JPH06212329A - Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger - Google Patents
Aluminum alloy clad material having high strength and high corrosion resistance for heat exchangerInfo
- Publication number
- JPH06212329A JPH06212329A JP5023554A JP2355493A JPH06212329A JP H06212329 A JPH06212329 A JP H06212329A JP 5023554 A JP5023554 A JP 5023554A JP 2355493 A JP2355493 A JP 2355493A JP H06212329 A JPH06212329 A JP H06212329A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- core material
- brazing
- less
- sacrificial anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 104
- 238000005260 corrosion Methods 0.000 title claims abstract description 71
- 230000007797 corrosion Effects 0.000 title claims abstract description 64
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 61
- 238000005219 brazing Methods 0.000 claims abstract description 112
- 239000011162 core material Substances 0.000 claims abstract description 111
- 239000010405 anode material Substances 0.000 claims abstract description 56
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 48
- 239000000956 alloy Substances 0.000 claims abstract description 48
- 239000012535 impurity Substances 0.000 claims abstract description 26
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 12
- 229910021364 Al-Si alloy Inorganic materials 0.000 claims abstract description 8
- 239000002131 composite material Substances 0.000 claims description 45
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 9
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 229910052738 indium Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 7
- 229910018137 Al-Zn Inorganic materials 0.000 abstract description 6
- 229910018573 Al—Zn Inorganic materials 0.000 abstract description 6
- 239000000945 filler Substances 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 abstract description 5
- 229910018134 Al-Mg Inorganic materials 0.000 abstract description 4
- 229910018467 Al—Mg Inorganic materials 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 23
- 239000010410 layer Substances 0.000 description 18
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 9
- 238000007654 immersion Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910018566 Al—Si—Mg Inorganic materials 0.000 description 1
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- -1 M By adding only g Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は自動車の熱交換器等に用
いられるアルミニウム合金複合材に関するものであり、
更に詳しくは熱交換器の冷媒通路を形成するパイプ等の
材料として用いられる熱交換器用高強度高耐食性アルミ
ニウム合金複合材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy composite material used for heat exchangers of automobiles,
More specifically, the present invention relates to a high-strength and high-corrosion-resistant aluminum alloy composite material for a heat exchanger, which is used as a material for a pipe forming a refrigerant passage of a heat exchanger.
【0002】[0002]
【従来の技術】自動車用の熱交換器にはラジエーター、
カーエアコン、インタークーラー、オイルクーラー等種
々あるが、例えばラジエーターとしては図1に示すよう
な構造のものが用いられている。図1において1はチュ
ーブ、2はフィン、3はヘッダー、4はタンクである。
チューブ1、フィン2およびヘッダー3にはアルミ材料
が用いられており、タンク4は樹脂製のものが多く用い
られている。チューブ1とフィン2とヘッダー3は弗化
物系のフラックスを使用するろう付による接合によって
一体化され、これに樹脂製タンクが機械的接合(かしめ
加工)により取り付けられて、ラジエーターが製造され
る。チューブ材としてはAl−Mn系合金である300
3合金を芯材とし芯材のフィン側(大気側)の面にAl
−Si系合金である4343合金、4045合金などの
ろう材をクラッドし、他の面(冷媒側)にAl−Zn系
合金、Al−Zn−Mg系合金などの犠牲陽極材をクラ
ッドした3層構造のアルミニウム合金複合材を電縫加工
およびロール成形加工により偏平管としたものを用いて
いる。その板厚は0.3〜0.4mmである。フィン材
としては3003合金にZnを添加して犠牲陽極作用を
持たせた材料を使用しており、その肉厚は0.08〜
0.11mmである。またヘッダー材としてはチューブ
材と同様に3003合金の芯材の大気側にろう材をクラ
ッドし、冷媒側に犠牲陽極材をクラッドしたアルミニウ
ム合金複合材が使用されており、その肉厚は1〜2mm
である。2. Description of the Related Art Radiators are used in heat exchangers for automobiles.
There are various types such as a car air conditioner, an intercooler, and an oil cooler. For example, a radiator having a structure as shown in FIG. 1 is used. In FIG. 1, 1 is a tube, 2 is a fin, 3 is a header, and 4 is a tank.
The tube 1, fins 2 and header 3 are made of aluminum material, and the tank 4 is often made of resin. The tube 1, the fin 2, and the header 3 are integrated by brazing using a fluoride-based flux, and a resin tank is attached to this by mechanical joining (caulking) to manufacture a radiator. The tube material is Al-Mn alloy 300
3 alloy as the core material and Al on the fin side (atmosphere side) of the core material
A three-layer structure in which a brazing material such as 4343 alloy or 4045 alloy, which is a Si-based alloy, is clad, and a sacrificial anode material such as an Al-Zn-based alloy or Al-Zn-Mg-based alloy is clad on the other surface (refrigerant side). The aluminum alloy composite material having a structure is made into a flat tube by electric resistance sewing and roll forming. The plate thickness is 0.3 to 0.4 mm. As the fin material, a material in which Zn is added to 3003 alloy to have a sacrificial anode function is used, and the thickness thereof is 0.08 to
It is 0.11 mm. As the header material, an aluminum alloy composite material in which a brazing material is clad on the atmosphere side of a 3003 alloy core material and a sacrificial anode material is clad on the refrigerant side is used as the header material, and the wall thickness is 1 to 1. 2 mm
Is.
【0003】そして近年では自動車の軽量化に対する要
求が強まり、それに対応するために自動車熱交換器の軽
量化も迫られている。そのため各部材の薄肉化が検討さ
れており、アルミニウム合金複合材も薄肉化のために芯
材にAl−Mn−Cu系合金、Al−Si−Mg系合
金、Al−Si−Mg−Mn系合金など従来のAl−M
n系合金に比較してより高強度で高耐食性の合金を採用
することが進められている。In recent years, there has been an increasing demand for weight reduction of automobiles, and to meet the demand, weight reduction of automobile heat exchangers has also been demanded. Therefore, thinning of each member has been studied, and for an aluminum alloy composite material, an Al-Mn-Cu-based alloy, Al-Si-Mg-based alloy, Al-Si-Mg-Mn-based alloy is used as a core material for thinning. Conventional Al-M
The adoption of alloys with higher strength and higher corrosion resistance than n-based alloys is being promoted.
【0004】[0004]
【発明が解決しようとする課題】しかるに弗化物系のフ
ラックスを使用するろう付においては、前記のようなM
gを含有する合金を芯材とするアルミニウム合金複合材
はろう付性が不安定である。例えばチューブ材として用
いるアルミニウム合金複合材では芯材に0.3wt%以上
のMgを添加すると、ろう付中にMgが芯材からろう材
中に拡散して行きろう付時に塗布したフラックス中のF
とMgが反応し、チューブ材表面にMgF化合物を形成
し、チューブ材とフィンとのろう付性を著しく劣化させ
る。またヘッダーとチューブの接合部においても同様の
ろう付不良が起こる場合がある。チューブやフィンなど
の板厚が薄い場合には、Mgは前記のようにろう付不良
の原因となるばかりではなく、ろう付中に材料中から材
料表面に拡散して芯材中のMg量が著しく低下すること
により、ろう付後の強度の低下をひき起こす。さらに
は、従来のろう材、芯材、犠牲陽極材が各々1層である
3層アルミニウム合金複合材において、芯材に0.3Wt
%以上のMgを添加した場合、芯材中のSiとMgがM
g2 Siの化合物となって、粒界に多量析出し、この析
出物によって粒界腐食を引き起こす等の問題が出てく
る。However, in brazing using a fluoride-based flux, the above-mentioned M
The brazing property of an aluminum alloy composite material having an alloy containing g as a core material is unstable. For example, in an aluminum alloy composite material used as a tube material, when 0.3 wt% or more of Mg is added to the core material, Mg diffuses from the core material into the brazing material during brazing and F in the flux applied during brazing
And Mg react with each other to form a MgF compound on the surface of the tube material, which significantly deteriorates the brazing property between the tube material and the fin. Similar brazing defects may also occur at the joint between the header and the tube. When the thickness of the tubes and fins is thin, Mg not only causes brazing failure as described above, but also diffuses from the material to the material surface during brazing and the amount of Mg in the core material The significant decrease causes a decrease in strength after brazing. Furthermore, in the conventional three-layer aluminum alloy composite material in which the brazing material, the core material, and the sacrificial anode material each have one layer, the core material has 0.3 Wt.
% Of Mg is added, the Si and Mg in the core material are M
As a compound of g 2 Si, a large amount is precipitated at the grain boundaries, and this precipitate causes a problem such as intergranular corrosion.
【0005】[0005]
【課題を解決するための手段】本発明は、特に薄肉のラ
ジエーターチューブ材として用いるアルミニウム合金複
合材において、芯材からろう材中へのMgの拡散による
ろう付性の低下を防止し、なおかつ、ろう付後に高強度
高耐食性を有するアルミニウム合金複合材を開発したも
のである。即ち、請求項1記載の発明は、芯材の片面に
Al−Si系合金のろう材を、他の面にAl−Zn系合
金、Al−Zn系合金、またはAl−Zn−Mg系合金
等の犠牲陽極材をクラッドしたアルミニウム合金複合材
において、芯材を二層構造とし、ろう材側芯材をMn
0.5〜1.5wt%、Cu0.3〜1.5wt%、Si
0.2〜1.5wt%、Mg0.2wt%以下を含有し、残
部Alと不可避的不純物とからなるAl合金とし、犠牲
陽極材側芯材をSi0.5wt%以下、Mg1.5wt%を
超え、4.0wt%以下、Cu0.3wt%を超え、1.5
wt%以下、Mn0.5〜1.5wt%を含有し、残部Al
と不可避的不純物とからなるAl合金とし、ろう材側芯
材の厚さが芯材全体の厚さの30%以上であることを特
徴とする熱交換器用高強度高耐食性アルミニウム合金複
合材である。請求項2記載の発明は、芯材の片面にAl
−Si系合金のろう材を、他の面にAl−Zn系合金、
Al−Mg系合金、またはAl−Zn−Mg系合金等の
犠牲陽極材をクラッドしたアルミニウム合金複合材にお
いて、芯材を二層構造とし、ろう材側芯材をMn0.5
〜1.5wt%、Cu0.3〜1.5wt%、Si0.2〜
1.5wt%、Mg0.2wt%以下を含有し、さらに各々
0.05〜0.3wt%のCr、Zr、Tiのうちの1種
または2種以上を含有し、残部Alと不可避的不純物と
からなるAl合金とし、犠牲陽極材側芯材をSi0.5
wt%以下、Mg1.5wt%を超え、4.0wt%以下、C
u0.3wt%を超え、1.5wt%以下、Mn0.5〜
1.5wt%を含有し、残部Alと不可避的不純物とから
なるAl合金とし、ろう材側芯材の厚さが芯材全体の厚
さの30%以上であることを特徴とする熱交換器用高強
度高耐食性アルミニウム合金複合材である。請求項3記
載の発明は、芯材の片面にAl−Si系合金のろう材
を、他の面にAl−Zn系合金、Al−Mg系合金、ま
たはAl−Zn−Mg系合金等の犠牲陽極材をクラッド
したアルミニウム合金複合材において、芯材を二層構造
とし、ろう材側芯材をMn0.5〜1.5wt%、Cu
0.3〜1.5wt%、Si0.2〜1.5wt%、Mg
0.2wt%以下を含有し、残部Alと不可避的不純物と
からなるAl合金とし、犠牲陽極材側芯材をSi0.5
wt%以下、Mg1.5wt%を超え、4.0wt%以下、C
u0.3wt%を超え、1.5wt%以下、Mn0.5〜
1.5wt%を含有し、さらに各々0.05〜0.3wt%
のCr、Zr、Tiのうちの1種または2種以上を含有
し、残部Alと不可避的不純物とからなるAl合金と
し、ろう材側芯材の厚さが芯材全体の厚さの30%以上
であることを特徴とする熱交換器用高強度高耐食性アル
ミニウム合金複合材である。請求項4記載の発明は、芯
材の片面にAl−Si系合金のろう材を、他の面にAl
−Zn系合金、Al−Mg系合金、またはAl−Zn−
Mg系合金等の犠牲陽極材をクラッドしたアルミニウム
合金複合材において、芯材を二層構造とし、ろう材側芯
材をMn0.5〜1.5wt%、Cu0.3〜1.5wt
%、Si0.2〜1.5wt%、Mg0.2wt%以下を含
有し、さらに各々0.05〜0.3wt%のCr、Zr、
Tiのうちの1種または2種以上を含有し、残部Alと
不可避的不純物とからなるAl合金とし、犠牲陽極材側
芯材をSi0.5wt%以下、Mg1.5wt%を超え、
4.0wt%以下、Cu0.3wt%を超え、1.5wt%以
下、Mn0.5〜1.5wt%を含有し、さらに各々0.
05〜0.3wt%のCr、Zr、Tiのうちの1種また
は2種以上を含有し、残部Alと不可避的不純物とから
なるAl合金とし、ろう材側芯材の厚さが芯材全体の厚
さの30%以上であることを特徴とする熱交換器用高強
度高耐食性アルミニウム合金複合材である。DISCLOSURE OF THE INVENTION The present invention, particularly in an aluminum alloy composite material used as a thin-walled radiator tube material, prevents deterioration of brazing property due to diffusion of Mg from the core material into the brazing material, and This is an aluminum alloy composite material that has high strength and high corrosion resistance after brazing. That is, the invention according to claim 1 is such that a brazing material of an Al-Si alloy is provided on one surface of the core material and an Al-Zn alloy, an Al-Zn alloy, or an Al-Zn-Mg alloy on the other surface. In the aluminum alloy composite material clad with the sacrificial anode material, the core material has a two-layer structure, and the brazing material side core material is Mn.
0.5-1.5 wt%, Cu 0.3-1.5 wt%, Si
An Al alloy containing 0.2 to 1.5 wt% and Mg 0.2 wt% or less and the balance Al and unavoidable impurities, and the sacrificial anode material side core material is 0.5 wt% or less of Si and exceeds 1.5 wt% of Mg. 4.0 wt% or less, Cu over 0.3 wt%, 1.5
wt% or less, Mn 0.5-1.5 wt%, balance Al
And an unavoidable impurity, wherein the thickness of the brazing filler metal side core material is 30% or more of the total thickness of the core material, which is a high strength and corrosion resistant aluminum alloy composite material for a heat exchanger. . In the invention according to claim 2, Al is provided on one surface of the core material.
-Si-based alloy brazing material, Al-Zn-based alloy on the other surface,
In an aluminum alloy composite material in which a sacrificial anode material such as an Al-Mg-based alloy or an Al-Zn-Mg-based alloy is clad, the core material has a two-layer structure, and the brazing material-side core material is Mn0.5.
~ 1.5wt%, Cu0.3 ~ 1.5wt%, Si0.2 ~
1.5 wt% and Mg 0.2 wt% or less, and 0.05 to 0.3 wt% of each of Cr, Zr, and Ti of one or more kinds, and the balance Al and unavoidable impurities. Made of Al alloy and the core material on the side of the sacrificial anode material is Si0.5
wt% or less, Mg over 1.5 wt%, 4.0 wt% or less, C
u more than 0.3 wt% and 1.5 wt% or less, Mn 0.5 to
For a heat exchanger, characterized in that it is an Al alloy containing 1.5 wt% and the balance is Al and unavoidable impurities, and the thickness of the brazing material side core material is 30% or more of the total thickness of the core material. It is a high strength and high corrosion resistance aluminum alloy composite material. The invention according to claim 3 is a sacrifice such as a brazing material of an Al-Si alloy on one surface of the core material and an Al-Zn alloy, an Al-Mg alloy, or an Al-Zn-Mg alloy on the other surface. In an aluminum alloy composite material in which an anode material is clad, the core material has a two-layer structure, the brazing material side core material has Mn of 0.5 to 1.5 wt% and Cu.
0.3-1.5 wt%, Si 0.2-1.5 wt%, Mg
An Al alloy containing 0.2 wt% or less and the balance Al and unavoidable impurities is used.
wt% or less, Mg over 1.5 wt%, 4.0 wt% or less, C
u more than 0.3 wt% and 1.5 wt% or less, Mn 0.5 to
Containing 1.5wt%, each 0.05 ~ 0.3wt%
Of Cr, Zr, and Ti, and an Al alloy containing the balance Al and inevitable impurities, and the thickness of the brazing material side core material is 30% of the total thickness of the core material. The above is a high-strength and high-corrosion-resistant aluminum alloy composite material for heat exchangers. In the invention according to claim 4, the brazing material of the Al-Si alloy is provided on one surface of the core material, and the Al material is provided on the other surface of the core material.
-Zn alloy, Al-Mg alloy, or Al-Zn-
In an aluminum alloy composite material in which a sacrificial anode material such as a Mg-based alloy is clad, the core material has a two-layer structure, the brazing material side core material is Mn 0.5 to 1.5 wt%, and Cu is 0.3 to 1.5 wt.
%, Si 0.2 to 1.5 wt%, Mg 0.2 wt% or less, and 0.05 to 0.3 wt% Cr, Zr, and
An Al alloy containing one or more of Ti and the balance Al and unavoidable impurities, and the sacrificial anode material side core material has Si of 0.5 wt% or less and Mg of more than 1.5 wt%.
It contains 4.0 wt% or less, more than Cu 0.3 wt%, 1.5 wt% or less, and Mn 0.5 to 1.5 wt%, and each of them has a content of 0.
An Al alloy containing 05 to 0.3 wt% of one or more of Cr, Zr, and Ti, and the balance Al and unavoidable impurities, and the thickness of the brazing material side core material is the entire core material. Is 30% or more of the thickness of the aluminum alloy composite material for a heat exchanger.
【0006】請求項1乃至請求項4記載の発明において
犠牲陽極材としては、Zn1.3〜6.0wt%を含有
し、必要に応じてさらにSn0.01〜1.0wt%、I
n0.01〜1.0wt%、Ga0.01〜1.0wt%、
Ti0.01〜0.5wt%、Mn0.3〜1.5wt%の
うちの1種または2種以上を含有し、残部Alと不可避
的不純物とからなるAl合金、Mg0.5〜4.0wt%
を含有し、必要に応じてさらにSn0.01〜1.0wt
%、In0.01〜1.0wt%、Ga0.01〜1.0
wt%、Ti0.01〜0.5wt%、Mn0.3〜1.5
wt%のちの1種または2種以上を含有し、残部Alと不
可避的不純物とからなるAl合金、およびMg0.5〜
4.0wt%、Zn1.0〜6.0wt%を含有し、必要に
応じてさらにSn0.01〜1.0wt%、In0.01
〜1.0wt%、Ga0.01〜1.0wt%、Ti0.0
1〜0.5wt%、Mn0.3〜1.5wt%のうちの1種
または2種以上を含有し、残部Alと不可避的不純物と
からなるAl合金が望ましい。In the invention according to any one of claims 1 to 4, the sacrificial anode material contains 1.3 to 6.0 wt% Zn, and 0.01 to 1.0 wt% Sn, I if necessary.
n 0.01 to 1.0 wt%, Ga 0.01 to 1.0 wt%,
Al alloy containing one or more of 0.01 to 0.5 wt% of Ti and 0.3 to 1.5 wt% of Mn, with the balance Al and unavoidable impurities, Mg 0.5 to 4.0 wt%
Containing 0.01 to 1.0 wt% Sn, if necessary.
%, In 0.01 to 1.0 wt%, Ga 0.01 to 1.0
wt%, Ti 0.01-0.5 wt%, Mn 0.3-1.5
Al alloy containing 1% or 2 or more of wt% and balance Al and inevitable impurities, and Mg 0.5 to
4.0 wt%, Zn 1.0-6.0 wt%, and if necessary, Sn0.01-1.0 wt%, In0.01
~ 1.0 wt%, Ga0.01-1.0 wt%, Ti0.0
An Al alloy containing 1 to 0.5 wt% and 0.3 to 1.5 wt% of Mn or one or more of Mn and the balance Al and unavoidable impurities is desirable.
【0007】[0007]
【作用】本発明においては芯材を二重構造とし、ろう材
側の芯材(以下A材という)にはMgの少ない材料を用
いて、ろう材中へのMgの拡散を少なくしてろう付性の
低下を防止し、合わせてMg2 Siの粒界析出による粒
界腐食を抑制する機能を持たせている。また、犠牲陽極
材側の芯材(以下B材という)には、Mgの含有量の多
い材料を用い、強度の向上を図るとともに、ろう付時の
Mgの拡散により、B材部分が第2の犠牲陽極材となる
ことから、アルミニウム合金複合材としてのより一層の
耐孔食性向上をはかることができる。またCu添加によ
り強度、耐食性の向上を図っている。さらにMgの少な
いA材の厚さを芯材全体の厚さの30%以上とすること
により、Mg2 Siによる粒界腐食を抑制し、強度、ろ
う付性、耐食性のバランスを維持し、各々の特性を向上
させたものである。In the present invention, the core material has a double structure, and a material containing less Mg is used as the core material on the brazing material side (hereinafter referred to as A material) to reduce the diffusion of Mg into the brazing material. It has a function of preventing the deterioration of the stickiness and, at the same time, suppressing the intergranular corrosion due to the intergranular precipitation of Mg 2 Si. A material having a high Mg content is used for the core material on the side of the sacrificial anode material (hereinafter referred to as "material B") to improve the strength, and due to the diffusion of Mg during brazing, the material B portion is second Since it becomes the sacrificial anode material, the pitting corrosion resistance of the aluminum alloy composite material can be further improved. Further, Cu is added to improve strength and corrosion resistance. Furthermore, by setting the thickness of A material containing less Mg to 30% or more of the total thickness of the core material, intergranular corrosion due to Mg 2 Si is suppressed, and the balance of strength, brazing property and corrosion resistance is maintained. The characteristics of are improved.
【0008】以下A材、B材における添加元素の添加理
由と添加量の限定理由についてのべる。A材において、
Mnは強度と耐食性を向上させるために添加するもので
添加量を0.5〜1.5wt%(以下%と略記)としたの
は0.5%未満では効果がなく、1.5%を超えると塑
性加工性が低下するからである。Cuは強度と耐食性を
向上させるために添加するもので、添加量を0.3〜
1.5%としたのは0.3%未満では効果がなく1.5
%を超えると塑性加工性が低下するからである。Siは
ろう付後、マトリックス中に固溶し、強度向上に効果が
ある。添加量を0.2〜1.5%としたのは0.2%未
満では効果が少なく、1.5%を超えると単体Siが多
くなり、塑性加工性が低下し、さらにMg2 Siの粒界
析出による粒界腐食を引き起こす恐れがあるからであ
る。SiはMgとMg2 Siなる化合物を形成しろう付
後の強度向上に効果がある。0.3%未満では効果が少
なく、1.0%を超えると耐食性、塑性加工性が低下す
る。本発明ではB材中のMgをA材中にろう付加熱時に
拡散させて、A材中のSiとMg2 Siを形成させ強度
向上にさせるものである。Mgはろう付後の強度向上に
効果があるが、0.2%を超えて添加するとろう材側に
拡散してろう付性を低下させたり、Siと反応してMg
2 Siの粒界析出による粒界腐食を引き起こす恐れがあ
るので、0.2%以下とする。Cr、Zr、Tiはいず
れも強度向上に効果があるが、それぞれ0.05%未満
では効果がなく、0.3%を超えると巨大な化合物を形
成して塑性加工性を低下させる。Feは3003合金の
不純物程度の添加は良いが、少ないほど耐食性は良好と
なる。The reasons for adding the additional elements and the reasons for limiting the addition amount in materials A and B will be described below. In material A,
Mn is added to improve strength and corrosion resistance, and the amount added is 0.5 to 1.5 wt% (hereinafter abbreviated as%). This is because the plastic workability is deteriorated when it exceeds. Cu is added to improve strength and corrosion resistance, and the addition amount is 0.3 to
1.5% is not effective if less than 0.3% 1.5
This is because if it exceeds%, the plastic workability decreases. After brazing, Si forms a solid solution in the matrix and is effective in improving strength. The reason why the amount added is 0.2 to 1.5% is that if it is less than 0.2%, the effect is small, and if it exceeds 1.5%, the amount of elemental Si increases, the plastic workability deteriorates, and further Mg 2 Si This is because there is a risk of causing intergranular corrosion due to intergranular precipitation. Si forms a compound of Mg and Mg 2 Si and is effective in improving the strength after brazing. If it is less than 0.3%, the effect is small, and if it exceeds 1.0%, the corrosion resistance and plastic workability are deteriorated. In the present invention, Mg in the B material is diffused into the A material when the brazing heat is applied to form Si and Mg 2 Si in the A material to improve the strength. Mg has the effect of improving the strength after brazing, but if added in excess of 0.2%, it diffuses to the brazing material side and reduces brazing properties, and reacts with Si to reduce Mg.
Since there is a risk of causing intergranular corrosion due to the intergranular precipitation of 2 Si, the content is made 0.2% or less. Cr, Zr, and Ti all have an effect of improving strength, but if each is less than 0.05%, they have no effect, and if they exceed 0.3%, a huge compound is formed to reduce plastic workability. Although it is preferable to add Fe to the extent of impurities in the 3003 alloy, the smaller the amount, the better the corrosion resistance.
【0009】B材において、Siはマトリックス中に固
溶し、強度向上に効果がある。添加量を0.5%以下含
有としたのは、0.5%を超えて含有すると、Mg2 S
iの粒界析出による粒界腐食を引き起こす恐れがあり、
また芯材中への添加量によってはろう付時に溶融してし
まう恐れがあるためである。Mgはろう付後の強度向上
があり、添加量を1.5%を超え4.0%以下と限定し
たのは、1.5%以下では効果がなく、4.0%を超え
ると、たとえB材の厚さが二層芯材全体の厚さに占める
割合が規定条件を満たしていても、ろう付時に溶融ある
いは拡散に伴うMg2 Si化合物の粒界析出物が多くな
り、それによって粒界腐食を引き起こす恐れがあり、そ
の腐食部位が多くなり耐食性が劣化する等の問題が出て
くるためである。Mnは強度と耐食性を向上させるため
に添加するもので添加量を0.5〜1.5%としたのは
0.5%未満では効果がなく、1.5%を超えると塑性
加工性が低下するからである。Cuは強度向上に効果が
あるが、0.3%以下では効果が少なく、1.5%を超
えると塑性加工性が悪くなるだけでなく、犠牲層側にC
uが多量に拡散するために、犠牲層の犠牲陽極効果が低
下し、熱交換器用アルミニウム合金複合材として耐食性
が劣化するためである。Cr、Zr、Tiはいずれも強
度向上に効果があるが、各々0.05%未満では効果が
なく、0.3%を超えると巨大な化合物を形成して塑性
加工性を低下させる。Feは3003合金の不純物程度
の添加は良いが、少ないほど耐食性は良好となる。In material B, Si is solid-solved in the matrix and is effective in improving strength. The addition amount is set to 0.5% or less because the content of Mg 2 S is more than 0.5%.
There is a risk of causing intergranular corrosion due to intergranular precipitation of i,
Further, it is because there is a possibility of melting during brazing depending on the amount added to the core material. Mg has an improvement in strength after brazing, and the reason why the addition amount is limited to more than 1.5% and 4.0% or less is that there is no effect at 1.5% or less, and if it exceeds 4.0%, Even if the ratio of the thickness of material B to the total thickness of the two-layer core material satisfies the specified conditions, the amount of Mg 2 Si compound grain boundary precipitates associated with melting or diffusion during brazing increases, which causes This is because inter field corrosion may be caused, and the number of corroded portions increases, causing problems such as deterioration of corrosion resistance. Mn is added to improve strength and corrosion resistance, and the amount added is 0.5 to 1.5%. If it is less than 0.5%, there is no effect, and if it exceeds 1.5%, plastic workability is deteriorated. Because it will decrease. Cu has an effect of improving the strength, but if it is less than 0.3%, the effect is small, and if it exceeds 1.5%, not only the plastic workability deteriorates, but also C on the sacrificial layer side.
This is because a large amount of u is diffused, so that the sacrificial anode effect of the sacrificial layer is reduced and the corrosion resistance of the aluminum alloy composite material for the heat exchanger is deteriorated. Cr, Zr, and Ti are all effective in improving strength, but if each is less than 0.05%, they have no effect, and if over 0.3%, a huge compound is formed and plastic workability is deteriorated. Although it is preferable to add Fe to the extent of impurities in the 3003 alloy, the smaller the amount, the better the corrosion resistance.
【0010】本発明において、ろう材側の芯材(A材)
厚さを芯材全体の厚さの30%以上と規定した理由を以
下に述べる。Mgの少ないA材厚さが芯全体の厚さの3
0%未満の場合、すなわちMgの多いB材の割合が70
%を超える場合、理論上にはMg量が多い分強度が向上
することになるが、実際にはMg量によって逆に強度が
低下するという現象が起きる場合がある。これはA材の
方がB材よりも層厚さが薄いために、ろう付により大量
のMgがろう材表面に濃化し、Mg添加による芯材強度
が予想以上に低下するためと考えられる。またこの場
合、ろう付性も激しく劣化するという問題が生じてく
る。また、A材厚さの割合が30%未満の場合、Mg量
の多いB材厚さの方がA材よりも厚くなるために、ろう
付後、Mg2 Si化合物の粒界析出等に伴う粒界腐食部
位が拡大し、それによって腐食進行が速まり、早期に貫
通する恐れが出てきて、熱交換器用アルミニウム合金複
合材としての機能を失う結果を招くことになる。したが
って、ろう付に伴うろう付表面へのMgの大量濃化の抑
制、およびMg2 Si等による粒界腐食量を抑制させ
て、強度、ろう付性、耐食性のバランスを向上させた熱
交換器用アルミニウム合金複合材を提供するためには、
A材厚さの二層芯材全体厚さに占める割合が30%以上
であることが必要である。In the present invention, the brazing filler metal core material (A material)
The reason why the thickness is specified to be 30% or more of the thickness of the whole core material will be described below. The thickness of A material with less Mg is 3 of the thickness of the whole core.
When it is less than 0%, that is, the ratio of B material containing a large amount of Mg is 70
If it exceeds 0.1%, theoretically, the strength is improved by the amount of Mg, but in reality, there may be a phenomenon that the strength is decreased depending on the Mg content. This is presumably because the material A has a smaller layer thickness than the material B, and thus a large amount of Mg is concentrated on the surface of the brazing material by brazing, and the strength of the core material due to the addition of Mg is lowered more than expected. Further, in this case, there is a problem that the brazing property is significantly deteriorated. Moreover, accompanied when the ratio of the A material thickness is less than 30%, in order toward the high B material thickness of the Mg quantity is thicker than material A, after brazing, the grain boundary precipitates such as the Mg 2 Si compound The intergranular corrosion site expands, which accelerates the progress of corrosion and may lead to early penetration, resulting in the loss of the function as the aluminum alloy composite material for the heat exchanger. Therefore, for a heat exchanger that suppresses a large amount of Mg concentration on the brazing surface due to brazing and suppresses the amount of intergranular corrosion due to Mg 2 Si, etc., and improves the balance of strength, brazing property, and corrosion resistance. To provide aluminum alloy composites,
It is necessary that the ratio of the material A thickness to the total thickness of the two-layer core material is 30% or more.
【0011】本発明は、犠牲陽極材にZnのみ必須、M
gのみ必須、あるいはZn、Mgのみ必須添加すること
により、耐食性の向上を図り、特にMg添加により犠牲
陽極材にて複合材の強度をより向上させるのである。ま
た、必要に応じてSn、In、Ga、Ti、Mnの1種
または2種以上を添加させることにより複合材としての
耐食性が一層向上するのである。以下に、犠牲陽極材に
おける添加元素の添加理由と添加量の限定理由について
述べる。犠牲陽極材において、Zn、Mgは腐食進行を
抑制し、耐蝕性を向上させる効果がある。またMg添加
により犠牲材自身の強度が向上し、ろう付加熱による芯
材への拡散も伴って芯材強度も向上することから、複合
材としての強度向上に大きく寄与するのである。請求項
5において、Zn添加量を1.3〜6.0%と限定した
のは、1.3%未満では上記効果が得られなく、6.0
%を超えると電位が卑となり過ぎて、孔食の防止は出来
ても犠牲陽極層の腐食量が多くなって、多量に発生する
腐食生成物が伝熱管を詰まらせる原因となったりするた
めである。また、必要に応じてSn、In、Gaのうち
の1種または2種以上を前記範囲内で添加することによ
り、犠牲陽極効果がさらに向上するのである。請求項6
において、Mg添加量を0.5〜4.0%と限定したの
は、0.5%未満では上記効果が得られなく、4.0%
を超えるとクラッド製造や圧延性に問題が生じ、犠牲材
のクラッド率、および高温でのろう付加熱条件によって
は溶融の恐れが出てくるからである。請求項7におい
て、Zn添加量をZn1.0〜6.0%と限定したの
は、犠牲材中Mgとの複合添加においてZn1.0未満
では上記効果が得られなく、6.0%を超えると電位が
卑となり過ぎて、孔食の防止は出来ても犠牲陽極層の腐
食量が多くなって、多量に発生する腐食生成物が伝熱管
を詰まらせる原因となったりするためである。MgをZ
nとの複合添加においてMg0.5〜4.0%と限定す
ることにより、Zn単独必須添加に比べ耐孔食性をより
向上させ複合材の強度も向上させることができる。Mg
0.5%未満では上記効果が得られなく、4.0%を超
えるとクラッド製造や圧延性に問題が生じ、犠牲陽極材
のクラッド率および高温でのろう付加熱条件によっては
溶融の恐れが生じてくるのである。本発明請求項5、
6、7において、Sn、In、Gaは、犠牲陽極材を芯
材に比べて電位的に卑にして芯材に対して犠牲陽極効果
を発揮させるものである。Sn添加量を0.01〜1.
0%、In0.01〜1.0%、Ga0.01〜1.0
%としたのは、各々0.01%未満では上記効果がな
く、1.0%を超えると電位が卑となり過ぎて、孔食の
防止は出来ても犠牲陽極層の腐食量が多くなって、多量
に発生する腐食生成物が伝熱管を詰まらせるなどの問題
が生じるのである。Tiは耐孔食性を向上させる効果が
あるが、0.01%未満では効果がなく、0.5%を超
えると加工性が低下する問題が出てくる。Mnを犠牲陽
極材に添加することにより複合材としての強度向上に寄
与することができる。その添加量を0.3〜1.5%と
規定したのは、0.3%未満では効果がなく、1.5%
を超えると塑性加工性劣化の問題が生じるためである。In the present invention, only Zn is essential for the sacrificial anode material, M
By adding only g, or Zn and Mg, it is possible to improve the corrosion resistance, and particularly to add Mg to further improve the strength of the composite material in the sacrificial anode material. Further, if necessary, one or more of Sn, In, Ga, Ti, and Mn are added to further improve the corrosion resistance of the composite material. The reasons for adding the additional elements and the reasons for limiting the addition amount in the sacrificial anode material will be described below. In the sacrificial anode material, Zn and Mg have the effect of suppressing the progress of corrosion and improving the corrosion resistance. Further, the addition of Mg improves the strength of the sacrificial material itself, and the strength of the core material is also improved due to the diffusion into the core material by the heat applied by the brazing, which greatly contributes to the improvement of the strength of the composite material. In claim 5, the amount of Zn added is limited to 1.3 to 6.0% because the above effect cannot be obtained if less than 1.3%.
%, The potential becomes too base and pitting corrosion can be prevented, but the amount of corrosion of the sacrificial anode layer increases, and the large amount of corrosion products can cause clogging of the heat transfer tube. is there. Further, the sacrificial anode effect is further improved by adding one or more of Sn, In, and Ga within the above range, if necessary. Claim 6
In the above, the reason why the amount of Mg added is limited to 0.5 to 4.0% is that the above effect cannot be obtained if it is less than 0.5%, and the amount is 4.0%.
If it exceeds the range, problems occur in the clad production and rollability, and there is a risk of melting depending on the clad ratio of the sacrificial material and the brazing heat addition conditions at high temperatures. In claim 7, the amount of Zn added is limited to 1.0 to 6.0% of Zn. The above effect cannot be obtained if the amount of Zn is less than 1.0 in composite addition with Mg in the sacrificial material, and exceeds 6.0%. This is because the potential becomes too base and pitting corrosion can be prevented, but the amount of corrosion of the sacrificial anode layer increases, and a large amount of corrosion products may cause clogging of the heat transfer tube. Mg to Z
By limiting the content of Mg to 0.5 to 4.0% in the composite addition with n, the pitting corrosion resistance can be further improved and the strength of the composite material can be improved as compared with the Zn essential addition. Mg
If it is less than 0.5%, the above effect cannot be obtained, and if it exceeds 4.0%, problems occur in the clad production and rollability, and there is a risk of melting depending on the clad ratio of the sacrificial anode material and the heating conditions for brazing at high temperature. It will happen. Claim 5 of the present invention,
In 6 and 7, Sn, In, and Ga make the sacrificial anode material more base in terms of electric potential than the core material so that the sacrificial anode effect is exerted on the core material. The Sn addition amount is 0.01 to 1.
0%, In 0.01 to 1.0%, Ga 0.01 to 1.0
%, The above effect is not obtained when the content is less than 0.01%, and the potential becomes too base when the content exceeds 1.0%, and the corrosion amount of the sacrificial anode layer increases even though pitting corrosion can be prevented. However, a large amount of corrosion products may cause problems such as clogging the heat transfer tubes. Ti has an effect of improving pitting corrosion resistance, but if it is less than 0.01%, it has no effect, and if it exceeds 0.5%, workability is deteriorated. By adding Mn to the sacrificial anode material, it is possible to contribute to improving the strength of the composite material. The addition amount is specified as 0.3 to 1.5% because it has no effect if less than 0.3%,
This is because the problem of deterioration of plastic workability arises when it exceeds.
【0012】本発明熱交換器用アルミニウム合金複合材
において、ろう材のクラッド率は3〜15%程度が適当
である。犠牲陽極材のクラッド率は、強度、耐食性のバ
ランスを考えた場合、その合金元素の添加量によって1
0〜40%程度が良いとされている。In the aluminum alloy composite material for a heat exchanger of the present invention, the brazing material has a suitable clad ratio of about 3 to 15%. When considering the balance between strength and corrosion resistance, the clad ratio of the sacrificial anode material is 1 depending on the amount of alloying elements added.
It is said that 0 to 40% is good.
【0013】本発明アルミニウム合金複合材は、主とし
てチューブ材として使用するが、ラジエーターのヘッダ
ー材にも使用でき、その他本発明の目的と同様であれば
いかなる部材としても使用できる。また、ろう付方法は
規定するものでなく、フラックスろう付法、真空ろう付
法、その他のろう付法でろう付する熱交換器用材料とし
ても使用できる。ろう材としては、Al−Si系のJI
S4343(Al−7.5%Si)合金、JIS404
5(Al−10%Si)合金、JIS4047(Al−
12%Si)合金、および4004(Al−10%Si
−1.5%Bi)合金、Al−10%Si−1.5%M
g−0.1%Bi合金等や、その他ろう材にろう材付性
改善や耐食性改善の目的で微量の他の元素を添加しても
差し支えない。The aluminum alloy composite material of the present invention is mainly used as a tube material, but it can also be used as a header material of a radiator and can be used as any other member as long as it is the same as the object of the present invention. Further, the brazing method is not specified, and it can be used as a material for a heat exchanger that is brazed by a flux brazing method, a vacuum brazing method, or another brazing method. As a brazing material, Al-Si based JI
S4343 (Al-7.5% Si) alloy, JIS404
5 (Al-10% Si) alloy, JIS 4047 (Al-
12% Si) alloy, and 4004 (Al-10% Si)
-1.5% Bi) alloy, Al-10% Si-1.5% M
A small amount of other element may be added to the g-0.1% Bi alloy or the like or other brazing material for the purpose of improving brazing property and corrosion resistance.
【0014】[0014]
【実施例】以下、本発明を実施例により更に詳細に説明
する。 実施例1 本発明請求項1〜4に関する実施例として、表1、2に
示すろう材側芯材16種、犠牲陽極材側芯材16種、お
よび3003合金を金型鋳造により鋳造して各々両面面
削して仕上げた。仕上げ厚さについては、芯鋳塊全体厚
さ40mmに占める各芯厚さ割合が異なるように仕上げ
た。ろう材は4343合金を用い、犠牲陽極材はAl−
1.5%Zn−0.5%Mg合金を用い、いずれも芯材
と同様に鋳造し、面削後、熱間圧延により5mm厚とし
た。ろう材、ろう材側芯材、犠牲陽極材側芯材、犠牲陽
極材の4枚をこの順に重ね合わせ、500℃にて熱間圧
延により4層のクラッド材とした。その後、冷間圧延に
より0.35mm厚とし、330℃×2hrの中間焼鈍
を入れて最終的には0.25mm厚まで冷間圧延し、H
14材の試料とした。これらの試料について、強度、ろ
う付性、耐食性を以下の方法で測定した。 強 度:600℃×10min.のろう付加熱後、1
00℃/min.の冷却速度で冷却し、その後室温に5
日間放置した後引張強さを測定した。 ろう付性:0.1mm厚の3003合金フィン材をコル
ゲート加工したものと、本試料とを図2に示すように組
合せでコアとし、これを3%の弗化物系フラックス水溶
液に浸漬してフラックスを塗布し、200℃で乾燥後、
不活性ガス中600℃×3min.のろう付加熱を行
い、フィンとの接合率を測定した。接合率が90%以上
であればろう付性良好とする。 耐食性 :強度測定用の試料と同様のろう付加熱を施し
た後、ろう材側および端(冷媒側)面をシールして水道
水+20ppmCu+ を含む90℃の高温水中で8h
r、室温放置16hrのサイクル浸漬テストを4ヶ月間
行い、試料に生じた最大孔食深さを測定した。 以上の測定結果を表3、4に示す。EXAMPLES The present invention will now be described in more detail with reference to examples. Example 1 As Examples relating to claims 1 to 4 of the present invention, 16 kinds of brazing material side core materials, 16 kinds of sacrificial anode material side core materials, and 3003 alloy shown in Tables 1 and 2 were cast by die casting, respectively. Finished by cutting both sides. Regarding the finish thickness, the finish was performed so that each core thickness ratio occupying the entire core ingot thickness of 40 mm was different. The brazing material is 4343 alloy, and the sacrificial anode material is Al-
A 1.5% Zn-0.5% Mg alloy was used, all were cast in the same manner as the core material, and after face-shaping, hot-rolled to a thickness of 5 mm. Four pieces of a brazing material, a brazing material side core material, a sacrificial anode material side core material, and a sacrificial anode material were stacked in this order, and hot rolled at 500 ° C. to obtain a four-layer clad material. After that, it is cold-rolled to have a thickness of 0.35 mm, is subjected to intermediate annealing at 330 ° C. for 2 hours, and finally cold-rolled to a thickness of 0.25 mm.
14 samples were used. The strength, brazing property and corrosion resistance of these samples were measured by the following methods. Strength: 600 ° C. × 10 min. After heat of brazing, 1
00 ° C / min. Cooling at a cooling rate of
After standing for one day, the tensile strength was measured. Brazing property: A corrugated 0.13 mm thick 3003 alloy fin material and this sample are combined as a core as shown in Fig. 2, and the core is dipped in a 3% fluoride-based flux aqueous solution to form a flux. Is applied and dried at 200 ° C.,
600 ° C. × 3 min. In inert gas. The heat of brazing was applied to measure the bonding rate with the fin. When the bonding rate is 90% or more, the brazing property is good. Corrosion resistance: After applying the same brazing heat as the strength measurement sample, seal the brazing filler metal side and end (refrigerant side) surface, and in tap water + 20 ppm Cu + at 90 ° C high temperature water for 8 h
The cycle immersion test of r for 16 hours at room temperature was performed for 4 months to measure the maximum pitting depth generated in the sample. The above measurement results are shown in Tables 3 and 4.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】[0017]
【表3】 [Table 3]
【0018】[0018]
【表4】 [Table 4]
【0019】表3、4から明らかなように、本発明例N
o.1〜25はろう付後の強度が20kgf/mm2 以
上と3003合金を芯材とした従来例No.37よりも
高く、ろう付接合率も90%以上と優れ、耐食性も良好
である。これに対し比較例No.26、27、28、2
9、30、31、33、35は本発明例に比べ強度が低
い。比較例No.34は強度が高いが、ろう付接合率は
5%以下と低く、また浸漬試験後の孔食深さが0.25
mmと既に貫通孔を生じていることから、ろう付性、耐
食性は本発明例に比べ非常に悪い。また、比較例No.
31、33はろう付接合率が高く、ろう付性に優れる
が、強度は17kgf/mm2 以下である。No.31
については浸漬試験後の孔食深さが0.25mmと既に
貫通孔を生じていることから、本発明に比べ強度は低
く、耐食性は非常に悪い。またNo.33は浸漬試験後
の孔食深さが貫通孔に至っていないが、強度が本発明例
に比べかなり低い。比較例No.26、27、28、2
9、30、31、35は浸漬試験後の孔食深さが0.2
5mmと既に貫通孔を生じているが、これはろう材側芯
材中Mg量が本発明規定量を超えているか、あるいは犠
牲陽極材側芯材中Si量が本発明規定量を超えているこ
とから、Mg2 Siの粒界析出に伴う粒界腐食を引き起
こしたためと考えられる。また、比較例No.34は芯
材成分を本発明の犠牲陽極材側芯材記号B5のみの芯材
1層で構成されており、その合金中、SiとともにMg
を多量に含有することから、粒界腐食を引起し、浸漬試
験後、貫通孔を生じる結果となる。また、ろう付時、芯
材中Mgとろう材表面のフラックスとの反応においてM
gF系化合物が多量に生成されることから、ろう付性は
悪く、ろう材側表面へのMgの多量拡散により、強度も
予想に反し低下する傾向にある。比較例No.32はろ
う材側芯材中Si、Mg量および犠牲陽極材側芯材中M
g量が本発明規定量を超えて添加されていることから、
ろう付時に材料が溶融してしまい、熱交換器用複合材と
しての機能を失っている。比較例No.36は芯材成分
が本発明規定範囲内にある(A3、B4の組合せ材)が
芯材全体厚に占める各芯材の厚さ割合が本発明規定内か
ら外れる、即ちろう材側芯材の割合が20%であること
から、強度は従来例よりも高いが、ろう付性、耐食性は
本発明例および従来例よりもかなり悪い。さらに芯材が
3003合金単層である従来例No.37はろう付性に
優れるが、強度は低いため、高強度、高耐食性アルミニ
ウム合金複合材としての特性を満足し得ない。As is apparent from Tables 3 and 4, the invention sample N
o. Nos. 1 to 25 have a strength after brazing of 20 kgf / mm 2 or more and a conventional example No. 3 having a core material of 3003 alloy. It is higher than 37, the brazing joint ratio is 90% or more, and the corrosion resistance is also good. On the other hand, Comparative Example No. 26, 27, 28, 2
9, 30, 31, 33, and 35 have lower strength than the examples of the present invention. Comparative Example No. No. 34 has a high strength, but the brazing joint ratio is as low as 5% or less, and the pitting corrosion depth after the immersion test is 0.25.
Since the through-holes have already been formed, the brazing property and the corrosion resistance are much worse than those of the examples of the present invention. In addition, Comparative Example No.
Nos. 31 and 33 have a high brazing joining ratio and are excellent in brazing property, but the strength is 17 kgf / mm 2 or less. No. 31
With respect to (1), since the pitting corrosion depth after the immersion test was 0.25 mm and through holes were already formed, the strength was lower than that of the present invention and the corrosion resistance was very poor. In addition, No. In No. 33, the pitting depth after the immersion test does not reach the through hole, but the strength is considerably lower than that of the examples of the present invention. Comparative Example No. 26, 27, 28, 2
9, 30, 31, and 35 have a pitting corrosion depth of 0.2 after the immersion test.
Although the through hole is already formed with 5 mm, this is because the amount of Mg in the brazing material side core material exceeds the amount specified by the present invention, or the amount of Si in the sacrificial anode material side core material exceeds the amount specified by the present invention. From this, it is considered that the intergranular corrosion was caused by the intergranular precipitation of Mg 2 Si. In addition, Comparative Example No. Reference numeral 34 denotes a core material composed of one layer of core material having only the sacrifice anode material side core material symbol B5 of the present invention.
Since a large amount of is included, intergranular corrosion is caused, resulting in the formation of through holes after the immersion test. During brazing, M reacts with Mg in the core material and flux on the surface of the brazing material.
Since a large amount of the gF-based compound is produced, the brazing property is poor, and due to the large amount of diffusion of Mg on the surface of the brazing material, the strength tends to decrease unexpectedly. Comparative Example No. 32 is the amount of Si and Mg in the brazing material side core material and M in the sacrificial anode material side core material
Since the amount g is added in excess of the specified amount of the present invention,
The material melts during brazing and loses its function as a composite material for heat exchangers. Comparative Example No. No. 36 has a core material component within the range specified by the present invention (combination material of A3 and B4), but the thickness ratio of each core material to the total thickness of the core material is out of the range defined by the present invention, that is, the core material of the brazing material Since the ratio is 20%, the strength is higher than that of the conventional example, but the brazability and corrosion resistance are considerably worse than those of the examples of the present invention and the conventional examples. Furthermore, the conventional example No. in which the core material is a 3003 alloy single layer. No. 37 has excellent brazing property, but its strength is low, so that it cannot satisfy the characteristics as a high strength, high corrosion resistance aluminum alloy composite material.
【0020】実施例2 本発明請求項5に関する実施例として、表5に示す犠牲
陽極材14種を、請求項6に関する実施例として表6に
示す犠牲陽極材12種を、請求項7に関する実施例とし
て表7に示す犠牲陽極材12種を、金型鋳造により鋳造
して各々両面面削して、熱間圧延により5mm厚とし
た。表5、6に記載の本発明犠牲陽極材とクラッドした
芯材は、実施例1の表3中に記載した本発明例No.1
2(A3、B4の組合せ材)と同じものを使用した。表
7に記載の本発明犠牲陽極材とクラッドした芯材は、実
施例1の表3中に記載した本発明例No.8(A2、B
5の組合せ材)と同じものを使用した。従来犠牲陽極材
とクラッドした芯材は実施例1の表4中に記載した従来
例3003を使用した。ろう材は4343合金を用い、
鋳造し、面削後、熱間圧延により5mm厚とした。ろう
材、ろう材側芯材、犠牲陽極材側芯材、犠牲陽極材の4
枚をこの順に重ね合わせ、500℃にて熱間圧延により
4層のクラッド材とした。その後、冷間圧延により0.
35mm厚とし、330℃×2hrの中間焼鈍を入れて
最終的には0.25mm厚まで冷間圧延し、H14材の
試料とした。これらの試料について、強度、ろう付性、
耐食性を実施例1と同様の方法で測定した。以上の結果
を表5、6、7に示す。Example 2 As an example according to claim 5 of the present invention, 14 kinds of sacrificial anode materials shown in Table 5, 12 kinds of sacrificial anode materials shown in Table 6 as examples of claim 6 and an embodiment related to claim 7 are carried out. As an example, 12 kinds of sacrificial anode materials shown in Table 7 were cast by die casting, both surfaces were ground, and hot rolled to a thickness of 5 mm. The core materials clad with the sacrificial anode material of the present invention shown in Tables 5 and 6 were the same as those of Example No. 1 of the present invention shown in Table 3 of Example 1. 1
The same material as 2 (combination material of A3 and B4) was used. The core material clad with the sacrificial anode material of the present invention shown in Table 7 was the same as that of Example No. 1 of the present invention shown in Table 3 of Example 1. 8 (A2, B
The same material as the combination material 5) was used. As the core material clad with the conventional sacrificial anode material, the conventional example 3003 described in Table 4 of Example 1 was used. The brazing material uses 4343 alloy,
After casting, chamfering, hot rolling was performed to a thickness of 5 mm. Brazing material, brazing material side core material, sacrificial anode material side core material, sacrificial anode material 4
The sheets were stacked in this order and hot rolled at 500 ° C. to obtain a clad material having four layers. After that, it is cold rolled to 0.
The sample was made of H14 material with a thickness of 35 mm, intermediate annealing of 330 ° C. × 2 hr, and finally cold-rolled to a thickness of 0.25 mm. For these samples, strength, brazeability,
The corrosion resistance was measured by the same method as in Example 1. The above results are shown in Tables 5, 6, and 7.
【0021】[0021]
【表5】 [Table 5]
【0022】[0022]
【表6】 [Table 6]
【0023】[0023]
【表7】 [Table 7]
【0024】表5から明らかなように、本発明請求項5
で規定した犠牲陽極材を用いることにより、本発明例
(犠牲陽極材の記号で代用)D1〜D13はろう付後の
強度が20kgf/mm2 以上と3003合金を芯材と
した従来例D14に比べはるかに高いレベルを維持しな
がら、浸漬試験後の最大孔食深さが従来の犠牲陽極材を
用いる場合に比べて小さく、耐食性が向上している。表
6から明らかなように、本発明請求項6で規定した犠牲
陽極材を用いることにより、本発明例(犠牲陽極材の記
号で代用)E1〜E11はろう付後の強度が21kgf
/mm2 以上と3003合金を芯材とした従来例D14
に比べはるかに高いレベルを維持しながら、浸漬試験後
の最大孔食深さが従来の犠牲陽極材を用いる場合に比べ
て小さく、耐食性が向上している。表7から明らかなよ
うに、本発明請求項7で規定した犠牲陽極材を用いるこ
とにより、本発明例(犠牲陽極材の記号で代用)F1〜
F11はろう付後の強度が21kgf/mm2 以上と3
003合金を芯材とした従来例D14に比べはるかに高
いレベルを維持しながら、浸漬試験後の最大孔食深さが
従来の犠牲陽極材を用いる場合に比べて小さく、耐食性
が向上している。As is apparent from Table 5, the invention claimed in claim 5
By using the sacrificial anode material defined in 1., the invention examples (substitute with the symbol of the sacrificial anode material) D1 to D13 have a strength after brazing of 20 kgf / mm 2 or more and the conventional example D14 using the 3003 alloy as the core material. While maintaining a much higher level, the maximum pitting depth after the immersion test is smaller than in the case of using the conventional sacrificial anode material, and the corrosion resistance is improved. As is clear from Table 6, by using the sacrificial anode material defined in claim 6 of the present invention, the inventive examples (substitute with the symbol of the sacrificial anode material) E1 to E11 have a strength after brazing of 21 kgf.
/ Mm 2 or more and conventional example D14 using 3003 alloy as core material
The maximum pitting depth after the immersion test is smaller than that in the case of using the conventional sacrificial anode material, and the corrosion resistance is improved, while maintaining a much higher level than As is apparent from Table 7, by using the sacrificial anode material defined in claim 7 of the present invention, examples of the present invention (substitute with the symbol of the sacrificial anode material) F1 to
F11 has strength after brazing of 21 kgf / mm 2 or more and 3
The maximum pitting depth after the immersion test is smaller than that in the case of using the conventional sacrificial anode material, and the corrosion resistance is improved, while maintaining the level far higher than that of the conventional example D14 using the 003 alloy as the core material. .
【0025】[0025]
【発明の効果】以上述べたように、本発明による熱交換
器用アルミニウム合金複合材は、従来例に比べ強度、ろ
う付性、耐食性のバランスを維持しながら、各々の特性
を向上させることができたもので、工業上顕著な効果を
奏するものである。As described above, the aluminum alloy composite material for a heat exchanger according to the present invention can improve the respective properties while maintaining the balance of strength, brazing property and corrosion resistance as compared with the conventional example. It has a remarkable industrial effect.
【図1】自動車用ラジエーターの構造を示す説明図。FIG. 1 is an explanatory view showing a structure of a radiator for an automobile.
【図2】アルミニウム合金複合材のろう付性を判定する
ためのろう付加熱コアを示す図。FIG. 2 is a view showing a brazing heat core for determining the brazing property of an aluminum alloy composite material.
1 チューブ 2 フィン 3 ヘッダー 4 タンク 5 チューブ材 1 tube 2 fins 3 header 4 tank 5 tube material
Claims (7)
を、他の面にAl−Zn系合金、Al−Mg系合金、ま
たはAl−Zn−Mg系合金等の犠牲陽極材をクラッド
したアルミニウム合金複合材において、芯材を二層構造
とし、ろう材側芯材をMn0.5〜1.5wt%、Cu
0.3〜1.5wt%、Si0.2〜1.5wt%、Mg
0.2wt%以下を含有し、残部Alと不可避的不純物と
からなるAl合金とし、犠牲陽極材側芯材をSi0.5
wt%以下、Mg1.5wt%を超え、4.0wt%以下、C
u0.3wt%を超え、1.5wt%以下、Mn0.5〜
1.5wt%を含有し、残部Alと不可避的不純物とから
なるAl合金とし、ろう材側芯材の厚さが芯材全体の厚
さの30%以上であることを特徴とする熱交換器用高強
度高耐食性アルミニウム合金複合材。1. A brazing material of an Al--Si alloy on one surface of a core material, and a sacrificial anode material such as an Al--Zn alloy, an Al--Mg alloy, or an Al--Zn--Mg alloy on the other surface. In the clad aluminum alloy composite material, the core material has a two-layer structure, the brazing material side core material is Mn 0.5 to 1.5 wt%, Cu
0.3-1.5 wt%, Si 0.2-1.5 wt%, Mg
An Al alloy containing 0.2 wt% or less and the balance Al and unavoidable impurities is used.
wt% or less, Mg over 1.5 wt%, 4.0 wt% or less, C
u more than 0.3 wt% and 1.5 wt% or less, Mn 0.5 to
For a heat exchanger, characterized in that it is an Al alloy containing 1.5 wt% and the balance is Al and unavoidable impurities, and the thickness of the brazing material side core material is 30% or more of the total thickness of the core material. Aluminum alloy composite with high strength and high corrosion resistance.
を、他の面にAl−Zn系合金、Al−Mg系合金、ま
たはAl−Zn−Mg系合金等の犠牲陽極材をクラッド
したアルミニウム合金複合材において、芯材を二層構造
とし、ろう材側芯材をMn0.5〜1.5wt%、Cu
0.3〜1.5wt%、Si0.2〜1.5wt%、Mg
0.2wt%以下を含有し、さらに各々0.05〜0.3
wt%のCr、Zr、Tiのうちの1種または2種以上を
含有し、残部Alと不可避的不純物とからなるAl合金
とし、犠牲陽極材側芯材をSi0.5wt%以下、Mg
1.5wt%を超え、4.0wt%以下、Cu0.3wt%を
超え、1.5wt%以下、Mn0.5〜1.5wt%を含有
し、残部Alと不可避的不純物とからなるAl合金と
し、ろう材側芯材の厚さが芯材全体の厚さの30%以上
であることを特徴とする熱交換器用高強度高耐食性アル
ミニウム合金複合材。2. A brazing material of an Al--Si alloy on one surface of the core material, and a sacrificial anode material such as an Al--Zn alloy, an Al--Mg alloy, or an Al--Zn--Mg alloy on the other surface. In the clad aluminum alloy composite material, the core material has a two-layer structure, the brazing material side core material is Mn 0.5 to 1.5 wt%, Cu
0.3-1.5 wt%, Si 0.2-1.5 wt%, Mg
Contains less than 0.2 wt%, each 0.05 ~ 0.3
An Al alloy containing 1 wt% or more of Cr, Zr, and Ti of wt% and the balance Al and inevitable impurities is used, and the sacrificial anode material side core material is Si 0.5 wt% or less, Mg
An Al alloy containing more than 1.5 wt% and 4.0 wt% or less, Cu more than 0.3 wt% and 1.5 wt% or less, and Mn of 0.5 to 1.5 wt% with the balance Al and unavoidable impurities. A high-strength, high-corrosion-resistant aluminum alloy composite material for a heat exchanger, wherein the brazing material-side core material has a thickness of 30% or more of the total thickness of the core material.
を、他の面にAl−Zn系合金、Al−Mg系合金、ま
たはAl−Zn−Mg系合金等の犠牲陽極材をクラッド
したアルミニウム合金複合材において、芯材を二層構造
とし、ろう材側芯材をMn0.5〜1.5wt%、Cu
0.3〜1.5wt%、Si0.2〜1.5wt%、Mg
0.2wt%以下を含有し、残部Alと不可避的不純物と
からなるAl合金とし、犠牲陽極材側芯材をSi0.5
wt%以下、Mg1.5wt%を超え、4.0wt%以下、C
u0.3wt%を超え、1.5wt%以下、Mn0.5〜
1.5wt%を含有し、さらに各々0.05〜0.3wt%
のCr、Zr、Tiのうちの1種または2種以上を含有
し、残部Alと不可避的不純物とからなるAl合金と
し、ろう材側芯材の厚さが芯材全体の厚さの30%以上
であることを特徴とする熱交換器用高強度高耐食性アル
ミニウム合金複合材。3. A brazing material of an Al--Si alloy on one surface of the core material, and a sacrificial anode material such as an Al--Zn alloy, an Al--Mg alloy, or an Al--Zn--Mg alloy on the other surface. In the clad aluminum alloy composite material, the core material has a two-layer structure, the brazing material side core material is Mn 0.5 to 1.5 wt%, Cu
0.3-1.5 wt%, Si 0.2-1.5 wt%, Mg
An Al alloy containing 0.2 wt% or less and the balance Al and unavoidable impurities is used.
wt% or less, Mg over 1.5 wt%, 4.0 wt% or less, C
u more than 0.3 wt% and 1.5 wt% or less, Mn 0.5 to
Containing 1.5wt%, each 0.05 ~ 0.3wt%
Of Cr, Zr, and Ti, and an Al alloy containing the balance Al and unavoidable impurities, and the thickness of the brazing material side core material is 30% of the total thickness of the core material. A high-strength and high-corrosion-resistant aluminum alloy composite material for a heat exchanger, which is characterized by the above.
を、他の面にAl−Zn系合金、Al−Mg系合金、ま
たはAl−Zn−Mg系合金等の犠牲陽極材をクラッド
したアルミニウムブレージングシートにおいて、芯材を
二層構造とし、ろう材側芯材をMn0.5〜1.5wt
%、Cu0.3〜1.5wt%、Si0.2〜1.5wt
%、Mg0.2wt%以下を含有し、さらに各々0.05
〜0.3wt%のCr、Zr、Tiのうちの1種または2
種以上を含有し、残部Alと不可避的不純物とからなる
Al合金とし、犠牲陽極材側芯材をSi0.5wt%以
下、Mg1.5wt%を超え、4.0wt%以下、Cu0.
3wt%を超え、1.5wt%以下、Mn0.5〜1.5wt
%を含有し、さらに各々0.05〜0.3wt%のCr、
Zr、Tiのうちの1種または2種以上を含有し、残部
Alと不可避的不純物とからなるAl合金とし、ろう材
側芯材の厚さが芯材全体の厚さの30%以上であること
を特徴とするアルミニウム合金複合材。4. A brazing material of an Al--Si alloy on one surface of the core material, and a sacrificial anode material such as an Al--Zn alloy, an Al--Mg alloy, or an Al--Zn--Mg alloy on the other surface. In the clad aluminum brazing sheet, the core material has a two-layer structure, and the brazing material side core material has Mn of 0.5 to 1.5 wt.
%, Cu 0.3 to 1.5 wt%, Si 0.2 to 1.5 wt
%, Mg 0.2 wt% or less, and each 0.05
~ 0.3 wt% of Cr, Zr, or Ti, or 2
Al alloy containing at least seeds and the balance Al and unavoidable impurities, the core material on the side of the sacrificial anode material is 0.5 wt% or less of Si, more than 1.5 wt% of Mg, 4.0 wt% or less, Cu 0.
More than 3 wt% and less than 1.5 wt%, Mn 0.5-1.5 wt
%, And each of 0.05 to 0.3 wt% Cr,
An Al alloy containing one or more of Zr and Ti, the balance being Al and unavoidable impurities, and the thickness of the brazing material side core material being 30% or more of the thickness of the entire core material. An aluminum alloy composite material characterized by the above.
含有し、必要に応じてさらにSn0.01〜1.0wt
%、In0.01〜1.0wt%、Ga0.01〜1.0
wt%、Ti0.01〜0.5wt%、Mn0.3〜1.5
wt%のうちの1種または2種以上を含有し、残部Alと
不可避的不純物とからなるAl合金であることを特徴と
する請求項1乃至請求項4記載の熱交換器用高強度高耐
食性アルミニウム合金複合材。5. The sacrificial anode material contains Zn 1.3 to 6.0 wt%, and if necessary, Sn 0.01 to 1.0 wt%.
%, In 0.01 to 1.0 wt%, Ga 0.01 to 1.0
wt%, Ti 0.01-0.5 wt%, Mn 0.3-1.5
The high-strength and high-corrosion-resistant aluminum for a heat exchanger according to any one of claims 1 to 4, which is an Al alloy containing one or more of wt% and the balance Al and inevitable impurities. Alloy composite.
含有し、必要に応じてさらにSn0.01〜1.0wt
%、In0.01〜1.0wt%、Ga0.01〜1.0
wt%、Ti0.01〜0.5wt%、Mn0.3〜1.5
wt%のうちの1種または2種以上を含有し、残部Alと
不可避的不純物とからなるAl合金であることを特徴と
する請求項1乃至請求項4記載の熱交換器用高強度高耐
食性アルミニウム合金複合材。6. The sacrificial anode material contains 0.5 to 4.0 wt% of Mg, and if necessary, 0.01 to 1.0 wt% of Sn.
%, In 0.01 to 1.0 wt%, Ga 0.01 to 1.0
wt%, Ti 0.01-0.5 wt%, Mn 0.3-1.5
The high-strength and high-corrosion-resistant aluminum for a heat exchanger according to any one of claims 1 to 4, which is an Al alloy containing one or more of wt% and the balance Al and inevitable impurities. Alloy composite.
Zn1.0〜6.0wt%を含有し、必要に応じてさらに
Sn0.01〜1.0wt%、In0.01〜1.0wt
%、Ga0.01〜1.0wt%、Ti0.01〜0.5
wt%、Mn0.3〜1.5wt%のうちの1種または2種
以上を含有し、残部Alと不可避的不純物とからなるA
l合金であることを特徴とする請求項1乃至請求項4記
載の熱交換器用高強度高耐食性アルミニウム合金複合
材。7. The sacrificial anode material is Mg 0.5 to 4.0 wt%,
Zn 1.0-6.0 wt%, Sn 0.01-1.0 wt%, In 0.01-1.0 wt%
%, Ga 0.01 to 1.0 wt%, Ti 0.01 to 0.5
A containing at least one of wt% and Mn of 0.3 to 1.5 wt%, or the balance Al and unavoidable impurities
The high-strength and high-corrosion-resistant aluminum alloy composite material for a heat exchanger according to any one of claims 1 to 4, which is an L alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5023554A JPH06212329A (en) | 1993-01-19 | 1993-01-19 | Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5023554A JPH06212329A (en) | 1993-01-19 | 1993-01-19 | Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06212329A true JPH06212329A (en) | 1994-08-02 |
Family
ID=12113723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5023554A Pending JPH06212329A (en) | 1993-01-19 | 1993-01-19 | Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06212329A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997020080A1 (en) * | 1995-11-30 | 1997-06-05 | Alliedsignal Inc. | Aluminum alloy parts for heat exchanger |
JP2011202285A (en) * | 1999-04-12 | 2011-10-13 | Aleris Aluminum Koblenz Gmbh | Brazing sheet |
CN102513722A (en) * | 2012-01-10 | 2012-06-27 | 南京航空航天大学 | Medium temperature Zn-Al solder containing Sr, Si, Ti, Ni and P and having high air tightness |
JP6159843B1 (en) * | 2016-03-31 | 2017-07-05 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5995690U (en) * | 1982-12-17 | 1984-06-28 | 松下電器産業株式会社 | Automotive control circuit unit |
JPS6115789U (en) * | 1984-07-02 | 1986-01-29 | 三菱電機株式会社 | programmable controller |
JPS63116500A (en) * | 1986-11-05 | 1988-05-20 | 三菱電機株式会社 | Outdoor sequence controller |
JPH04188796A (en) * | 1990-11-22 | 1992-07-07 | Mitsubishi Electric Corp | Controller |
-
1993
- 1993-01-19 JP JP5023554A patent/JPH06212329A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5995690U (en) * | 1982-12-17 | 1984-06-28 | 松下電器産業株式会社 | Automotive control circuit unit |
JPS6115789U (en) * | 1984-07-02 | 1986-01-29 | 三菱電機株式会社 | programmable controller |
JPS63116500A (en) * | 1986-11-05 | 1988-05-20 | 三菱電機株式会社 | Outdoor sequence controller |
JPH04188796A (en) * | 1990-11-22 | 1992-07-07 | Mitsubishi Electric Corp | Controller |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997020080A1 (en) * | 1995-11-30 | 1997-06-05 | Alliedsignal Inc. | Aluminum alloy parts for heat exchanger |
US5857266A (en) * | 1995-11-30 | 1999-01-12 | Alliedsignal Inc. | Heat exchanger having aluminum alloy parts exhibiting high strength at elevated temperatures |
JP2011202285A (en) * | 1999-04-12 | 2011-10-13 | Aleris Aluminum Koblenz Gmbh | Brazing sheet |
CN102513722A (en) * | 2012-01-10 | 2012-06-27 | 南京航空航天大学 | Medium temperature Zn-Al solder containing Sr, Si, Ti, Ni and P and having high air tightness |
JP6159843B1 (en) * | 2016-03-31 | 2017-07-05 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet |
WO2017169492A1 (en) * | 2016-03-31 | 2017-10-05 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet |
JP2017179547A (en) * | 2016-03-31 | 2017-10-05 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1090745B1 (en) | Aluminum alloy clad material for heat exchangers exhibiting high strength and excellent corrosion resistance | |
JP2011202285A (en) | Brazing sheet | |
JPH11293372A (en) | Aluminum alloy clad material for heat exchanger, having high strength and high corrosion resistance | |
JP3533434B2 (en) | Brazing sheet for aluminum alloy heat exchanger | |
JP2007131872A (en) | Aluminum alloy clad material for heat exchanger | |
JP3222768B2 (en) | Aluminum alloy clad material excellent in brazing property and method for producing the same | |
JPH06212329A (en) | Aluminum alloy clad material having high strength and high corrosion resistance for heat exchanger | |
JP5184112B2 (en) | Aluminum alloy clad material | |
JP2002294377A (en) | Aluminum alloy composite material for brazing | |
JPH11264042A (en) | Aluminum alloy brazing filler sheet for fluid passage | |
JPH06240398A (en) | High strength and high corrosion resistant aluminum alloy multilayer material for heat exchanger | |
JP2933382B2 (en) | High strength and high corrosion resistance aluminum alloy clad material for heat exchanger | |
JPH0673480A (en) | Aluminum brazing sheet | |
JP2813492B2 (en) | Aluminum brazing sheet | |
JP2813489B2 (en) | Aluminum brazing sheet | |
JP2813491B2 (en) | Aluminum brazing sheet | |
JP2813484B2 (en) | Aluminum brazing sheet | |
JP2000135590A (en) | High strength aluminum alloy clad material for heat exchanger | |
JP2813479B2 (en) | Aluminum brazing sheet | |
JP2813483B2 (en) | Aluminum brazing sheet | |
JPH0673481A (en) | Aluminum brazing sheet | |
JPH08104936A (en) | Aluminum alloy clad fin material for heat exchanger | |
JP2813478B2 (en) | Aluminum brazing sheet | |
JPH0436432A (en) | High strength and high corrosion resistant al alloy clad material for al heat exchanger | |
JP2813490B2 (en) | Aluminum brazing sheet |