[go: up one dir, main page]

JPH06211648A - Sustained release polynuclear microphere preparation and its production - Google Patents

Sustained release polynuclear microphere preparation and its production

Info

Publication number
JPH06211648A
JPH06211648A JP24265593A JP24265593A JPH06211648A JP H06211648 A JPH06211648 A JP H06211648A JP 24265593 A JP24265593 A JP 24265593A JP 24265593 A JP24265593 A JP 24265593A JP H06211648 A JPH06211648 A JP H06211648A
Authority
JP
Japan
Prior art keywords
polymer
drug
polynuclear
release
sustained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24265593A
Other languages
Japanese (ja)
Other versions
JP2911732B2 (en
Inventor
Takehiko Suzuki
健彦 鈴木
Yukiko Nishioka
由紀子 西岡
Yasuhisa Matsukawa
泰久 松川
Akihiro Matsumoto
昭博 松本
Yukio Kobayashi
征雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Seiyaku Co Ltd
Original Assignee
Tanabe Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co Ltd filed Critical Tanabe Seiyaku Co Ltd
Priority to JP24265593A priority Critical patent/JP2911732B2/en
Publication of JPH06211648A publication Critical patent/JPH06211648A/en
Application granted granted Critical
Publication of JP2911732B2 publication Critical patent/JP2911732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To provide a sustained release microsphere preparation holding a drug in high efficiency, suppressing the initial burst release of drug and capable of releasing a drug at an arbitrary rate and to provide a process for the preparation of the microsphere. CONSTITUTION:This sustained release polynuclear microsphere preparation is composed of two or more kinds of polymers degradable in vivo and a drug, wherein a biodegradable polymer (1st polymer) containing the drug is dispersed in the form of microscopic particles in the other biodegradable polymer (2nd polymer). The incorporation ratio of the drug is high and the releasing pattern of the drug often takes the zeroth-order release pattern. The releasing pattern of the drug can be varied by varying the combination of the 1st polymer and the 2nd polymer and the compounding ratio of the polymers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生体内分解性ポリマーを
用いた徐放性の生理活性物質含有組成物に関する。さら
に詳しくは、本発明は2種類以上の生体内分解性ポリマ
ーを選択して用いることにより、薬物を効率よく内包
し、薬物を任意の速度で放出する徐放性多核マイクロス
フェア製剤およびその製法に関する。
TECHNICAL FIELD The present invention relates to a sustained-release composition containing a physiologically active substance using a biodegradable polymer. More specifically, the present invention relates to a sustained-release polynuclear microsphere preparation that efficiently encapsulates a drug and releases the drug at an arbitrary rate by selecting and using two or more kinds of biodegradable polymers, and a method for producing the same. .

【0002】[0002]

【従来の技術】生理活性物質の効果を長期間持続させる
剤型として、生体内分解性ポリマーを用いたマイクロス
フェアが極めて有用であり、その製造法が種々提唱され
ている。例えば特開昭57−11851号公報には、コ
アセルベーション剤を用いた相分離法によるカプセル型
のマイクロスフェアの調製法が開示されている。しか
し、この調製法では製造過程で粒子同士の凝集が起こり
易く、分散媒として不揮発性の鉱物油や植物油を使用す
るため取出しおよび洗浄において困難をともない、か
つ、しばしば、内部が中空化してしまうため一定品質の
ものが得られない等の問題点がある。これらを克服する
方法としてエマルションを液中乾燥してマイクロスフェ
アを得る方法が知られており、特開昭60−10051
6、特開昭62−201816にW/O/W型、特開平
1−216918にO/O型、特開昭63−91325
にO/W型の技術が開示されている。
2. Description of the Related Art Microspheres using biodegradable polymers are extremely useful as dosage forms for sustaining the effects of physiologically active substances for a long period of time, and various production methods have been proposed. For example, JP-A-57-11851 discloses a method for preparing capsule-type microspheres by a phase separation method using a coacervation agent. However, in this preparation method, aggregation of particles is likely to occur in the manufacturing process, and since a nonvolatile mineral oil or vegetable oil is used as a dispersion medium, it is difficult to take out and wash, and often the inside becomes hollow. There are problems such as not being able to obtain a product of constant quality. As a method for overcoming these problems, a method of drying an emulsion in liquid to obtain microspheres is known, and it is disclosed in JP-A-60-10051.
6, JP-A-62-201816, W / O / W type, JP-A-1-216918, O / O type, JP-A-63-91325.
Discloses an O / W type technology.

【0003】一般に、長期持続性を必要とする生理活性
物質は水溶性である場合が圧倒的に多い。そのためO/
O型エマルションを液中乾燥する方法は活性物質を効率
よくマイクロスフェア中に取り込むためには有利な方法
であるが、分散相に不揮発性の溶媒を用いることが多
く、マイクロスフェアから溶媒を完全に取り除くことは
困難であり、また作業の安全性や環境上に多くの問題を
残している。W/O法では外側のO相に鉱物油、植物油
を使用するため取出し及び洗浄において困難が伴い、作
業性に欠けるうえ、残存する油相が大きな問題となる。
In general, most physiologically active substances that require long-term sustainability are water-soluble. Therefore O /
The method of drying the O-type emulsion in the liquid is an advantageous method for efficiently incorporating the active substance into the microspheres, but a non-volatile solvent is often used in the dispersed phase, and the solvent is completely removed from the microspheres. It is difficult to remove, and it leaves many problems in work safety and environment. In the W / O method, since mineral oil and vegetable oil are used for the outer O phase, there are difficulties in taking out and washing, workability is poor, and the remaining oil phase poses a serious problem.

【0004】W/O/W法及びO/W法は外相が水相で
あるためO/O法の様な残存溶媒等の問題は付随しない
が、液中乾燥過程でしばしば油相の薬物が水相中に溶出
し、マイクロスフェア中への薬物の取り込みが著しく低
下するという問題点があった。この欠点を克服するため
特開昭60−100516、特開昭62−201816
には内水相中にゼラチンを溶解せしめたW/O/W法が
開示されている。しかしながらW/O/W法では操作が
煩雑であり、かつ一定品質の製剤を得るためには製造条
件を多岐にわたり精密に制御する必要がある。加えてこ
の方法では有効に適用される薬物の種類には限りがあ
る。また、この方法では通常薬物保持相中の添加物とし
て利用されているゼラチン等の無菌性及び脱パイロジェ
ン化が問題となる。
Since the W / O / W method and the O / W method do not have the problem of residual solvent as in the O / O method because the outer phase is an aqueous phase, the drug in the oil phase is often used in the liquid drying process. There was a problem that the drug was dissolved in the aqueous phase and the drug uptake into the microspheres was significantly reduced. In order to overcome this drawback, JP-A-60-100516 and JP-A-62-201816.
Discloses a W / O / W method in which gelatin is dissolved in an inner aqueous phase. However, in the W / O / W method, the operation is complicated, and in order to obtain a preparation of constant quality, it is necessary to control the production conditions in a wide variety and precisely. In addition, this method limits the types of drugs that can be effectively applied. Further, in this method, sterility and depyrogenation of gelatin and the like, which are usually used as additives in the drug holding phase, pose problems.

【0005】[0005]

【発明が解決しようとする課題】作業性及び安全性の観
点からは簡単な操作でマイクロスフェアが得られ、か
つ、薬物の取り込み率を減少させない工夫が望まれる。
しかしながら公知の相分離法、各種エマルションからの
液中乾燥法では、一般に薬物取り込み率が低かったり、
溶出の初期に急激な薬物放出が生じるバースト溶出を完
全に抑制することは困難である。これは液中乾燥操作時
に油相中の薬物が水相に直接接触し、分配・拡散等によ
って容易に外相にリークしうる状態にあることが原因で
ある。
From the viewpoint of workability and safety, it is desired to devise a microsphere which can be obtained by a simple operation and which does not reduce the drug uptake rate.
However, in the known phase separation method, in-liquid drying method from various emulsions, the drug uptake rate is generally low,
It is difficult to completely suppress burst elution in which a rapid drug release occurs at the initial stage of elution. This is because the drug in the oil phase is in direct contact with the water phase during the in-liquid drying operation, and may be easily leaked to the outer phase by distribution / diffusion.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記のよう
な従来技術における問題を解決すべく、鋭意検討したと
ころ、ある2種類の生体内分解性ポリマーを別々に同一
または異なる水と混和しない有機溶媒に溶解し、これを
混ぜ合わせると、この2種類の生体内分解性ポリマーは
互いに混じりあわず分離し、かつ激しく撹拌するとO/
O型エマルションを生成することを見い出した。ここに
薬物を添加すると、その薬物は一方のポリマー中により
多く分布し、不連続な相を形成した。この様にして調製
した薬物を包含するO/O型エマルションを、水中に分
散すると、O/O/W型エマルションが生成する。そこ
で、これを液中乾燥すると薬物が複数の島状に分散した
マイクロスフェアが得られることがわかった。この場
合、薬物は模式図(図3)に示すように、内部にアロイ
状に分散している一方のポリマー相に多く分布し、その
外層部分には分布が少ない。この外層は薬物と外水相あ
るいは溶出液との接触を阻止する役割をも担っている。
このような構造を有することが原因となって、O/O/
W型エマルションで製したマルチカプセルタイプのマイ
クロスフェアが、薬物取り込み率が高く、かつ、溶出試
験において初期のバースト的な溶出を抑えることが出来
る性質を持つことがわかった。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made extensive studies in order to solve the above problems in the prior art. As a result, two kinds of biodegradable polymers are separately mixed with the same or different water. When dissolved in an organic solvent that does not exist and mixed together, the two types of biodegradable polymers do not mix with each other and separate, and when vigorously stirred, O /
It was found to form an O-type emulsion. When a drug was added here, the drug was more distributed in one polymer and formed a discontinuous phase. When the O / O type emulsion containing the drug thus prepared is dispersed in water, an O / O / W type emulsion is produced. Therefore, it was found that when this was dried in a liquid, microspheres in which the drug was dispersed in a plurality of islands were obtained. In this case, as shown in the schematic diagram (FIG. 3), the drug is distributed largely in one polymer phase which is dispersed in an alloy inside, and the distribution is small in the outer layer portion. This outer layer also plays a role of preventing contact between the drug and the outer aqueous phase or the eluate.
Due to having such a structure, O / O /
It was found that the multi-capsule type microspheres made of W-type emulsion have a high drug uptake rate and a property capable of suppressing the initial bursty dissolution in the dissolution test.

【0007】本発明のマイクロスフェア製剤は、2種以
上の生体内分解性ポリマーおよび薬物よりなり、一方の
生体内分解性ポリマー(第一ポリマー)からなる微小領
域が、他方の生体内分解性ポリマー(第二ポリマー)か
らなる領域中に分散している内部構造を有し、該微小領
域中に薬物を含有する徐放性多核マイクロスフェア製剤
である。
The microsphere preparation of the present invention is composed of two or more kinds of biodegradable polymers and a drug, and the microregions of one biodegradable polymer (first polymer) are used in the other biodegradable polymer. A sustained-release polynuclear microsphere preparation having an internal structure dispersed in a region (second polymer) and containing a drug in the microregion.

【0008】本発明において製剤中に含有される薬物は
特に限定されず、たとえば、抗がん剤、抗生物質、生理
活性を有するポリペプチド、解熱剤、鎮痛剤、免疫賦活
剤、免疫抑制剤、抗炎症剤、鎮咳剤、抗てんかん剤、抗
ヒスタミン剤、降圧利尿剤、糖尿病治療剤、筋弛緩剤、
抗潰瘍剤、抗うつ剤、抗アレルギー剤、狭心剤、不整脈
治療剤、血管拡張剤、抗凝血剤、止血剤、抗結核剤、麻
薬拮抗剤、ホルモン剤などがあげられるが、とりわけこ
れらの内難溶性の薬物が好ましい。
The drug contained in the preparation of the present invention is not particularly limited, and examples thereof include anticancer agents, antibiotics, bioactive polypeptides, antipyretics, analgesics, immunostimulants, immunosuppressants, and anti-inflammatory agents. Inflammatory agents, antitussives, antiepileptic agents, antihistamines, antihypertensive diuretics, antidiabetic agents, muscle relaxants,
Antiulcer agents, antidepressants, antiallergic agents, angina agents, antiarrhythmic agents, vasodilators, anticoagulants, hemostatic agents, antituberculosis agents, narcotics antagonists, hormone agents, etc. Of these, sparingly soluble drugs are preferred.

【0009】マイクロスフェアの基材として使用される
生体内分解性ポリマーとしては、生理活性を持たず、生
体内で分解・消失する性質を有するポリマーであればな
んでもよい。たとえば、乳酸、グリコール酸、リンゴ酸
およびヒドロキシ酪酸などのホモポリマー、並びにこれ
らのコポリマーがあげられる。とくに平均分子量が1,
000〜500,000のポリ乳酸ならびに乳酸グリコ
ール酸コポリマーが好ましい。生体分解性ポリマーに対
する薬物の含有量は、任意に選ぶことができ、薬物の種
類、目的とする薬理効果および放出時間によって異なる
が、約0.01〜約40%(W/W)、特に0.01〜
20%が好ましい。
The biodegradable polymer used as the base material of the microsphere may be any polymer as long as it has no physiological activity and has the property of degrading and disappearing in vivo. Examples include homopolymers such as lactic acid, glycolic acid, malic acid and hydroxybutyric acid, and copolymers thereof. Especially, the average molecular weight is 1,
000 to 500,000 polylactic acid as well as lactic acid glycolic acid copolymers are preferred. The content of the drug with respect to the biodegradable polymer can be arbitrarily selected and varies depending on the kind of the drug, the desired pharmacological effect and the release time, but is about 0.01 to about 40% (W / W), particularly 0. .01-
20% is preferable.

【0010】本発明のマイクロスフェア製剤は、2種以
上の生体内分解性ポリマーを、それぞれ同一または相異
なる水に混和しない有機溶媒に溶解し、一方に薬物を溶
解または分散させた後、両者を混合してO/O型のエマ
ルションを調製し、このエマルションを水中に分散し
て、O/O/W型エマルションを調製し、ついで生成し
たマイクロスフェアを液中乾燥することにより製するこ
とができる。
In the microsphere preparation of the present invention, two or more kinds of biodegradable polymers are dissolved in the same or different water-immiscible organic solvents, and the drug is dissolved or dispersed in one of them and then both are dissolved. It can be produced by mixing to prepare an O / O type emulsion, dispersing this emulsion in water to prepare an O / O / W type emulsion, and then drying the resulting microspheres in liquid. .

【0011】O/O型エマルションは、常法により製す
ることができ、例えば、薬物を一方の生体内分解性ポリ
マーの有機溶媒中に溶解または分散し、これを同一の有
機溶媒に溶解した別の生体内分解性ポリマー中に乳化す
るか、もしくは、両ポリマーを溶解した有機溶媒溶液に
薬物を加えて乳化することにより容易に実施できる。こ
こで用いる2種類のポリマーの組合せはそれぞれは有機
溶媒系にとけているが、両者を混合するとそれぞれの相
は相溶せず、一方のポリマー(第一ポリマー)が他方の
ポリマー(第二ポリマー)中でアロイを形成する組合せ
であればなんでもよく、たとえば乳酸ホモポリマーと乳
酸グリコール酸コポリマーの組合せがある。また、これ
ら第一および第二ポリマーは、各々が2種以上のポリマ
ーの混合物の形でも使用できる。
The O / O type emulsion can be produced by a conventional method. For example, a drug is dissolved or dispersed in an organic solvent of one biodegradable polymer, and this is dissolved in the same organic solvent. It can be easily carried out by emulsifying in the biodegradable polymer of 1 or by adding a drug to an organic solvent solution in which both polymers are dissolved and emulsifying. The combination of the two types of polymers used here are each dissolved in an organic solvent system, but when the two are mixed, the respective phases are not compatible, and one polymer (first polymer) is the other polymer (second polymer). ), Any combination that forms an alloy may be used, such as a combination of a lactic acid homopolymer and a lactic acid glycolic acid copolymer. Further, each of these first and second polymers can be used in the form of a mixture of two or more polymers.

【0012】有機溶媒はO/O/W型エマルションの油
相となる溶媒であり、揮発性で水への溶解性が低く、か
つ、ポリマーの良溶媒であればなんでもよい。たとえ
ば、クロロホルム、塩化メチレン、四塩化炭素などがあ
げられる。また、これら溶媒と相溶する溶媒(例えば、
エチルエーテル、酢酸エチル等)を添加した混合溶媒も
使用することができる。とくに、生体内分解性ポリマー
として、ポリ乳酸と乳酸グリコール酸コポリマーを用い
る場合には、塩化メチレンが望ましい。
The organic solvent is a solvent which becomes an oil phase of the O / O / W type emulsion, and may be any solvent as long as it is volatile, has low solubility in water, and is a good solvent for the polymer. For example, chloroform, methylene chloride, carbon tetrachloride and the like can be mentioned. Further, a solvent compatible with these solvents (for example,
A mixed solvent added with ethyl ether, ethyl acetate, etc.) can also be used. In particular, methylene chloride is preferable when polylactic acid and lactic acid glycolic acid copolymer are used as the biodegradable polymer.

【0013】本発明において、第一ポリマーと第二ポリ
マーは、一般的に、使用重量の多いポリマーがO/O型
エマルションにおいて連続層を形成して第二ポリマーと
なり、使用重量の少ないポリマーが、O/O型エマルシ
ョンの該連続層中に分散し微小液滴を形成して第一ポリ
マーとなるので、これを指標として、選択することがで
きる。 使用する第一ポリマーと第二ポリマーの重量比
は上記の指標にもとづき決定すればよく、特に制限はな
いが、例えば第一ポリマーが1に対して第二ポリマーが
1〜10であるものがあげられる。このうち、好ましい
重量比としては、第一ポリマーが1に対して第二ポリマ
ーが2〜4のものがあげられる。例えば、ポリ乳酸と乳
酸−グリコール酸コポリマーの組合せの場合において、
分子量が共に同じであり、重量比がポリ乳酸が2、乳酸
−グリコール酸コポリマーが1のときは、乳酸−グリコ
ール酸コポリマーが微小液滴を形成して第一ポリマーと
なる。また上記組合せの場合において、重量比が逆のと
きは、ポリ乳酸が微小液滴を形成して第一ポリマーとな
る。
In the present invention, as the first polymer and the second polymer, generally, the polymer used in a large amount forms a continuous layer in the O / O type emulsion to become the second polymer, and the polymer used in a small amount is Since the O / O emulsion is dispersed in the continuous layer to form fine droplets to be the first polymer, it can be selected using this as an index. The weight ratio of the first polymer and the second polymer to be used may be determined based on the above index and is not particularly limited. For example, one having 1 to 1 of the first polymer and 1 to 10 of the second polymer is exemplified. To be Among these, a preferable weight ratio is 1 to 1 for the first polymer and 2 to 4 for the second polymer. For example, in the case of a combination of polylactic acid and lactic acid-glycolic acid copolymer,
When the molecular weights are the same and the weight ratio is 2 for polylactic acid and 1 for lactic acid-glycolic acid copolymer, the lactic acid-glycolic acid copolymer forms microdroplets to become the first polymer. In the case of the above combination, when the weight ratio is opposite, polylactic acid forms microdroplets and becomes the first polymer.

【0014】また、薬物は、第一または第二ポリマーと
の親和性により、いずれかのポリマー溶液中に偏在す
る。従って、本発明においては、上記の関係を利用し
て、微小液滴を形成するポリマー中に薬物を含有させ徐
放性に優れたマイクロスフェアを得ることができる。例
えば、薬物がO/O型エマルションにおいて連続相(即
ち、第二ポリマー)に偏在する場合には、ポリマーの重
量比を変えることにより、微小液滴中に薬物を含有させ
ることが可能となるので、容易に薬物とポリマーの組合
せを選択することができる。
The drug is unevenly distributed in either polymer solution due to its affinity with the first or second polymer. Therefore, in the present invention, by utilizing the above relationship, it is possible to obtain a microsphere having an excellent sustained release property by incorporating a drug in a polymer forming microdroplets. For example, when the drug is unevenly distributed in the continuous phase (that is, the second polymer) in the O / O emulsion, the drug can be contained in the microdroplets by changing the weight ratio of the polymer. , The combination of drug and polymer can be easily selected.

【0015】また、一般的に粘度が上昇すると、粒子間
の合一が抑制されるためO/O型エマルションは安定化
し、内部の微小領域の粒子径が小さいマイクロスフェア
を製することができ、2種の生体内分解性ポリマーの
内、一方のポリマーとして高分子量のものを採用するこ
とによっても、上記と同様に内部微小領域の粒子径が小
さいマイクロスフェアを製造することができる場合があ
り、マイクロスフェア内部における微小領域の粒子径を
コントロールできる。
Generally, when the viscosity increases, coalescence between particles is suppressed, so that the O / O type emulsion is stabilized, and it is possible to manufacture microspheres having a small particle size in the internal fine region. By adopting a high molecular weight polymer as one of the two biodegradable polymers, it may be possible to produce a microsphere having a small particle size in the internal microscopic region as described above. It is possible to control the particle size of minute regions inside the microsphere.

【0016】本発明において第一ポリマーと第二ポリマ
ーの効果はそれぞれ下記の通りである。第一ポリマーは
薬物に対して第二ポリマーよりも親和性が高いため選択
的に薬物を保持することができる。第二ポリマーは大き
く二つの効果をもつ。第一に、本発明により調製したO
/O型エマルションをさらに水相中に乳化してO/O/
W型エマルションとする際、第一ポリマーに保持した薬
物を水相中に逃さない効果を有する。このことにより、
高い取り込み率が得られる。第二にマイクロスフェアが
体液と接した際、第一ポリマーよりなる内相のアロイが
直接水と接触することを防ぐ結果、初期のバースト的な
溶出の抑制などの放出制御の効果を有する。
In the present invention, the effects of the first polymer and the second polymer are as follows. Since the first polymer has a higher affinity for the drug than the second polymer, the drug can be selectively retained. The second polymer has two major effects. First, the O prepared according to the present invention
/ O-type emulsion is further emulsified in the water phase to produce O / O /
When it is a W-type emulsion, it has the effect of not letting the drug held in the first polymer escape into the aqueous phase. By this,
A high uptake rate can be obtained. Secondly, when the microspheres come into contact with the body fluid, the alloy of the inner phase composed of the first polymer is prevented from directly contacting with water, and as a result, it has the effect of controlling the release such as the suppression of the initial burst-like elution.

【0017】O/O/W型エマルションはO/O型エマ
ルションを水相中に加え、乳化することにより調製する
ことができる。水相には、油相の合一や生成したマイク
ロスフェアの凝集を防ぐために凝集防止剤を加えること
もできる。凝集防止剤としては、一般に用いられるもの
であればなんでもよいが、たとえば、ポリビニルアルコ
ール、ポリエチレングリコールなどの多価アルコール
類、界面活性剤、キトサンなどの多糖類、ゼラチン、ア
ラビアゴムなどがあげられる。この凝集防止剤の水相中
の濃度は0.01〜10%(w/v)、とくに0.1〜
2%(w/v)が好ましい。凝集防止剤の種類や添加濃
度を変えることにより、マイクロスフェアの粒子径なら
びに粒度の分布をコントロールすることができる。乳化
操作は、プロペラ式撹拌機、タービン型の乳化機、超音
波分散装置または高圧乳化機などにより容易に実施する
ことができる。
The O / O / W type emulsion can be prepared by adding the O / O type emulsion to the aqueous phase and emulsifying. An anticoagulant may be added to the aqueous phase in order to prevent coalescence of the oil phase and aggregation of the produced microspheres. Any anticoagulant may be used as long as it is generally used, and examples thereof include polyhydric alcohols such as polyvinyl alcohol and polyethylene glycol, surfactants, polysaccharides such as chitosan, gelatin, and gum arabic. The concentration of this anti-aggregating agent in the aqueous phase is 0.01 to 10% (w / v), especially 0.1 to 10.
2% (w / v) is preferred. It is possible to control the particle size and the particle size distribution of the microspheres by changing the type and concentration of the anticoagulant added. The emulsification operation can be easily performed by a propeller-type stirrer, a turbine-type emulsifier, an ultrasonic disperser, a high-pressure emulsifier, or the like.

【0018】こうして得られたエマルションを液中乾燥
し、マイクロスフェアを製造する。液中乾燥は加熱法、
減圧法等の常法により実施することができ、例えば加熱
法ではプロペラ型またはタービン型撹拌機でエマルショ
ンを撹拌しながら昇温し、溶媒の留去を行う。この撹拌
速度は装置および仕込量により若干変動するが、約10
〜約25000rpm、とくに好ましくは50〜100
00rpmである。温度は約0.5〜約4時間かけて上
昇させる。初めの温度は0〜25℃、上昇後の最高温度
は25〜50℃が好ましい。また減圧法では、エマルシ
ョンをロータリーエバポレーターのような適当な減圧装
置で徐々に減圧して約0.1〜50mm/Hgとし、溶
媒の留去を行う。液中乾燥により得られたマイクロスフ
ェアは遠心分離または濾過などの方法により分取し、蒸
留水にて洗浄を行い、風乾または真空乾燥などにより溶
媒を完全に留去させることにより、本発明のマイクロス
フェアが得られる。剤型によっては、洗浄後のマイクロ
スフェアを適当な溶液に懸濁し、凍結乾燥により最終製
剤の形に調製する。以上の方法で得られるマイクロスフ
ェアの粒子径は、平均粒子径として0.01μm〜50
0μmである。一般的には、油相における有機溶媒量の
ポリマー量に対する比率を上昇させることにより、得ら
れるマイクロスフェアの粒子径は微細になる。
The emulsion thus obtained is dried in a liquid to produce microspheres. In-liquid drying is a heating method,
It can be carried out by a conventional method such as a reduced pressure method. For example, in the heating method, the temperature is raised while stirring the emulsion with a propeller type or turbine type stirrer to distill off the solvent. The stirring speed varies slightly depending on the equipment and the charged amount, but it is about 10
To about 25,000 rpm, particularly preferably 50 to 100
It is 00 rpm. The temperature is raised for about 0.5 to about 4 hours. The initial temperature is preferably 0 to 25 ° C, and the maximum temperature after the increase is preferably 25 to 50 ° C. In the depressurization method, the emulsion is gradually depressurized with a suitable depressurizing device such as a rotary evaporator to about 0.1 to 50 mm / Hg, and the solvent is distilled off. The microspheres obtained by in-liquid drying are separated by a method such as centrifugation or filtration, washed with distilled water, and the solvent is completely distilled off by air-drying or vacuum-drying to give the microspheres of the present invention. You get a sphere. Depending on the dosage form, the washed microspheres are suspended in an appropriate solution and lyophilized to prepare the final formulation. The particle size of the microspheres obtained by the above method has an average particle size of 0.01 μm to 50 μm.
It is 0 μm. Generally, by increasing the ratio of the amount of the organic solvent to the amount of the polymer in the oil phase, the particle size of the obtained microspheres becomes fine.

【0019】このようにして得られたマイクロスフェア
は薬物の取り込み量が高く、また、実施例にも示すよう
に溶出パターンは零次放出型となることが多い。さら
に、第一ポリマーと第二ポリマーの組合せ、配合比を変
更することにより溶出パターンを種々変更することが出
来る。本発明のマイクロスフェアは、そのまま埋込剤と
して生体に投与することができる。また、種々の製剤を
製造する際の原料としても用いうる。そのような製剤と
しては、例えば注射剤、経口投与剤、経皮投与剤、坐
剤、経鼻投与剤、口腔投与剤および眼内投与剤などがあ
げられる。
The thus-obtained microspheres have a high drug uptake amount, and the elution pattern is often a zero-order release type as shown in Examples. Further, the elution pattern can be variously changed by changing the combination of the first polymer and the second polymer and the compounding ratio. The microsphere of the present invention can be directly administered to a living body as an implant. It can also be used as a raw material when manufacturing various preparations. Examples of such preparations include injections, oral administrations, transdermal administrations, suppositories, nasal administrations, buccal administrations and intraocular administrations.

【0020】[0020]

【実施例】つぎに実施例をあげて本発明をさらに具体的
に説明するが、本発明はもとよりこれらの実施例のみに
限定されるものではない。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to these examples as a matter of course.

【0021】実施例1 乳酸とグリコール酸のモル比が50:50であり、分子
量2万の乳酸−グリコール酸コポリマー(以下、PLG
A5020と略す)300mgと、薬物としてシスプラ
チン(CDDP)100mgに塩化メチレン500mg
を加えた(A液)。また別に分子量2万のポリ乳酸(以
下、PLA0020と略す)600mgを塩化メチレン
1gに溶解した(B液)。A液をB液に加え、乳化機
[ポリトロン(キネマティカ、アーゲー、リタウ(Ki
nematica Ag Littau)社製の商品
名、スイス)]にて回転数12,000rpmで30秒
間乳化し、内相にA液を含むO/O型エマルションを得
た。それを15℃において、パスツールピペットを用い
て0.5%ポリビニルアルコール水溶液400mlに添
加し、ポリトロンにて回転数12,000rpmで5分
間乳化し、O/O/W型エマルションとした。そのの
ち、四枚羽根付きパドルにて400rpmで撹拌しなが
ら、3時間かけて15〜30℃まで昇温することによ
り、液中乾燥を行い、マイクロスフェアを得た。つい
で、このマイクロスフェアを遠心分離で集め、さらに蒸
留水で3回洗浄し、メンブランフィルターで濾取したも
のを室温下で一昼夜減圧乾燥を行った。得られたマイク
ロスフェアは平均粒子系が約50μmでほとんどが10
0μm以下の黄色球状粒子であった(製剤1)。
Example 1 A lactic acid-glycolic acid copolymer (hereinafter referred to as PLG) having a molar ratio of lactic acid and glycolic acid of 50:50 and a molecular weight of 20,000.
A5020) 300 mg, and cisplatin (CDDP) 100 mg as a drug, methylene chloride 500 mg.
Was added (solution A). Separately, 600 mg of polylactic acid having a molecular weight of 20,000 (hereinafter abbreviated as PLA0020) was dissolved in 1 g of methylene chloride (solution B). Solution A is added to solution B and the emulsifier [Polytron (Kinematica, AG, Ritau (Ki
nematica Ag Littau) (trade name, Switzerland)] was emulsified for 30 seconds at a rotation speed of 12,000 rpm to obtain an O / O type emulsion containing the liquid A in the internal phase. It was added to 400 ml of a 0.5% polyvinyl alcohol aqueous solution at 15 ° C. using a Pasteur pipette, and emulsified with a Polytron at a rotation speed of 12,000 rpm for 5 minutes to obtain an O / O / W type emulsion. Then, while stirring at 400 rpm with a four-bladed paddle, the temperature was raised to 15 to 30 ° C. over 3 hours to perform in-liquid drying to obtain microspheres. Then, the microspheres were collected by centrifugation, washed with distilled water three times, and filtered with a membrane filter, and then dried under reduced pressure at room temperature for a whole day and night. The resulting microspheres have an average particle size of about 50 μm and mostly 10
The particles were yellow spherical particles of 0 μm or less (Preparation 1).

【0022】実施例2 PLGA5020(300mg)、CDDP(100m
g),PLA0020(600mg)に塩化メチレン
(1.5g)を加えた。これをポリトロンにて回転数1
2,000rpmで30秒間混合し、内相にシスプラチ
ンを分布したO/O型エマルションを得た。以下実施例
1と同様の操作でマイクロスフェアを得た(製剤2)。
Example 2 PLGA5020 (300 mg), CDDP (100 m
g), PLA0020 (600 mg) was added with methylene chloride (1.5 g). Rotate this with Polytron 1
The mixture was mixed at 2,000 rpm for 30 seconds to obtain an O / O type emulsion in which cisplatin was distributed in the inner phase. Microspheres were obtained in the same manner as in Example 1 below (Formulation 2).

【0023】実施例3 PLGA5020(300mg)とCDDP(100m
g)に塩化メチレン(500mg)を加えた(A液)。
また別に分子量1万のポリ乳酸(以下、PLA0010
と略す)(600mg)を塩化メチレン(1g)に溶解
した(B液)。A液をB液に加えポリトロンにて回転数
12,000rpmで30秒間乳化し、内相にA液を含
むO/O型エマルションを得た。以下実施例1と同様の
操作でマイクロスフェアを得た(製剤3)。
Example 3 PLGA5020 (300 mg) and CDDP (100 m)
Methylene chloride (500 mg) was added to g) (Liquid A).
Separately, polylactic acid having a molecular weight of 10,000 (hereinafter PLA0010
(Abbreviated) (600 mg) was dissolved in methylene chloride (1 g) (solution B). Solution A was added to solution B and emulsified with a polytron at a rotation speed of 12,000 rpm for 30 seconds to obtain an O / O type emulsion containing solution A in the internal phase. Microspheres were obtained in the same manner as in Example 1 below (Formulation 3).

【0024】比較例1〜3 製剤1、2および3の比較として、PLGA5020
(900mg)とCDDP(100mg)に塩化メチレ
ン(1.5g)を加え、ポリトロンにて回転数12,0
00rpmで30秒間乳化した。以下実施例1と同様の
操作でマイクロスフェアを得た(比較製剤1)。また、
PLA0020(900mg)とCDDP(100m
g)に塩化メチレン(1.5g)を加え、ポリトロンに
て回転数12,000rpmで30秒間乳化した。以下
実施例1と同様の操作でマイクロスフェアを得た(比較
製剤2)。さらに、PLA0010(900mg)とC
DDP(100mg)に塩化メチレン(1g)を加え、
ポリトロンにて回転数12,000rpmで30秒間乳
化した。以下実施例1と同様の操作でマイクロスフェア
を得た(比較製剤3)。
Comparative Examples 1-3 PLGA5020 as a comparison of formulations 1, 2 and 3
Methylene chloride (1.5 g) was added to (900 mg) and CDDP (100 mg), and the rotation speed was 12.0 with a polytron.
The mixture was emulsified at 00 rpm for 30 seconds. Microspheres were obtained in the same manner as in Example 1 below (Comparative Formulation 1). Also,
PLA0020 (900 mg) and CDDP (100 m
Methylene chloride (1.5 g) was added to g), and the mixture was emulsified with a Polytron at a rotation speed of 12,000 rpm for 30 seconds. Microspheres were obtained in the same manner as in Example 1 below (Comparative Formulation 2). Furthermore, PLA0010 (900 mg) and C
Add methylene chloride (1 g) to DDP (100 mg),
The emulsion was emulsified with a Polytron at a rotation speed of 12,000 rpm for 30 seconds. Microspheres were obtained in the same manner as in Example 1 (Comparative Formulation 3).

【0025】実験例1 上記の方法で得られたマイクロスフェアの薬物取り込み
率(処方量に対し実際に取り込まれた量の%)の測定、
および37℃でPH7.4の等張リン酸緩衝液に対して
イン・ビトロ溶出試験を行った。CDDPの定量は原子
吸光度計(HITACHI 180−80)にて行っ
た。製剤1〜3および比較製剤1〜3中へのCDDPの
取り込み率を表1に示した。本発明による製造方法で製
したマイクロスフェアの取り込み率は、比較製剤よりも
顕著に高いことを認めた。製剤1および2の溶出試験の
結果を図1および図2に示した。これらの結果より本法
で調製したマイクロスフェアは、一種類のポリマーで調
製したマイクロスフェアより取り込み率が高く、また零
次放出型の製剤であることが示された。
Experimental Example 1 Measurement of the drug uptake rate (% of the amount actually taken in relative to the prescribed amount) of the microspheres obtained by the above method,
And an in vitro dissolution test was carried out against isotonic phosphate buffer of pH 7.4 at 37 ° C. The quantification of CDDP was performed with an atomic absorption meter (HITACHI 180-80). The incorporation rates of CDDP in Formulations 1 to 3 and Comparative Formulations 1 to 3 are shown in Table 1. It was found that the uptake rate of the microspheres produced by the production method according to the present invention was significantly higher than that of the comparative preparation. The results of the dissolution test of Formulations 1 and 2 are shown in FIGS. 1 and 2. From these results, it was shown that the microspheres prepared by this method had a higher uptake rate than the microspheres prepared by one kind of polymer and was a zero-order release type formulation.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例4 予めPLA0020(333mg)のアセトニトリル
(1ml)溶液とヒトカルシトニン(1mg)のメタノ
ール(0.5ml)溶液を混和し、減圧乾燥にて溶媒を
留去した後、塩化メチレン(500mg)を加えた(A
液)。また別にPLGA5020(667mg)を塩化
メチレン(1g)に溶解した(B液)。A液にB液を加
え、ポリトロンにて回転数12,000rpmで30秒
間乳化した。以下実施例1と同様の操作でマイクロスフ
ェアを得た(製剤4)。
Example 4 A solution of PLA0020 (333 mg) in acetonitrile (1 ml) and human calcitonin (1 mg) in methanol (0.5 ml) were mixed in advance and the solvent was distilled off under reduced pressure, followed by methylene chloride (500 mg). ) Was added (A
liquid). Separately, PLGA5020 (667 mg) was dissolved in methylene chloride (1 g) (solution B). Solution B was added to solution A, and the mixture was emulsified with a polytron at a rotation speed of 12,000 rpm for 30 seconds. Microspheres were obtained in the same manner as in Example 1 below (Formulation 4).

【0028】実験例2 上記の実施例4で得られたマイクロスフェアの薬物取り
込み率をHPLC法にて測定したところ、下記表2に示
すとおり、ヒトカルシトニンは殆ど100%近くマイク
ロスフェア中に包含された。
Experimental Example 2 The drug uptake rate of the microspheres obtained in the above Example 4 was measured by the HPLC method. As shown in Table 2 below, human calcitonin was almost 100% contained in the microspheres. It was

【表2】 [Table 2]

【0029】実施例5 PLA0010(300mg)と薬物として(4S)−
3−[(2S)−N−[(1S)−1−エトキシカルボ
ニル−3−フェニルプロピル]アラニル]−1−メチル
−2−オキソ−4−イミダゾリジンカルボン酸・塩酸塩
(100mg)に塩化メチレン(500mg)を加えた
(A液)。また別にPLGA5020(600mg)を
塩化メチレン(1g)に溶解した(B液)。A液をB液
に加え、ポリトロンにて回転数12,000rpmで3
0秒間乳化した。以下実施例1と同様の操作でマイクロ
スフェアを得た(製剤5)。
Example 5 PLA0010 (300 mg) and (4S) -as a drug
3-[(2S) -N-[(1S) -1-ethoxycarbonyl-3-phenylpropyl] alanyl] -1-methyl-2-oxo-4-imidazolidinecarboxylic acid hydrochloride (100 mg) in methylene chloride (500 mg) was added (solution A). Separately, PLGA5020 (600 mg) was dissolved in methylene chloride (1 g) (solution B). Add solution A to solution B, and rotate with Polytron at 12,000 rpm for 3
Emulsified for 0 seconds. Microspheres were obtained in the same manner as in Example 1 below (Preparation 5).

【0030】比較例4 製剤4の比較として、PLGA5020(900mg)
と(4S)−3−[(2S)−N−[(1S)−1−エ
トキシカルボニル−3−フェニルプロピル]アラニル]
−1−メチル−2−オキソ−4−イミダゾリジンカルボ
ン酸・塩酸塩(100mg)に塩化メチレン(1g)を
加え、ポリトロンにて回転数12,000rpmで30
秒間乳化した。以下実施例1と同様の操作でマイクロス
フェアを得た(比較製剤4)。
Comparative Example 4 As a comparison with Formulation 4, PLGA5020 (900 mg)
And (4S) -3-[(2S) -N-[(1S) -1-ethoxycarbonyl-3-phenylpropyl] alanyl]
Methylene chloride (1 g) was added to -1-methyl-2-oxo-4-imidazolidinecarboxylic acid / hydrochloride (100 mg), and a polytron was used at a rotation speed of 12,000 rpm for 30 minutes.
Emulsified for seconds. Microspheres were obtained in the same manner as in Example 1 below (Comparative Formulation 4).

【0031】実験例3 実施例5および比較例4で得られたマイクロスフェアの
薬物取り込み率を、吸光光度計(HITACHI 20
00,W1=280nm,W2=220nm)にて測定
したところ、製剤5ではマイクロスフェア1g中に1
2.4mgの(4S)−3−[(2S)−N−[(1
S)−1−エトキシカルボニル−3−フェニルプロピ
ル]アラニル]−1−メチル−2−オキソ−4−イミダ
ゾリジンカルボン酸・塩酸塩が取り込まれた。これに対
し比較製剤4の取り込み率は殆ど0であった。
Experimental Example 3 The drug uptake rate of the microspheres obtained in Example 5 and Comparative Example 4 was measured by an absorptiometer (HITACHI 20).
00, W1 = 280 nm, W2 = 220 nm).
2.4 mg of (4S) -3-[(2S) -N-[(1
S) -1-Ethoxycarbonyl-3-phenylpropyl] alanyl] -1-methyl-2-oxo-4-imidazolidinecarboxylic acid hydrochloride was incorporated. On the other hand, the uptake rate of Comparative Preparation 4 was almost zero.

【0032】実施例6 PLGA5020(300mg)とTRH(100m
g)を混合し、これに塩化メチレン(500mg)を加
えた(A液)。また別にPLA0020(600mg)
を塩化メチレン(1g)に溶解した(B液)。A液をB
液に加え、ポリトロンにて回転数12,000rpmで
30秒間乳化した。以下実施例1と同様の操作でマイク
ロスフェアを得た。
Example 6 PLGA5020 (300 mg) and TRH (100 m
g) were mixed, and methylene chloride (500 mg) was added thereto (Liquid A). Separately PLA0020 (600 mg)
Was dissolved in methylene chloride (1 g) (Liquid B). Liquid A to B
In addition to the liquid, it was emulsified with a Polytron at a rotation speed of 12,000 rpm for 30 seconds. Microspheres were obtained in the same manner as in Example 1 below.

【0033】実施例7 PLGA5020(300mg)とLHRH(100m
g)を混合し、これに塩化メチレン(500mg)を加
えた(A液)。また別にPLA0020(600mg)
を塩化メチレン(1g)に溶解した(B液)。A液をB
液に加え、ポリトロンにて回転数12,000rpmで
30秒間乳化した。以下実施例1と同様の操作でマイク
ロスフェアを得た。
Example 7 PLGA5020 (300 mg) and LHRH (100 m
g) were mixed, and methylene chloride (500 mg) was added thereto (Liquid A). Separately PLA0020 (600 mg)
Was dissolved in methylene chloride (1 g) (Liquid B). Liquid A to B
In addition to the liquid, it was emulsified with a Polytron at a rotation speed of 12,000 rpm for 30 seconds. Microspheres were obtained in the same manner as in Example 1 below.

【0034】実施例8 PLGA5020(300mg)とビタミンB12(1
00mg)を混合し、これに塩化メチレン(500m
g)を加えた(A液)。また別にPLA0020(60
0mg)を塩化メチレン(1g)に溶解した(B液)。
A液をB液に加え、ポリトロンにて回転数12,000
rpmで30秒間乳化した。以下実施例1と同様の操作
でマイクロスフェアを得た。
Example 8 PLGA5020 (300 mg) and vitamin B 12 (1
00 mg) and mixed with methylene chloride (500 m
g) was added (solution A). In addition, PLA0020 (60
0 mg) was dissolved in methylene chloride (1 g) (solution B).
Add solution A to solution B, and rotate at 12,000 rpm with a polytron.
Emulsified at rpm for 30 seconds. Microspheres were obtained in the same manner as in Example 1 below.

【0035】実施例9 PLGA5020(90mg)、CDDP(50mg;
平均粒径:1μm)に塩化メチレン(150mg)を添
加した(A懸濁液)。また別にPLA0020(360
mg)を塩化メチレン(600mg)に溶解してB液と
した。A懸濁液をB液に添加し、ポリトロンにて回転数
12,000rpmで30秒間乳化し、内相にA液(P
LGAおよびCDDP)を含むO/O型エマルションを
得た。以下、実施例1と同様の操作でマイクロスフェア
を得た(製剤6)。また、上記で得られた製剤6のイン
・ビトロ溶出試験を実験例1と同様にして実施した(こ
の溶出試験の結果は、図4に示す)。
Example 9 PLGA5020 (90 mg), CDDP (50 mg;
Methylene chloride (150 mg) was added to the average particle size: 1 μm (A suspension). Separately, PLA0020 (360
mg) was dissolved in methylene chloride (600 mg) to give a solution B. The suspension A was added to the solution B, which was emulsified with a polytron at a rotation speed of 12,000 rpm for 30 seconds, and the solution A (P
An O / O type emulsion containing LGA and CDDP) was obtained. Hereinafter, microspheres were obtained by the same operation as in Example 1 (Preparation 6). Further, an in vitro dissolution test of the preparation 6 obtained above was carried out in the same manner as in Experimental Example 1 (the results of this dissolution test are shown in FIG. 4).

【0036】実施例10 PLGA5020(90mg)、CDDP(50mg;
平均粒径:1μm)に塩化メチレン(150mg)を添
加した(A液)。また別にPLA0020(270m
g)および平均分子量が130000のポリ乳酸(90
mg、デュポン社)を塩化メチレン(825mg)に溶
解してB液とした。A液をB液に添加し、ポリトロンに
て回転数12,000rpmで30秒間乳化し、内相に
A液(PLGAおよびCDDP)を含むO/O型エマル
ションを得た。以下、実施例1と同様の操作でマイクロ
スフェアを得た(製剤7)。また、上記で得られた製剤
7のイン・ビトロ溶出試験を実験例1と同様にして実施
した(この溶出試験の結果は、図5に示す)。
Example 10 PLGA5020 (90 mg), CDDP (50 mg;
Methylene chloride (150 mg) was added to the average particle diameter: 1 μm (Liquid A). Separately PLA0020 (270m
g) and polylactic acid having an average molecular weight of 130,000 (90
mg, DuPont) was dissolved in methylene chloride (825 mg) to prepare a solution B. Solution A was added to solution B and emulsified with Polytron at a rotation speed of 12,000 rpm for 30 seconds to obtain an O / O type emulsion containing solution A (PLGA and CDDP) in the internal phase. Hereinafter, microspheres were obtained by the same operation as in Example 1 (Formulation 7). Further, the in vitro dissolution test of the preparation 7 obtained above was carried out in the same manner as in Experimental Example 1 (the results of this dissolution test are shown in FIG. 5).

【0037】[0037]

【発明の効果】2種類の生体内分解性ポリマーを用いて
O/O型エマルションを調製し、これを水相中に分散し
てO/O/W型として液中乾燥する方法により、任意の
薬物に対して高い取り込み率でかつ長期にわたり薬物が
放出されるマイクロスフェア製剤が提供される。
EFFECT OF THE INVENTION An O / O type emulsion is prepared by using two kinds of biodegradable polymers, and this is dispersed in an aqueous phase and dried in liquid as an O / O / W type. Provided is a microsphere formulation in which a drug is highly taken up and the drug is released over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で得られる本発明のマイクロスフェ
ア製剤(製剤1)の薬物溶出曲線を示す。
1 shows a drug dissolution curve of the microsphere preparation of the present invention (Preparation 1) obtained in Example 1. FIG.

【図2】 実施例2で得られる本発明のマイクロスフェ
ア製剤(製剤2)の薬物溶出曲線を示す。
FIG. 2 shows a drug dissolution curve of the microsphere preparation of the present invention (Formulation 2) obtained in Example 2.

【図3】 本発明のマイクロスフェア製剤の模式的構造
を示す模式図である。
FIG. 3 is a schematic diagram showing a schematic structure of the microsphere preparation of the present invention.

【図4】 実施例9で得られる本発明のマイクロスフェ
ア製剤(製剤6)の薬物溶出曲線を示す。
FIG. 4 shows a drug dissolution curve of the microsphere preparation of the present invention (Formulation 6) obtained in Example 9.

【図5】 実施例10で得られる本発明のマイクロスフ
ェア製剤(製剤7)の薬物溶出曲線を示す。
5 shows a drug dissolution curve of the microsphere preparation of the present invention (Formulation 7) obtained in Example 10. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 13/02 (72)発明者 松本 昭博 大阪府枚方市北中振1丁目3−13 (72)発明者 小林 征雄 京都府京都市左京区南禅寺下河原町1番地─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical display location B01J 13/02 (72) Inventor Akihiro Matsumoto 1-13-13 Kitachu-shing, Hirakata-shi, Osaka (72) ) Inventor Seio Kobayashi No. 1 Shimogawara-machi, Nanzenji Temple, Sakyo-ku, Kyoto City, Kyoto Prefecture

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 2種以上の生体内分解性ポリマーおよび
薬物よりなり、一方の生体内分解性ポリマー(第一ポリ
マー)からなる微小領域が、他方の生体内分解性ポリマ
ー(第二ポリマー)からなる領域中に分散している内部
構造を有し、該微小領域中に薬物を含有する徐放性多核
マイクロスフェア製剤。
1. A microregion composed of two or more kinds of biodegradable polymers and a drug, wherein a micro region composed of one biodegradable polymer (first polymer) is formed from another biodegradable polymer (second polymer). A sustained-release polynuclear microsphere preparation having an internal structure dispersed in the following region and containing a drug in the microregion.
【請求項2】 生体内分解性ポリマーが乳酸、グリコー
ル酸、リンゴ酸またはヒドロキシ酪酸のホモポリマーで
あるか、あるいは乳酸、グリコール酸、リンゴ酸および
ヒドロキシ酪酸のうちの少なくとも2種からなるコポリ
マーである請求項1記載の徐放性多核マイクロスフェア
製剤。
2. The biodegradable polymer is a homopolymer of lactic acid, glycolic acid, malic acid or hydroxybutyric acid, or a copolymer of at least two kinds of lactic acid, glycolic acid, malic acid and hydroxybutyric acid. The sustained-release polynuclear microsphere preparation according to claim 1.
【請求項3】 生体内分解性ポリマーが乳酸ホモポリマ
ーであるか、あるいは、乳酸とグリコール酸とのコポリ
マーである請求項2記載の徐放性多核マイクロスフェア
製剤。
3. The sustained-release polynuclear microsphere preparation according to claim 2, wherein the biodegradable polymer is a lactic acid homopolymer or a copolymer of lactic acid and glycolic acid.
【請求項4】 乳酸のホモポリマーあるいは乳酸とグリ
コール酸とのコポリマーの分子量が1000〜5000
00である請求項3記載の徐放性多核マイクロスフェア
製剤。
4. A homopolymer of lactic acid or a copolymer of lactic acid and glycolic acid has a molecular weight of 1,000 to 5,000.
The sustained release polynuclear microsphere preparation according to claim 3, which is 00.
【請求項5】 第一ポリマーが2種以上の生体内分解性
ポリマーの混合物である請求項1記載の徐放性多核マイ
クロスフェア製剤。
5. The sustained-release polynuclear microsphere preparation according to claim 1, wherein the first polymer is a mixture of two or more kinds of biodegradable polymers.
【請求項6】 第二ポリマーが2種以上の生体内分解性
ポリマーの混合物である請求項1記載の徐放性多核マイ
クロスフェア製剤。
6. The sustained-release polynuclear microsphere preparation according to claim 1, wherein the second polymer is a mixture of two or more kinds of biodegradable polymers.
【請求項7】 使用する第一ポリマーと第二ポリマーと
の重量比が1:2〜4の範囲である請求項1記載の徐放
性多核マイクロスフェア製剤。
7. The sustained-release polynuclear microsphere preparation according to claim 1, wherein the weight ratio of the first polymer to the second polymer used is in the range of 1: 2-4.
【請求項8】 薬物の含有量がマイクロスフェアに対し
て0.01〜40%(W/W)である請求項1記載の徐
放性多核マイクロスフェア製剤。
8. The sustained-release polynuclear microsphere preparation according to claim 1, wherein the content of the drug is 0.01 to 40% (W / W) based on the microsphere.
【請求項9】 2種以上の生体内分解性ポリマーを、そ
れぞれ同一または相異なる水に混和しない有機溶媒に溶
解し、一方に薬物を溶解または分散させた後、両者を混
合してO/O型のエマルションを調製し、このエマルシ
ョンを水中に分散してO/O/W型エマルションを調製
し、ついでこれを液中乾燥することを特徴とする徐放性
多核マイクロスフェア製剤の製法。
9. Two or more kinds of biodegradable polymers are dissolved in the same or different water-immiscible organic solvents, and the drug is dissolved or dispersed in one of them, and then both are mixed to obtain O / O. A method for producing a sustained-release polynuclear microsphere preparation, which comprises: preparing an emulsion of a type, dispersing the emulsion in water to prepare an O / O / W emulsion, and then drying the emulsion in a liquid.
JP24265593A 1992-10-01 1993-09-29 Sustained release polynuclear microsphere preparation and its manufacturing method Expired - Fee Related JP2911732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24265593A JP2911732B2 (en) 1992-10-01 1993-09-29 Sustained release polynuclear microsphere preparation and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-263460 1992-10-01
JP26346092 1992-10-01
JP24265593A JP2911732B2 (en) 1992-10-01 1993-09-29 Sustained release polynuclear microsphere preparation and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH06211648A true JPH06211648A (en) 1994-08-02
JP2911732B2 JP2911732B2 (en) 1999-06-23

Family

ID=26535855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24265593A Expired - Fee Related JP2911732B2 (en) 1992-10-01 1993-09-29 Sustained release polynuclear microsphere preparation and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2911732B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021707A (en) * 2001-09-07 2003-03-15 주식회사 엘지생활건강 O/o/w multiple emulsion containing minoxidil
WO2004024056A1 (en) 2002-09-11 2004-03-25 Tanabe Seiyaku Co., Ltd. Process for the production of microspheres and unit therefor
JP2009523493A (en) * 2006-01-13 2009-06-25 サーモディクス,インコーポレイティド Microparticles containing matrices for drug delivery
JP2009545516A (en) * 2006-05-02 2009-12-24 メディバス エルエルシー Delivery of ophthalmic drugs to the exterior or interior of the eye
US7659273B2 (en) 2001-05-23 2010-02-09 Mitsubishi Tanabe Pharma Corporation Composition for accelerating bone fracture healing
JP2011506077A (en) * 2007-12-11 2011-03-03 ナンヤン テクノロジカル ユニヴァーシティー Hollow multilayer microspheres for the delivery of hydrophilic active compounds
JP2012515791A (en) * 2009-01-23 2012-07-12 サーモディクス ファーマシューティカルズ, インコーポレイテッド Controlled release system derived from polymer hybrids
US8252794B2 (en) 2001-05-23 2012-08-28 Mitsubishi Tanabe Pharma Corporation Composition for regenerative treatment of cartilage disease
JP2014501252A (en) * 2010-12-24 2014-01-20 サムヤン バイオファーマシューティカルズ コーポレイション MICROPARTICLES CONTAINING BIOACTIVE PEPTIDE, PROCESS FOR PRODUCING THE SAME, AND PHARMACEUTICAL COMPOSITION CONTAINING THE SAME
US9102830B2 (en) 2005-09-22 2015-08-11 Medivas, Llc Bis-(α-amino)-diol-diester-containing poly (ester amide) and poly (ester urethane) compositions and methods of use
US9517203B2 (en) 2000-08-30 2016-12-13 Mediv As, Llc Polymer particle delivery compositions and methods of use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210054137A (en) * 2019-11-05 2021-05-13 아주대학교산학협력단 Sustained-release pharmaceutical compositions for oral administration comprising rebamipide or pharmaceutically acceptable salt thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517203B2 (en) 2000-08-30 2016-12-13 Mediv As, Llc Polymer particle delivery compositions and methods of use
US7659273B2 (en) 2001-05-23 2010-02-09 Mitsubishi Tanabe Pharma Corporation Composition for accelerating bone fracture healing
US8252794B2 (en) 2001-05-23 2012-08-28 Mitsubishi Tanabe Pharma Corporation Composition for regenerative treatment of cartilage disease
US8399466B2 (en) 2001-05-23 2013-03-19 Mitsubishi Tanabe Pharma Corporation Composition for regenerative treatment of cartilage disease
KR20030021707A (en) * 2001-09-07 2003-03-15 주식회사 엘지생활건강 O/o/w multiple emulsion containing minoxidil
WO2004024056A1 (en) 2002-09-11 2004-03-25 Tanabe Seiyaku Co., Ltd. Process for the production of microspheres and unit therefor
US9102830B2 (en) 2005-09-22 2015-08-11 Medivas, Llc Bis-(α-amino)-diol-diester-containing poly (ester amide) and poly (ester urethane) compositions and methods of use
JP2009523493A (en) * 2006-01-13 2009-06-25 サーモディクス,インコーポレイティド Microparticles containing matrices for drug delivery
JP2009545516A (en) * 2006-05-02 2009-12-24 メディバス エルエルシー Delivery of ophthalmic drugs to the exterior or interior of the eye
JP2011506077A (en) * 2007-12-11 2011-03-03 ナンヤン テクノロジカル ユニヴァーシティー Hollow multilayer microspheres for the delivery of hydrophilic active compounds
JP2012515791A (en) * 2009-01-23 2012-07-12 サーモディクス ファーマシューティカルズ, インコーポレイテッド Controlled release system derived from polymer hybrids
JP2014501252A (en) * 2010-12-24 2014-01-20 サムヤン バイオファーマシューティカルズ コーポレイション MICROPARTICLES CONTAINING BIOACTIVE PEPTIDE, PROCESS FOR PRODUCING THE SAME, AND PHARMACEUTICAL COMPOSITION CONTAINING THE SAME

Also Published As

Publication number Publication date
JP2911732B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
US5603961A (en) Sustained release multi-core microsphere preparation and method for producing the same
US5718922A (en) Intravitreal microsphere drug delivery and method of preparation
US5288502A (en) Preparation and uses of multi-phase microspheres
US6395302B1 (en) Method for the preparation of microspheres which contain colloidal systems
JP4769119B2 (en) Fine particles
JP2651320B2 (en) Method for producing sustained-release microsphere preparation
US5955143A (en) Hollow polymer microcapsules and method of producing the same
US6861064B1 (en) Encapsulation method
US20100291200A1 (en) Formulations for poorly soluble drugs
JP4073478B2 (en) Biodegradable controlled-release microspheres and their production
BRPI0005287B1 (en) method for preparing an extended release microparticle
EP1210942B1 (en) Microparticles
JP2911732B2 (en) Sustained release polynuclear microsphere preparation and its manufacturing method
JP2000510488A (en) Improved dosing unit
JPH09110678A (en) Covered microsphere preparation and its production
JP2003526503A (en) Method for preparing colloidal particles in the form of nanocapsules
Chandy et al. Development of polylactide microspheres for protein encapsulation and delivery
JP3139913B2 (en) Method for producing dry-processed particles, dry-processed particles produced by the method, and pharmaceutical composition containing the particles
EP0539428A1 (en) Compositions containing microparticle matrices
EP0540813B1 (en) Sustained release formulations of acetazolamide
JPH08151322A (en) Oral sustained release agent
JPH04124127A (en) Microcapsule type sustained releasable preparation and its production
JPH05194253A (en) Sustained-release microparticulate preparation containing water-soluble polypeptide hormone and method for producing the same
JP2003508195A (en) Method for encapsulating active substances by coacervation of polymer in non-chlorinated organic solvents
JP3442866B2 (en) Sustained-release preparation containing poorly water-soluble drug

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees