよいし、冷蔵庫の使用毎に行なわれ
てもよく、この場合には、ステップ306に続いて冷蔵
庫は使用稼動状態となる。Although the learning is carried out in this way to determine the minimum starting time, this learning may be carried out independently of the use of the refrigerator, or may be carried out each time the refrigerator is used, In this case, following step 306, the refrigerator is put into use and operation.
【0018】また、以上は外気温度を考慮していない
が、外気温度に応じて最小始動時間を設定することがで
きる。即ち、マイクロコンピュータ6には、予め各外気
温度毎に最小始動時間とみなす時間が設定されており、
図3に示した上記学習動作によって最小始動時間が決ま
ると、マイクロコンピュータ6は、この決定された最小
始動時間と、このときの外気温度検出器9によって検出
される外気温度情報とを対にして保持する。これは、各
外気温度について行なわれ、その後モータ1を始動する
ときには、マイクロコンピュータ6は、外気温度検出器
9からこのときの外気温度を検出し、この外気温度に対
する最小始動時間でモータ1を始動動作させる。このよ
うにして、外気温度毎に最適な最小始動時間でモータ1
を始動させることができる。Although the outside air temperature is not taken into consideration above, the minimum starting time can be set according to the outside air temperature. That is, in the microcomputer 6, a time considered as the minimum starting time is preset for each outside air temperature,
When the minimum starting time is determined by the learning operation shown in FIG. 3, the microcomputer 6 pairs the determined minimum starting time with the outside air temperature information detected by the outside air temperature detector 9 at this time. Hold. This is performed for each outside air temperature, and when the motor 1 is subsequently started, the microcomputer 6 detects the outside air temperature at this time from the outside air temperature detector 9 and starts the motor 1 with the minimum starting time for this outside air temperature. To operate. In this way, the motor 1 can be operated with the optimum minimum starting time for each outside air temperature.
Can be started.
【0019】なお、この外気温度毎に最小始動時間を設
定する場合には、外気温度を例えば5℃ずつに区分し、
夫々の区分毎に最小始動時間を設定し、検出される外気
温度が入る区分に対応した最小始動時間を使用して始動
が行なわれるようにする。When the minimum starting time is set for each outside air temperature, the outside air temperature is divided into, for example, 5 ° C.,
The minimum starting time is set for each of the sections, and the starting is performed using the minimum starting time corresponding to the section in which the detected outside air temperature enters.
【0020】また、かかる外気温度毎の最小始動時間の
学習は、冷蔵庫の使用とは独立に行なうようにしてもよ
いし、冷蔵庫の使用毎に行なわれるようにしてもよい。The learning of the minimum starting time for each outside air temperature may be performed independently of the use of the refrigerator or may be performed each time the refrigerator is used.
【0021】さらに、図3に示した制御動作では、最小
始動時間が長くなる方向にのみ補正を加えていくもので
あったが、図3において、さらに、ステップ303で正
常な始動が行なわれたと判定されたとき、このときの最
小始動時間N秒に例えば0.1秒を減算して新たな最小
始動時間とし、これでもってステップ300からの制御
動作を再開し、同様に始動が正常でなくなるまでこの制
御動作を繰り返して、始動が正常に行なわれなくなる
と、これより1つまえの最小始動時間をそのときの外気
温度での最小始動時間と決定するようにしてもよい。こ
れによると、予め設定する最小始動時間を大まかにでき
て、あるいはまた、予め設定する最小始動時間を全ての
外気温度に対して等しくしても、さらに良好な最小始動
時間を得ることができる。Further, in the control operation shown in FIG. 3, the correction is made only in the direction in which the minimum starting time becomes longer, but in FIG. 3, further, it is said that the normal starting is performed in step 303. When it is determined, 0.1 second is subtracted from the minimum starting time N seconds at this time to obtain a new minimum starting time. With this, the control operation from step 300 is restarted, and similarly the starting is not normal. The control operation may be repeated up to this time, and when the starting is not normally performed, the immediately preceding minimum starting time may be determined as the minimum starting time at the outside air temperature at that time. According to this, the preset minimum starting time can be roughly set, or even if the preset minimum starting time is made equal to all the outside air temperatures, an even better minimum starting time can be obtained.
【0022】以上のように、この実施例では、外気温度
や個々の冷却器用圧縮機のばらつきに対し、最良の最小
始動時間を簡単に決めることができ、始動時の騒音を有
効に低減することができる。As described above, in this embodiment, it is possible to easily determine the optimum minimum starting time with respect to variations in the outside air temperature and compressors for individual coolers, and to effectively reduce the noise during starting. You can
【0023】図4は本発明による冷蔵庫の他の実施例を
示す回路図,ブロック図であって、同図(a)は電動ダ
ンパーの駆動回路を、同図(b)はその制御系を夫々示
しており、10は電動ダンパー、10aはダンパーモー
タ、10bはダンパ−開閉スイッチ、11は電動ダンパ
−用開閉器、12は冷蔵室内温度検出器、13は冷蔵室
扉開閉検出器、14は電動ダンパー駆動回路、15は冷
凍室内温度検出器、16は圧縮機冷却ファン駆動回路で
あり、図1に対応する部分には同一符号をつけている。FIG. 4 is a circuit diagram and a block diagram showing another embodiment of the refrigerator according to the present invention. FIG. 4 (a) shows the drive circuit of the electric damper, and FIG. 4 (b) shows its control system. In the figure, 10 is an electric damper, 10a is a damper motor, 10b is a damper opening / closing switch, 11 is an electric damper opening / closing switch, 12 is a refrigerating compartment temperature detector, 13 is a refrigerating compartment door opening / closing detector, and 14 is electric. A damper drive circuit, 15 is a freezer compartment temperature detector, and 16 is a compressor cooling fan drive circuit, and the parts corresponding to those in FIG.
【0024】図4において、電動ダンパ−10はダンパ
−モ−タ10aとこの回転によって開閉されるダンパ−
開閉スイッチ10bとによって構成されており、このダ
ンパ−モ−タ10aは電動ダンパ−用開閉器11を介し
て商用電源5に接続されている。この電動ダンパ−用開
閉器11は電動ダンパー駆動回路14によって駆動さ
れ、マイクロコンピュータ6からの制御信号に応じて閉
じ、これによってダンパーモータ10aが所定量回転す
ると開く。このようにダンパーモータ10aが所定量回
転する毎にダンパ−開閉スイッチ10bが交互に開,閉
する。In FIG. 4, an electric damper 10 includes a damper motor 10a and a damper which is opened and closed by this rotation.
The damper motor 10a is connected to the commercial power source 5 through the switch 11 for the electric damper. The electric damper switch 11 is driven by an electric damper drive circuit 14 and is closed in response to a control signal from the microcomputer 6 to open when the damper motor 10a rotates by a predetermined amount. In this way, the damper-open / close switch 10b is alternately opened and closed every time the damper motor 10a rotates by a predetermined amount.
【0025】かかる電動ダンパ−10は、図5に示すよ
うに、冷蔵庫の冷凍室17と冷蔵室18との間を結ぶ冷
気の通路19中に配置されており、上記のように、ダン
パー開閉スイッチ10bが開くと、ダンパー20が開い
て通路19を開状態とし、ダンパーモータ10aの次の
回転でダンパー開閉スイッチ10bが閉じると、ダンパ
ー20が閉じて通路19を閉状態とする。As shown in FIG. 5, the electric damper 10 is arranged in a cold air passage 19 connecting the freezing compartment 17 and the refrigerating compartment 18 of the refrigerator, and as described above, the damper opening / closing switch. When 10b is opened, the damper 20 is opened to open the passage 19, and when the damper opening / closing switch 10b is closed by the next rotation of the damper motor 10a, the damper 20 is closed and the passage 19 is closed.
【0026】圧縮機22や冷却ファン21は、圧縮機冷
却ファン駆動回路16により、マイクロコンピュータ6
からの制御信号に応じて駆動制御される。圧縮機22が
動作するときには、冷却ファン21も動作し、圧縮機2
2で得られる冷気が冷却ファン21によって冷凍室17
に送りこまれる。また、ダンパー20が開いているとき
には、この冷気が通路19を介して冷蔵室18にも送り
こまれる。The compressor 22 and the cooling fan 21 are connected to the microcomputer 6 by the compressor cooling fan drive circuit 16.
The drive is controlled in accordance with the control signal from. When the compressor 22 operates, the cooling fan 21 also operates and the compressor 2
The cold air obtained in 2 is supplied to the freezer 17 by the cooling fan 21.
Sent to. Further, when the damper 20 is open, this cold air is also sent to the refrigerating chamber 18 through the passage 19.
【0027】図4に戻って、マイクロコンピュータ6
は、冷凍室内温度検出器15によって冷蔵室18(図
5)の室内温度を、冷蔵室内温度検出器12によって冷
凍室17(図5)の室内温度を、外気温度検出器9によ
って外気温度を、冷蔵室扉開閉検出器13によって冷蔵
室の扉の開閉時間やその開閉頻度を夫々検出しており、
さらに、ダンパー開閉スイッチ10bの開閉状態を検出
する電動ダンパー開閉検出器10cでもってダンパー
(図5)の開閉状態を検出する。そして、かかる検出出
力に応じて、マイクロコンピュータ6は、電動ダンパー
駆動回路14及び圧縮機冷却ファン駆動回路16を次の
ように制御する。Returning to FIG. 4, the microcomputer 6
Are the indoor temperature of the refrigerating room 18 (FIG. 5) by the freezing room temperature detector 15, the indoor temperature of the freezing room 17 (FIG. 5) by the refrigerating room temperature detector 12, and the outside air temperature by the outside air temperature detector 9. The refrigerator compartment door opening / closing detector 13 detects the opening / closing time of the refrigerator compartment door and its opening / closing frequency,
Further, the opening / closing state of the damper (FIG. 5) is detected by the electric damper opening / closing detector 10c which detects the opening / closing state of the damper opening / closing switch 10b. Then, according to the detection output, the microcomputer 6 controls the electric damper drive circuit 14 and the compressor cooling fan drive circuit 16 as follows.
【0028】冷凍室17(図5)では、設定温度が設け
られており、マイクロコンピュータ6は常時冷凍室内温
度検出器15の検出出力によってその室内温度を検出
し、この室内温度が設定温度よりも高くなると、圧縮機
冷却ファン駆動回路16を動作させて圧縮機22と冷却
ファン21(図5)を動作させる。これにより、圧縮機
22からの冷気が、冷却ファン21により、冷凍室17
に送りこまれる。これによって冷凍室17の室内温度が
低下していき、設定温度以下となると、マイクロコンピ
ュータ6は圧縮機冷却ファン駆動回路16を制御して、
圧縮機22及び冷却ファン21を停止させる。A set temperature is provided in the freezer compartment 17 (FIG. 5), and the microcomputer 6 constantly detects the room temperature by the detection output of the freezer compartment temperature detector 15, and the room temperature is higher than the set temperature. When the temperature rises, the compressor cooling fan drive circuit 16 is operated to operate the compressor 22 and the cooling fan 21 (FIG. 5). Thereby, the cool air from the compressor 22 is supplied to the freezer 17 by the cooling fan 21.
Sent to. As a result, the indoor temperature of the freezer compartment 17 decreases, and when the temperature falls below the set temperature, the microcomputer 6 controls the compressor cooling fan drive circuit 16 and
The compressor 22 and the cooling fan 21 are stopped.
【0029】冷蔵室18(図5)でも、設定温度が設け
られており、マイクロコンピュータ6は常時冷蔵室内温
度検出器12の検出出力によってその室内温度を検出
し、この室内温度が設定温度よりも高くなると、電動ダ
ンパー駆動回路14を動作させてダンパー20を開かせ
る。これにより、圧縮機22からの冷気は、冷却ファン
21により、通路19を介して冷蔵室18に送りこまれ
る。これによって冷蔵室18の室内温度が低下してい
き、設定温度以下となると、電動ダンパー駆動回路14
を制御してダンパー20を閉じさせ、電動ダンパー開閉
検出器10cでこれを検出して動作の終了を確認する。The refrigerating compartment 18 (FIG. 5) is also provided with a set temperature, and the microcomputer 6 constantly detects the room temperature by the detection output of the refrigerating compartment temperature detector 12, and the room temperature is higher than the set temperature. When it becomes higher, the electric damper drive circuit 14 is operated to open the damper 20. As a result, the cool air from the compressor 22 is sent to the refrigerating chamber 18 via the passage 19 by the cooling fan 21. As a result, the indoor temperature of the refrigerating room 18 decreases, and when the temperature falls below the set temperature, the electric damper drive circuit 14
Is controlled to close the damper 20, and the electric damper open / close detector 10c detects this to confirm the end of the operation.
【0030】かかる構成において、この実施例では、圧
縮機22及び冷却ファン21が停止時に扉を開いて冷蔵
室内に投入される食品等の収納物の温度を素早く設定温
度にまで到達させるようにする。この場合、食品等が投
入されたか否かを検知する必要がある。通常、圧縮機2
2及び冷却ファン21の停止時に食品等が投入されると
きには、冷蔵庫の室内温度が上昇するから、この温度上
昇があったことから食品等が投入されたと判定すること
も考えられるが、冷蔵室の扉を開閉するだけで室内の温
度が上昇するし、また、この場合、外気温度に応じて温
度上昇の傾向が異なる。従って、室内温度の上昇だけで
は、食品等が投入されたか否かを判定することができな
い。In such a structure, in this embodiment, when the compressor 22 and the cooling fan 21 are stopped, the doors are opened so that the temperature of the stored items such as foods put into the refrigerating chamber can quickly reach the set temperature. . In this case, it is necessary to detect whether food or the like has been added. Usually compressor 2
2 When food or the like is put in when the cooling fan 21 is stopped, the room temperature of the refrigerator rises. Therefore, it may be possible to judge that the food or the like has been put in due to this temperature rise. The temperature of the room rises just by opening and closing the door, and in this case, the tendency of the temperature rise changes depending on the outside air temperature. Therefore, it is not possible to determine whether or not food or the like has been added only by increasing the room temperature.
【0031】そこで、この実施例では、図6に示すよう
に、冷蔵室の室内温度の上昇傾向600と冷蔵室の扉の
開放時間,開閉頻度601と外気温度602とから冷蔵
室内に投入された負荷量(食品等の量)を推定し(60
3)、この負荷量に応じて冷蔵室の設定温度を変更する
ようにする(604)。冷蔵室の室内温度の上昇は、上
記のように、冷蔵室内に投入される負荷量に応じて上昇
するのであるが、さらに、冷蔵室の扉の開放時間,開閉
頻度や外気温度に応じても上昇するから、冷蔵室の室内
温度の上昇から冷蔵室の扉の開放時間,開閉頻度や外気
温度による温度上昇分を差し引くことにより、冷凍室内
に投入される負荷量を推定しようとするものである。以
下、かかる推定方法の一具体例について説明する。Therefore, in this embodiment, as shown in FIG. 6, the temperature inside the refrigerating room is increased 600, the opening time of the door of the refrigerating room, the opening / closing frequency 601, and the outside air temperature 602 are introduced into the refrigerating room. Estimate the load (amount of food etc.) (60
3) Then, the set temperature of the refrigerating compartment is changed according to the load amount (604). As described above, the rise in the indoor temperature of the refrigerating room rises according to the amount of load put into the refrigerating room, but it also depends on the opening time of the refrigerating room, the opening / closing frequency, and the outside air temperature. Since the temperature rises, it is intended to estimate the amount of load put into the freezer compartment by subtracting the temperature increase due to the open time of the refrigerator compartment door, the opening / closing frequency and the outside air temperature from the rise in the indoor temperature of the refrigerator compartment. . Hereinafter, a specific example of such an estimation method will be described.
【0032】いま、冷蔵室の扉の各開放時間の和(開放
回数と開放時間を積算した時間)を積算開放時間とする
と、圧縮機と冷却ファンとが停止している間での室内温
度の上昇変化は図7に示すようになり、しかも、外気温
度が高いほど温度上昇は大きくなる。また、冷蔵室に投
入される負荷量に対する室内温度の上昇変化は図8に示
すようになり、負荷温度が高いほど温度上昇は大きくな
る。従って、図7及び図8により、扉の開放積算時間が
少なくて室内温度が上昇した場合には、冷蔵室に負荷が
投入されたと判断し、扉の開閉と負荷の投入とで室内温
度上昇があった場合には、この室内温度上昇から扉の開
閉による温度上昇分を差し引いた温度上昇分を負荷が投
入されたことによる上昇分と判断する。そして、投入さ
れた負荷量が多い場合には、冷蔵室の設定温度を下げ、
投入された負荷量が少ない場合には、その設定温度を変
えるないようにする。Now, assuming that the sum of the opening times of the doors of the refrigerating room (the total number of times of opening and the opening time is integrated) is the integrated opening time, the indoor temperature of the room while the compressor and the cooling fan are stopped is shown. The increase change is as shown in FIG. 7, and the higher the outside air temperature, the greater the temperature increase. Further, the change in increase in the room temperature with respect to the load amount input to the refrigerating room is as shown in FIG. 8, and the higher the load temperature, the larger the temperature increase. Therefore, according to FIG. 7 and FIG. 8, when the door open accumulated time is short and the room temperature rises, it is determined that the load is applied to the refrigerating room, and the room temperature rises when the door is opened and closed and the load is applied. If there is, the temperature rise obtained by subtracting the temperature rise due to the opening and closing of the door from this room temperature rise is determined to be the rise due to the load being applied. If the input load is large, lower the set temperature of the refrigerator compartment,
If the applied load is small, do not change the set temperature.
【0033】かかる室内設定温度シフト方法の例を図9
に示す。同図において、通常は、冷蔵室の室内温度がT
1になると、図5で説明したように、ダンパー20が開
いて冷蔵室18が冷却され、室内温度がT2にまで下が
ると、ダンパー20が閉じ、これが繰り返されることに
より、冷蔵室18内がT2〜T1の範囲の温度に保たれ
るように設定温度が定められているものとすると、圧縮
機22と冷却ファン21の停止中に負荷が多量に投入さ
れた場合、図示するように、冷蔵庫の室内温度が温度T
1を越えて上昇する。そこで、ダンパー20を開き、冷
蔵室18の室内温度がT2よりも低いT3まで下がるよ
うに、投入された負荷量に応じて冷蔵室の新たな設定温
度が決められる。これにより、投入された負荷は素早く
冷却され、その後は元の設定温度に戻されて室内温度を
T2〜T1の範囲内に保つようにする。An example of such an indoor set temperature shift method is shown in FIG.
Shown in. In the figure, the indoor temperature of the refrigerator compartment is usually T
When it becomes 1, as shown in FIG. 5, the damper 20 is opened to cool the refrigerating compartment 18, and when the room temperature drops to T2, the damper 20 is closed. By repeating this, the interior of the refrigerating compartment 18 becomes T2. Assuming that the set temperature is set so as to be maintained at a temperature in the range from to T1, when a large amount of load is input while the compressor 22 and the cooling fan 21 are stopped, as shown in the figure, Room temperature is temperature T
Rise above 1. Therefore, the damper 20 is opened, and a new set temperature of the refrigerating compartment is determined according to the input load amount so that the room temperature of the refrigerating compartment 18 drops to T3 which is lower than T2. As a result, the applied load is quickly cooled and then returned to the original set temperature to keep the room temperature within the range of T2 to T1.
【0034】このようにして、この実施例では、負荷の
温度を、それが投入されると、直ちに貯蔵に必要な冷蔵
室の設定温度にまで低下させることができる。In this way, in this embodiment, the temperature of the load can be immediately lowered to the preset temperature of the refrigerating compartment required for storage when the load is turned on.
【0035】図10は図5(b)における冷蔵室扉開閉
検出器13の一具体例を示す回路図であって、23はド
アスイッチ、24は室内灯、25はフォトカプラであ
り、6は図5(b)におけるマイクロコンピュータであ
る。FIG. 10 is a circuit diagram showing a specific example of the refrigerator compartment door open / close detector 13 in FIG. 5B, in which 23 is a door switch, 24 is an interior light, 25 is a photocoupler, and 6 is It is the microcomputer in FIG.
【0036】同図において、ドアスイッチ23は、図1
1に示すように、冷蔵室18の側面に取付けられ、冷蔵
室18の扉26が開いている時にはオン状態となり、扉
26が閉じているときにはオフ状態となる。そして、こ
のドアスイッチ23がオン状態になると、冷蔵室18内
の室内灯24が点灯し、これとともに、フォトカプラ2
5を介して高レベルの扉開閉信号がマイクロコンピュー
タ6に供給される。また、扉26が閉じてドアスイッチ
23がオフしているときには、冷蔵室18内の室内灯2
4が消灯し、これとともに、フォトカプラ25を介して
低レベルの扉開閉信号がマイクロコンピュータ6に供給
される。従って、高レベルの扉開閉信号の供給回数を係
数することにより、扉26の開閉頻度を検出することが
でき、また、扉開閉信号の高レベル期間の計測により、
扉26の開放時間を検出することができる。In FIG. 1, the door switch 23 is shown in FIG.
As shown in FIG. 1, it is attached to the side surface of the refrigerating compartment 18 and is in an on state when the door 26 of the refrigerating compartment 18 is open, and is in an off state when the door 26 is closed. Then, when the door switch 23 is turned on, the interior lamp 24 in the refrigerating compartment 18 is turned on, and together with this, the photocoupler 2
A high level door opening / closing signal is supplied to the microcomputer 6 via 5. When the door 26 is closed and the door switch 23 is off, the interior lamp 2 in the refrigerating compartment 18 is
4 is turned off, and at the same time, a low level door opening / closing signal is supplied to the microcomputer 6 via the photocoupler 25. Therefore, it is possible to detect the opening / closing frequency of the door 26 by multiplying the number of times the high-level door opening / closing signal is supplied, and by measuring the high-level period of the door opening / closing signal,
The opening time of the door 26 can be detected.
【0037】図12は本発明による冷蔵庫のさらに他の
実施例の動作を示すフローチャートである。この実施例
は、冷蔵室の扉の開閉回数が多くても、食品等の負荷の
温度を上昇させないようにしたものであり、冷蔵室の扉
の開閉パタ−ンを学習することにより、予め扉の開閉回
数が多い時間を予知できるようにし、この時間で設定温
度を下げておくものである。FIG. 12 is a flow chart showing the operation of another embodiment of the refrigerator according to the present invention. In this embodiment, even if the number of times the refrigerator compartment door is opened and closed is large, the temperature of the load of food or the like is not increased. By learning the opening / closing pattern of the refrigerator compartment door, the door is opened in advance. This makes it possible to predict a time when the number of times of opening and closing is large, and the set temperature is lowered at this time.
【0038】図12において、例えば1時間毎の冷蔵室
の扉の開閉回数を、例えば図10に示した具体例での扉
開閉信号により、カウントし(ステップ1201)、こ
れによって得られた開閉回数が予め決められた設定回数
以上か否か判定する(ステップ1202)。そして、設
定回数以上となる開閉回数の日時をメモリに記憶してお
き(ステップ1203)、これを所定日数(例えば5日
間)繰り返し、この5日間同じとなる時間帯を検出する
(ステップ1204)。このようにして、扉の開閉回数
が多い時間帯が検出される。In FIG. 12, for example, the number of times the refrigerator compartment door is opened / closed per hour is counted by the door opening / closing signal in the specific example shown in FIG. 10 (step 1201), and the number of times the door is opened / closed is obtained. Is determined to be equal to or greater than a preset number of times (step 1202). Then, the date and time of the number of times of opening and closing that is equal to or more than the set number of times is stored in the memory (step 1203), this is repeated for a predetermined number of days (for example, 5 days), and the same time zone for these 5 days is detected (step 1204). In this way, the time zone in which the number of times the door is opened and closed is large is detected.
【0039】かかる学習によって検出される時間帯が、
例えば午後6〜午後7時とすると、この時間帯では冷蔵
室の扉の開閉が頻繁に行なわれるから、この時間帯の例
えば1時間前の午後5時から冷蔵室の設定温度を下方に
変更(ステップ1205)して収納されている食品等の
温度を低めておき、この午後6〜午後7時の時間帯で頻
繁に扉が開閉されても、食品等の温度が上昇するのを防
止する。かかる時間帯が過ぎると、冷蔵室の設定温度を
元に戻す。The time zone detected by such learning is
For example, if the time is from 6 pm to 7 pm, the door of the refrigerating room is frequently opened and closed during this time period, so the set temperature of the refrigerating room is changed downward from 5 pm, for example, one hour before this time period ( In step 1205), the temperature of the stored food or the like is lowered to prevent the temperature of the food or the like from rising even if the door is frequently opened and closed during the time period of 6 to 7 pm. When such a time period has passed, the set temperature of the refrigerating room is restored.
【0040】図13は単位時間当りの扉の開閉回数に対
する冷蔵室の室内温度の上昇を示すものであって、扉の
開閉回数が多いほど温度シフト量が多くなる、また、外
気温が高いほど、扉の同じ開閉回数でも、温度シフト量
が多くなる。FIG. 13 shows an increase in the indoor temperature of the refrigerating room with respect to the number of times of opening and closing the door per unit time. The more the number of times of opening and closing the door, the greater the temperature shift amount, and the higher the outside air temperature. The amount of temperature shift increases even if the door is opened and closed the same number of times.
【0041】[0041]
【発明の効果】以上のように、本発明によれば、冷却器
用圧縮機モータの補助巻線に流れる電流の時間を始動が
安定に行なわれる最小時間にすることができ、始動時の
騒音を低減することができる、また、始動検出器は常時
モータ電流を検出するから、冷却器用圧縮機の負荷が重
い状態での大電流をも検出して冷却器用圧縮機を停止差
せることができ、これによって冷却器用圧縮機の保護も
図ることができる。As described above, according to the present invention, the time of the current flowing through the auxiliary winding of the compressor motor for a cooler can be set to the minimum time for stable starting, and the noise during starting is reduced. Moreover, since the starting detector constantly detects the motor current, it is possible to detect the large current even when the load of the compressor for the cooler is heavy, and to stop the compressor for the cooler. This can also protect the compressor for the cooler.
【0042】また、本発明によれば、冷蔵室内に収納さ
れた負荷量を推定して設定温度を変えることにより、冷
蔵室内に収納された負荷を素早く設定温度に冷却するこ
とができる。Further, according to the present invention, the load stored in the refrigerating compartment can be quickly cooled to the set temperature by estimating the load amount stored in the refrigerating compartment and changing the set temperature.
【0043】さらに、本発明によれば、冷蔵室の扉開閉
パタ−ンを学習し、その学習結果を基に冷蔵室の設定温
度を変更するものであるから、食品の温度上昇を防止す
ることができる。Further, according to the present invention, since the door opening / closing pattern of the refrigerating compartment is learned and the set temperature of the refrigerating compartment is changed based on the learning result, the temperature rise of the food can be prevented. You can
【図1】本発明による冷蔵庫の一実施例を示す構成図で
ある。FIG. 1 is a configuration diagram showing an embodiment of a refrigerator according to the present invention.
【図2】圧縮機モータの始動時のモータ電流変化を示す
図である。FIG. 2 is a diagram showing a change in motor current at the time of starting the compressor motor.
【図3】図1に示した実施例の最小始動時間設定のため
の動作を示すフロ−チャ−トである。FIG. 3 is a flowchart showing an operation for setting a minimum starting time in the embodiment shown in FIG.
【図4】本発明による冷蔵庫の他の実施例を示す構成図
である。FIG. 4 is a configuration diagram showing another embodiment of the refrigerator according to the present invention.
【図5】図4に示した実施例での電動ダンパーの配置例
を示す断面図である。5 is a cross-sectional view showing an arrangement example of electric dampers in the embodiment shown in FIG.
【図6】図4に示した実施例の動作を示すフロ−チャ−
トである。6 is a flowchart showing the operation of the embodiment shown in FIG.
It is
【図7】冷蔵室における扉の積算開放時間と外気温度に
対する室内温度の上昇を示す図である。FIG. 7 is a diagram showing an integrated opening time of a door in a refrigerating room and a rise in indoor temperature with respect to an outside air temperature.
【図8】冷蔵室における投入負荷量に対する室内温度の
上昇を示す図である。FIG. 8 is a diagram showing an increase in the indoor temperature with respect to the input load amount in the refrigerating room.
【図9】図4に示した実施例での負荷投入にともなう冷
凍室の室内温度制御を示す図である。9 is a diagram showing the indoor temperature control of the freezing compartment upon load application in the embodiment shown in FIG.
【図10】図4における冷蔵室扉開閉検出器の一具体例
を示す回路図である。FIG. 10 is a circuit diagram showing a specific example of the refrigerator compartment door open / close detector in FIG.
【図11】冷蔵庫内での図10におけるドアスイッチの
配置例を示す斜視図である。11 is a perspective view showing an arrangement example of the door switches in FIG. 10 in a refrigerator.
【図12】本発明による冷蔵庫のさらに他の実施例の動
作を示すフローチャートである。FIG. 12 is a flowchart showing the operation of another embodiment of the refrigerator according to the present invention.
【図13】冷蔵室の扉の開閉回数に対する室内温度上昇
を示す図である。FIG. 13 is a diagram showing an increase in indoor temperature with respect to the number of times of opening and closing the door of the refrigerating room.
1 圧縮機モ−タ 1a 主巻線 1b 補助巻線 2 圧縮機断続用開閉器 3 始動用開閉器 4 始動検出器 5 商用電源 6 マイクロコンピュ−タ 7 始動用開閉器駆動回路 8 断続用開閉器駆動回路 10 電動ダンパ− 10a ダンパ−モ−タ 10b 電動ダンパ−開閉スイッチ 10c 電動ダンパ−開閉検出器 11 電動ダンパ−用開閉器 12 冷蔵室内温度検出器 13 冷蔵室扉開閉検出器 14 電動ダンパ−駆動回路 15 冷凍室内温度検出器 16 圧縮器冷却ファン駆動回路 18 冷蔵室 19 冷気の通路 20 ダンパー 21 冷却ファン 22 圧縮機 1 Compressor Motor 1a Main Winding 1b Auxiliary Winding 2 Compressor Intermittent Switch 3 Start Switch 4 Start Detector 5 Commercial Power 6 Microcomputer 7 Start Switch Driver Circuit 8 Intermittent Switch Drive circuit 10 Electric damper 10a Damper motor 10b Electric damper open / close switch 10c Electric damper open / close detector 11 Electric damper switch 12 Refrigerating room temperature detector 13 Refrigerating room door open / close detector 14 Electric damper drive Circuit 15 Freezing room temperature detector 16 Compressor cooling fan drive circuit 18 Refrigerating room 19 Cold air passage 20 Damper 21 Cooling fan 22 Compressor
Claims (11)
機と、該冷却器用圧縮機の始動時に補助巻線に電流を流
す始動用開閉器と、冷却器用圧縮機の始動不良を検出す
る検出器とを備えた冷蔵庫において、 該検出器の検出出力を用いて該冷却器用圧縮機の始動時
間を学習し、最小始動時間を設定する制御手段を設け、 該制御手段で設定された最小始動時間で該冷却器用圧縮
機を始動させることを特徴とする冷蔵庫。1. A compressor for a cooler having a main winding and an auxiliary winding, a start switch for supplying a current to the auxiliary winding when the compressor for the cooler is started, and a start failure of the compressor for the cooler is detected. In the refrigerator equipped with a detector that operates, the control unit that learns the start time of the compressor for the cooler by using the detection output of the detector and sets the minimum start time is provided, and the minimum set by the control unit is set. A refrigerator characterized in that the compressor for the cooler is started at a starting time.
機と、該冷却器用圧縮機の始動時に補助巻線に電流を流
す始動用開閉器と、該冷却器用圧縮機の始動不良を検出
する検出器と、外気温度検出器とを備えた冷蔵庫におい
て、 該検出器の検出出力と該外気温度検出器の検出出力とを
用いて該冷却器用圧縮機の始動時間を学習し、異なる外
気温度毎に該冷却器用圧縮機の最小始動時間を設定する
制御手段を設け、 検出される外気温度に対応して該制御手段で設定された
最小始動時間で該冷却器用圧縮機を始動させることを特
徴とする冷蔵庫。2. A compressor for a cooler having a main winding and an auxiliary winding, a starter switch for supplying a current to the auxiliary winding when the compressor for a cooler is started, and a start-up failure of the compressor for the cooler. In a refrigerator equipped with a detector for detecting and an outside air temperature detector, the starting time of the compressor for the cooler is learned by using the detection output of the detector and the detection output of the outside air temperature detector, and different outside air A control means is provided for setting a minimum start time of the compressor for the cooler for each temperature, and the compressor for the cooler is started at the minimum start time set by the control means in accordance with the detected outside air temperature. Characteristic refrigerator.
冷却器用圧縮機と冷却ファンモ−タとをオン,オフし、
冷蔵室内温度センサの検出出力に応じて冷蔵室内に流入
する冷気を断続する電動ダンパ−を備えた冷蔵庫におい
て、 該冷蔵室内の熱負荷量を推定し、冷蔵室内の設定温度を
該推定熱負荷量に応じた温度とする手段を設けたことを
特徴とする冷蔵庫。3. A compressor for a cooler and a cooling fan motor are turned on / off according to a detection output of a temperature sensor in a freezing room,
In a refrigerator equipped with an electric damper that interrupts the cold air flowing into the refrigerating chamber according to the detection output of the refrigerating chamber temperature sensor, the heat load amount in the refrigerating chamber is estimated, and the set temperature in the refrigerating chamber is set to the estimated heat load amount. A refrigerator provided with a means for controlling the temperature according to.
タのオフ期間での前記冷蔵室内の温度上昇量から冷蔵室
内の熱負荷量を推定することを特徴とする冷蔵庫。4. The compressor according to claim 3, wherein the means is the compressor for the cooler and the cooling fan motor.
A refrigerator, wherein a heat load amount in the refrigerating chamber is estimated from an amount of temperature increase in the refrigerating chamber during a turn-off period of the refrigerator.
タのオフ期間での前記冷蔵室内の温度上昇量のパタ−ン
を学習し、前記冷蔵室内の設定温度を変化させることを
特徴とする冷蔵庫。5. The compressor according to claim 4, wherein the means is the compressor for the cooler and the cooling fan motor.
A refrigerator characterized by learning a pattern of an amount of temperature increase in the refrigerating chamber during a turn-off period of the refrigerator to change a set temperature in the refrigerating chamber.
タのオフ期間での前記冷蔵室内の温度上昇量と外気温度
から熱負荷量を推定することを特徴とする冷蔵庫。6. The compressor according to claim 3, wherein the means is the compressor for the cooler and the cooling fan motor.
A refrigerator characterized in that a heat load amount is estimated from an amount of temperature rise in the refrigerating compartment and an outside air temperature during a turn-off period.
タのオフ期間での前記冷蔵室内の温度上昇量と冷蔵室の
扉の開閉回数とから熱負荷量を推定することを特徴とす
る冷蔵庫。7. The compressor according to claim 3, wherein the means is the compressor for the cooler and the cooling fan motor.
A refrigerator characterized in that the heat load is estimated from the amount of temperature rise in the refrigerating compartment and the number of times of opening and closing the door of the refrigerating compartment during the off period of the refrigerator.
タのオフ期間での前記冷蔵室内の温度上昇量と外気温度
と冷蔵室の扉の開閉回数とから熱負荷量を推定すること
を特徴とする冷蔵庫。8. The means according to claim 3, wherein the means is the compressor for the cooler and the cooling fan motor.
A refrigerator characterized in that a heat load amount is estimated from an amount of temperature rise in the refrigerating room, an outside air temperature, and the number of times of opening and closing a door of the refrigerating room during the off period of the refrigerator.
冷却器用圧縮機と冷却ファンモ−タとをオン,オフし、
冷蔵室内温度センサの検出出力に応じて冷蔵室内に流入
する冷気を断続する電動ダンパ−を備えた冷蔵庫におい
て、 冷蔵室の扉の開閉パタ−ンを1日毎に学習し、ほぼ同一
開閉パタ−ンが数日続いたとき、庫内設定温度を該扉の
開閉前と開閉中に変化させる手段を設けたことを特徴と
する冷蔵庫。9. A compressor for a cooler and a cooling fan motor are turned on and off according to a detection output of a temperature sensor in a freezing room,
In a refrigerator equipped with an electric damper that interrupts the cold air flowing into the refrigerating room according to the detection output of the refrigerating room temperature sensor, the opening / closing pattern of the refrigerating room door is learned every day, and the opening / closing pattern is almost the same. The refrigerator is provided with means for changing the set temperature in the refrigerator before and during opening and closing of the door when it continues for several days.
て冷却器用圧縮機と冷却ファンモ−タとをオン,オフ
し、冷蔵室内温度センサの検出出力に応じて冷蔵室内に
流入する冷気を断続する電動ダンパ−を備えた冷蔵庫に
おいて、 冷蔵室の扉の1日の開閉パタ−ンを学習し、庫内設定温
度を該扉の開閉回数に応じた温度とする手段を設けたこ
とを特徴とする冷蔵庫。10. A compressor for a cooler and a cooling fan motor are turned on / off according to a detection output of a temperature sensor of a freezing room, and cold air flowing into a refrigeration room is intermittently turned on / off according to a detection output of a temperature sensor of a refrigerating room. A refrigerator equipped with an electric damper is characterized by being provided with means for learning a daily opening / closing pattern of a refrigerating compartment door and setting a temperature inside the refrigerator to a temperature according to the number of times the door is opened / closed. refrigerator.
て冷却器用圧縮機と冷却ファンモ−タとをオン,オフ
し、冷蔵室内温度センサの検出出力に応じて冷蔵室内に
流入する冷気を断続する電動ダンパ−を備えた冷蔵庫に
おいて、 冷蔵室の扉の1日の開閉パタ−ンを学習し、庫内設定温
度を該扉の開閉回数と外気温度とに応じた温度とする手
段を設けたことを特徴とする冷蔵庫。11. A compressor for a cooler and a cooling fan motor are turned on / off according to a detection output of a temperature sensor of a freezing room, and cold air flowing into a refrigerating room is intermittently connected according to a detection output of a temperature sensor of a refrigerating room. In a refrigerator equipped with an electric damper, means for learning a daily opening / closing pattern of a refrigerator compartment door and setting a temperature inside the refrigerator to a temperature according to the number of times the door is opened / closed and the outside air temperature are provided. A refrigerator characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP590193A JPH06213548A (en) | 1993-01-18 | 1993-01-18 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP590193A JPH06213548A (en) | 1993-01-18 | 1993-01-18 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06213548A true JPH06213548A (en) | 1994-08-02 |
Family
ID=11623805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP590193A Pending JPH06213548A (en) | 1993-01-18 | 1993-01-18 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06213548A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002364937A (en) * | 2001-06-11 | 2002-12-18 | Mitsubishi Electric Corp | Refrigerator |
JP2013036637A (en) * | 2011-08-04 | 2013-02-21 | Toshiba Corp | Refrigerator |
WO2013172027A1 (en) * | 2012-05-18 | 2013-11-21 | パナソニック株式会社 | Refrigerator |
JP2013242056A (en) * | 2012-05-18 | 2013-12-05 | Panasonic Corp | Refrigerator |
JP2013242057A (en) * | 2012-05-18 | 2013-12-05 | Panasonic Corp | Refrigerator |
JP2013242059A (en) * | 2012-05-18 | 2013-12-05 | Panasonic Corp | Refrigerator |
JP2013242058A (en) * | 2012-05-18 | 2013-12-05 | Panasonic Corp | refrigerator |
WO2014017050A1 (en) * | 2012-07-25 | 2014-01-30 | パナソニック株式会社 | Refrigerator |
JP2014025605A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | refrigerator |
JP2014025604A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | Refrigerator |
JP2014025608A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | Refrigerator |
JP2014025606A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | Refrigerator |
JP2014025607A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | Refrigerator |
JP2014048001A (en) * | 2012-09-03 | 2014-03-17 | Panasonic Corp | Refrigerator |
WO2014162759A1 (en) * | 2013-04-03 | 2014-10-09 | 三菱電機株式会社 | Refrigerator |
JP2019052807A (en) * | 2017-09-15 | 2019-04-04 | 東芝ライフスタイル株式会社 | refrigerator |
JP2019535994A (en) * | 2016-11-23 | 2019-12-12 | チンダオ ハイアール ジョイント ストック カンパニー リミテッドQingdao Haier Joint Stock Co.,Ltd | Method for detecting whether or not an abnormal temperature article has been placed in a refrigerator |
EP3470758A4 (en) * | 2016-06-09 | 2020-07-29 | LG Electronics Inc. -1- | TEMPERATURE CONTEXT-CONSIDERED REFRIGERATOR AND METHOD FOR CONTROLLING THEM |
CN112212482A (en) * | 2019-07-09 | 2021-01-12 | 夏普株式会社 | Air conditioner |
-
1993
- 1993-01-18 JP JP590193A patent/JPH06213548A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002364937A (en) * | 2001-06-11 | 2002-12-18 | Mitsubishi Electric Corp | Refrigerator |
JP2013036637A (en) * | 2011-08-04 | 2013-02-21 | Toshiba Corp | Refrigerator |
WO2013172027A1 (en) * | 2012-05-18 | 2013-11-21 | パナソニック株式会社 | Refrigerator |
JP2013242056A (en) * | 2012-05-18 | 2013-12-05 | Panasonic Corp | Refrigerator |
JP2013242057A (en) * | 2012-05-18 | 2013-12-05 | Panasonic Corp | Refrigerator |
JP2013242059A (en) * | 2012-05-18 | 2013-12-05 | Panasonic Corp | Refrigerator |
JP2013242058A (en) * | 2012-05-18 | 2013-12-05 | Panasonic Corp | refrigerator |
JP2014025607A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | Refrigerator |
CN104487791A (en) * | 2012-07-25 | 2015-04-01 | 松下知识产权经营株式会社 | Refrigerator |
JP2014025604A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | Refrigerator |
JP2014025608A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | Refrigerator |
JP2014025606A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | Refrigerator |
WO2014017050A1 (en) * | 2012-07-25 | 2014-01-30 | パナソニック株式会社 | Refrigerator |
JP2014025605A (en) * | 2012-07-25 | 2014-02-06 | Panasonic Corp | refrigerator |
JP2014048001A (en) * | 2012-09-03 | 2014-03-17 | Panasonic Corp | Refrigerator |
WO2014162759A1 (en) * | 2013-04-03 | 2014-10-09 | 三菱電機株式会社 | Refrigerator |
JP2014202400A (en) * | 2013-04-03 | 2014-10-27 | 三菱電機株式会社 | Refrigerator |
CN105102911A (en) * | 2013-04-03 | 2015-11-25 | 三菱电机株式会社 | Refrigerator |
US20160018158A1 (en) * | 2013-04-03 | 2016-01-21 | Mitsubishi Electric Corporation | Refrigerator |
EP3470758A4 (en) * | 2016-06-09 | 2020-07-29 | LG Electronics Inc. -1- | TEMPERATURE CONTEXT-CONSIDERED REFRIGERATOR AND METHOD FOR CONTROLLING THEM |
US11054181B2 (en) | 2016-06-09 | 2021-07-06 | Lg Electronics Inc. | Temperature-context-aware-refrigerator and method for controlling same |
US11543176B2 (en) | 2016-06-09 | 2023-01-03 | Lg Electronics Inc. | Temperature-context-aware refrigerator and method for controlling same |
JP2019535994A (en) * | 2016-11-23 | 2019-12-12 | チンダオ ハイアール ジョイント ストック カンパニー リミテッドQingdao Haier Joint Stock Co.,Ltd | Method for detecting whether or not an abnormal temperature article has been placed in a refrigerator |
JP2019052807A (en) * | 2017-09-15 | 2019-04-04 | 東芝ライフスタイル株式会社 | refrigerator |
CN112212482A (en) * | 2019-07-09 | 2021-01-12 | 夏普株式会社 | Air conditioner |
CN112212482B (en) * | 2019-07-09 | 2023-07-04 | 夏普株式会社 | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06213548A (en) | Refrigerator | |
US5950439A (en) | Methods and systems for controlling a refrigeration system | |
KR0142739B1 (en) | Defroster of the refrigerator | |
JP3320082B2 (en) | Refrigerator control device | |
JPH0894234A (en) | Defrosting device for refrigerator | |
JP3716593B2 (en) | refrigerator | |
JP3034781B2 (en) | refrigerator | |
JP3066147B2 (en) | Showcase defrost control method | |
KR100239534B1 (en) | Dew device of refrigerator | |
JP2644852B2 (en) | Defrost control device for refrigerators, etc. | |
JPH10227555A (en) | Refrigerator control device | |
KR100288257B1 (en) | How to control the fan of the refrigerator | |
US20240230215A9 (en) | Refrigerator and control method thereof | |
JPH02103372A (en) | Defrost controller | |
KR200193593Y1 (en) | Defroster of the refrigerator | |
JPH07305904A (en) | Freezer | |
JPS6014080A (en) | Defroster | |
KR100291298B1 (en) | Defrost control device and method of the refrigerator | |
JP2924390B2 (en) | Vending machine cooling and heating control device | |
JPH06185467A (en) | Refrigerator | |
KR20070051530A (en) | How to control the fan of the refrigerator | |
JPH07139863A (en) | Refrigerator | |
JP2851194B2 (en) | Refrigerator operation device | |
KR100364774B1 (en) | A Refrigerator | |
JP2005172300A (en) | refrigerator |