JPH0620634A - Scanning electron microscope - Google Patents
Scanning electron microscopeInfo
- Publication number
- JPH0620634A JPH0620634A JP4200595A JP20059592A JPH0620634A JP H0620634 A JPH0620634 A JP H0620634A JP 4200595 A JP4200595 A JP 4200595A JP 20059592 A JP20059592 A JP 20059592A JP H0620634 A JPH0620634 A JP H0620634A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- electron
- scanning
- secondary electron
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、結晶材料の表面を観察
する走査電子顕微鏡に関する。FIELD OF THE INVENTION The present invention relates to a scanning electron microscope for observing the surface of a crystalline material.
【0002】[0002]
【従来の技術】従来、半導体、金属等の単結晶基板表面
の原子配列の分布を実空間の像として観察する方法とし
ては、反射電子顕微鏡または走査型反射電子顕微鏡が用
いられていた。反射電子顕微鏡では電子ビームを試料表
面すれすれに入射させ、試料表面の原子列によって回折
された電子を用いて表面の像を結像させる(八木、谷
城、高柳:「表面電子顕微鏡法』応用物理55(198
6)1036)。また、走査型反射電子顕微鏡では、同
様に電子ビームを試料表面すれすれに入射させたときに
発生する回折電子を用いるが、電子ビームを走査電子頭
微鏡と同じように試料表面を走査させ、これに同期させ
て回折電子の強度をブラウン管に表示させることによ
り、表面の走査像を得る(市川、土井、早川:「マイク
ロプローブ反射電子回折法による結晶表面の観察」応用
物理54(1985)1187)。いずれも、結晶表面
の原子配列に敏感な手段で、表面に吸着した異種原子層
や、結晶構成原子が表面1〜3原子層で結晶内部(バル
ク)と異なった原子配列をとる表面再配列構造(例え
ば、Si(111)面における7×7構造やSi(10
0)面におけるl×2構造)についての空間分布を鮮明
な像として観察できる。しかし、いずれの場合にも表面
からの反射回折電子を利用するため電子ビームを試料表
面すれすれ(数度以下)に入射させる必要があり、得ら
れる像は電子ビ一ムの入射方向に極端な寸詰まりを起こ
す(縦横比が数十対1)。2. Description of the Related Art Conventionally, a reflection electron microscope or a scanning reflection electron microscope has been used as a method of observing the distribution of atomic arrangement on the surface of a single crystal substrate of semiconductor, metal or the like as an image in real space. In a backscattered electron microscope, an electron beam is incident on the surface of the sample and an image of the surface is formed by using the electrons diffracted by the atomic sequence on the sample surface (Yagi, Tanijo, Takayanagi: "Surface electron microscopy" applied physics). 55 (198
6) 1036). Further, in the scanning backscattered electron microscope, similarly, diffracted electrons generated when an electron beam is made to impinge on the sample surface are used, but the electron beam is made to scan the sample surface in the same manner as a scanning electron microscope, and The surface scanning image is obtained by displaying the intensity of the diffracted electrons on the cathode ray tube in synchronism with (Ichikawa, Doi, Hayakawa: "Observation of crystal surface by microprobe backscattered electron diffraction method" Applied Physics 54 (1985) 1187). . All of them are means of being sensitive to the atomic arrangement on the crystal surface, and a surface rearrangement structure in which a heteroatom layer adsorbed on the surface or a crystal constituent atom has an atomic arrangement different from the inside (bulk) of the crystal in the surface 1 to 3 atomic layers. (For example, a 7 × 7 structure or Si (10
It is possible to observe the spatial distribution of the 1 × 2 structure in the 0) plane as a clear image. However, in each case, the electron beam must be incident on the surface of the sample (a few degrees or less) in order to use the reflected and diffracted electrons from the surface, and the image obtained will be extremely small in the incident direction of the electron beam. It causes clogging (aspect ratio of several tens to one).
【0003】反射回折電子を用いずに二次電子で結晶表
面の走査像を得ようとする試みもある(市ノ川:「低エ
ネルギー走査型電子顕微鏡」日本結晶学会誌29(19
87)l30、および、井野:「超高真空走査電子顕微
鏡による表面吸着層の観察」日本物理学会1990年秋
の分科会講演予講集第二分冊P.460)。この場合に
は垂直入射の電子ビームを使用でき、走査像の寸詰まり
はない。しかし、この方法では表面に存在する基板原子
とは異なる原子の層を識別することができるが、表面再
配列層のような基板原子自体の原子配列の違いを識別す
ることはできなかった。これは、以下に述べるように、
従来法では発生する二次電子を放出方向に無関係に検出
していたため、原子配列の違いを区別できなかったこと
による。There is also an attempt to obtain a scanning image of the crystal surface by secondary electrons without using reflected diffraction electrons (Ichinokawa: “Low Energy Scanning Electron Microscope”, Journal of the Crystal Society of Japan 29 (19).
87) I30 and Ino: "Observation of surface adsorption layer by ultra-high vacuum scanning electron microscope", Preparatory Lecture 2nd Volume P. 460). In this case, a vertically incident electron beam can be used and the scanning image is not clogged. However, this method can identify a layer of atoms different from the substrate atoms existing on the surface, but cannot distinguish the difference in the atomic arrangement of the substrate atoms themselves as in the surface rearrangement layer. This, as described below,
This is because the conventional method detected the generated secondary electrons irrespective of the emission direction, and could not distinguish the difference in atomic arrangement.
【0004】図6に従来の走査電子顕微鏡の構造を示
す。電界放射型の電子銃21から発生した電子ビーム2
2は、コンデンサレンズ23で収束され、偏向コイル2
4で偏向された後、対物レンズ25でさらに収束され
て、その中に置かれた試料台26に登載された試料27
の表面に照射される。これにより、試料27の表面から
二次電子28が発生する。二次電子28は対物レンズの
磁場の中をサイクロトロン運動をしながら二次電子検出
器29の電界に引かれて上方に遡り、二次電子検出器2
9で検出され、電子ビーム22の偏向コイル24による
走査と同期させてCRT等の表示手段30上に検出強度
を表示することにより走査像が得られる。図7は別の型
の従来の走査電子顕微鏡の構造を示す図である。電子
銃、コンデンサレンズ、偏向コイルは図6と同じであ
る。電子ビーム32は対物レンズ35で収束されて、そ
の外に置かれた試料台36に登載された試料37の表面
に照射される。これにより、試料37の表面から二次電
子38が発生する。二次電子38は二次電子検出器39
の電界(典型的には10kV)によって引き込まれ、二
次電子検出器39で検出される。そして、電子ビーム3
2の偏向コイル34による走査と同期させてCRT等の
表示手段40上に検出強度を表示することにより走査像
が得られる。FIG. 6 shows the structure of a conventional scanning electron microscope. Electron beam 2 generated from field emission type electron gun 21
2 is converged by the condenser lens 23, and the deflection coil 2
After being deflected by 4, the sample 27 is further converged by the objective lens 25 and mounted on the sample table 26 placed therein.
Is irradiated on the surface of. As a result, secondary electrons 28 are generated from the surface of the sample 27. The secondary electrons 28 are attracted to the electric field of the secondary electron detector 29 while moving in the cyclotron motion in the magnetic field of the objective lens and trace upward, and the secondary electron detector 2
9, a scanning image is obtained by displaying the detected intensity on the display means 30 such as a CRT in synchronization with the scanning of the electron beam 22 by the deflection coil 24. FIG. 7 is a view showing the structure of another type of conventional scanning electron microscope. The electron gun, condenser lens, and deflection coil are the same as in FIG. The electron beam 32 is converged by the objective lens 35 and irradiated on the surface of the sample 37 mounted on the sample table 36 placed outside the objective lens 35. As a result, secondary electrons 38 are generated from the surface of the sample 37. Secondary electrons 38 are secondary electron detectors 39
Of the electric field (typically 10 kV) and is detected by the secondary electron detector 39. And electron beam 3
A scanning image is obtained by displaying the detected intensity on the display means 40 such as a CRT in synchronization with the scanning by the second deflection coil 34.
【0005】従来装置で原子配列を反映した像が得られ
なかった理由は、発生した二次電子を試料面内の放出方
向に無関係に検出していたためである。即ち、図6のよ
うな二次電子の検出方式では、二次電子のサイクロトロ
ン運動により二次電子の放出方向に対する情報が失わ
れ、試料面内のどの方向に放出された二次電子も平等に
検出していた。また、図7のような二次電子検出方式で
は、二次電子検出器39の方向に放出された二次電子と
二次電子検出器39と逆方向に放出された二次電子との
間に引込効率の違いはあるものの、強い引込電界の効果
により、放出方向選択性は非常に弱かった。これは、従
来の装置では、二次電子の引込効率を高めることに主眼
がおかれ、むしろ、放出方向の選択性を持たせない検出
方式を採用していたためである。The reason why the image reflecting the atomic arrangement cannot be obtained by the conventional apparatus is that the generated secondary electrons are detected regardless of the emission direction in the sample surface. That is, in the secondary electron detection method as shown in FIG. 6, the information on the emission direction of the secondary electrons is lost due to the cyclotron motion of the secondary electrons, and the secondary electrons emitted in any direction on the sample surface are evenly distributed. Had detected. Further, in the secondary electron detection method as shown in FIG. 7, between the secondary electrons emitted in the direction of the secondary electron detector 39 and the secondary electrons emitted in the opposite direction to the secondary electron detector 39. Although there was a difference in the pulling efficiency, the emission direction selectivity was very weak due to the effect of the strong pulling electric field. This is because the conventional device focuses on increasing the efficiency of drawing secondary electrons, and rather employs a detection method that does not provide selectivity in the emission direction.
【0006】放出方向の選択性を持った検出方法として
は、Banbury−Nixonケージを用いる方法が
ある(L.Reimer:Scanning Elec
tron Microscopy、 Springer
−Verlag(Berlin、 1985)pp.2
37−38)。これは、図8に示すように、図7のタイ
プの走査電子顕微鏡において、対物レンズ35の下、試
料37の周囲に、グリッドを張った窓を持った円筒電極
41と上部電極42を設置するもので、円筒電極41に
は正電圧を印加し、上部電極42には負電圧を印加す
る。これにより、試料から発生した二次電子を二次電子
検出器39に引き込む前に、初期の放出方向を維持した
まま引き出すことができる。しかし、試料をこのような
ケージで囲むと試料から後方散乱された電子ビームがケ
ージ表面で二次電子を発生し、バックグランドノイズを
発生する。これは、原子配列の差による微妙なコントラ
ストを観察する場合には大きな障害となる。また、走査
電子顕微鏡では二次電子像観察と併用することの多い反
射電子像観察や特性X線分析、あるいはオージエ電子分
析を行う場合には、ケージが妨げになる。特に、電子ビ
ームをl0nm以下に細く集束して高分解能な観察を行
うには、対物レンズ35と試料37の距離をできるだけ
近付けたほうが有利であるので、図8のようなケージは
妨げとなる。As a detection method having a selective emission direction, there is a method using a Banbury-Nixon cage (L. Reimer: Scanning Elec).
tron Microscopy, Springer
-Verlag (Berlin, 1985) pp. Two
37-38). As shown in FIG. 8, in the scanning electron microscope of the type shown in FIG. 7, a cylindrical electrode 41 having a window with a grid and an upper electrode 42 are installed under the objective lens 35 and around the sample 37. Therefore, a positive voltage is applied to the cylindrical electrode 41, and a negative voltage is applied to the upper electrode 42. As a result, before the secondary electrons generated from the sample are drawn into the secondary electron detector 39, they can be extracted while maintaining the initial emission direction. However, when the sample is surrounded by such a cage, the electron beam backscattered from the sample generates secondary electrons on the cage surface, which causes background noise. This is a great obstacle when observing a delicate contrast due to a difference in atomic arrangement. In addition, in the scanning electron microscope, when performing backscattered electron image observation, characteristic X-ray analysis, or Auger electron analysis often used together with secondary electron image observation, the cage becomes an obstacle. In particular, in order to focus the electron beam finely to 10 nm or less for high-resolution observation, it is advantageous to make the distance between the objective lens 35 and the sample 37 as close as possible, so that the cage as shown in FIG. 8 becomes an obstacle.
【0007】[0007]
【発明が解決しようとする課題】本発明は従来の走査電
子顕微鏡における上記の欠点を改善するために提案され
たもので、その目的は、表面原子配列の実空間分布観察
が可能な走査電子顕微鏡を提供することにある。SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks of the conventional scanning electron microscope, and its object is a scanning electron microscope capable of observing the real spatial distribution of the surface atomic arrangement. To provide.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
め、本発明は、試料を挟んで前記二次電子検出手段と反
対側に正電圧を印加できる電極を有する走査電子顕微
鏡、および、試料の周囲の二次電子検出器を含む同一平
面上に複数個の正電圧を印加できる電極を配置したこと
を特徴とする走査電子顕微鏡を要旨とするものである。In order to achieve the above object, the present invention provides a scanning electron microscope having an electrode capable of applying a positive voltage on the opposite side of the secondary electron detecting means with a sample interposed therebetween, and a sample. The gist of a scanning electron microscope is characterized in that a plurality of electrodes capable of applying a positive voltage are arranged on the same plane including the secondary electron detector around the.
【0009】[0009]
(実施例1)図1に本発明の第1の実施例における走査
電子顕微鏡を示す。電界放射型の電子銃1から発生した
電子ビーム2はコンデンサレンズ3で収束され、偏向コ
イル4で偏向された後、対物レンズ5でさらに収束され
て、試料台6に登載された試料7の表面に照射される。
これにより、試料7の表面から二次電子8が発生する。
二次電子8は試料台6の横に置かれ、かつ正の高電圧
(典型的には10kV)を印加した二次電子検出器9に
引き込まれて検出される。そして、電子ビーム2の偏向
コイル4による走査と同期させてCRT等の表示手段1
1上に検出強度を表示することにより走査像が得られ
る。この際、試料7を挟んで二次電子検出器9と対称な
位置に設置した電極10に二次電子検出器9の引き込み
電圧と同じ電圧を印加する。電極10の形状は二次電子
検出器9の高電圧印加部分と同じにしてある。この結
果、図2に模式的に示すように、試料7の周囲の電場が
試料を挟んで面対称に近くなる。このため、試料7上で
電子ビーム2の照射点と二次電子検出器9を結ぶ直線と
垂直な方向に近い角度に放出された二次電子81や、反
対方向に放出された二次電子82は、二次電子検出器9
に到達しない。(Embodiment 1) FIG. 1 shows a scanning electron microscope according to a first embodiment of the present invention. The electron beam 2 generated from the field emission type electron gun 1 is converged by the condenser lens 3, deflected by the deflection coil 4, further converged by the objective lens 5, and the surface of the sample 7 mounted on the sample stage 6. Is irradiated.
As a result, secondary electrons 8 are generated from the surface of the sample 7.
The secondary electrons 8 are placed beside the sample stage 6 and are drawn into the secondary electron detector 9 to which a positive high voltage (typically 10 kV) is applied for detection. Then, the display means 1 such as a CRT is synchronized with the scanning of the electron beam 2 by the deflection coil 4.
A scan image is obtained by displaying the detected intensities on 1. At this time, the same voltage as the pull-in voltage of the secondary electron detector 9 is applied to the electrode 10 placed at a position symmetrical to the secondary electron detector 9 with the sample 7 interposed therebetween. The shape of the electrode 10 is the same as that of the high voltage application part of the secondary electron detector 9. As a result, as schematically shown in FIG. 2, the electric field around the sample 7 becomes close to plane symmetry with the sample in between. Therefore, the secondary electrons 81 emitted at an angle close to the direction perpendicular to the straight line connecting the irradiation point of the electron beam 2 and the secondary electron detector 9 on the sample 7, and the secondary electrons 82 emitted in the opposite direction. Is the secondary electron detector 9
Does not reach
【0010】この時、走査像が表面原子配列分布を反映
したものになる理由を以下に説明する。二次電子の放出
方向は完全には等方的ではなく、原子配列の異方性を反
映した空間分布を持つ。この様子を2回対称性を持つS
i(100)のl×2構造を例に図3を用いて説明す
る。1×2構造の原子配列を横から眺めると、図中でA
方向と示した方向と、これに垂直なB方向では原子配列
が異なる。このため、二次電子の放出強度にもA方向と
B方向との間で僅かな差が生じる。従って、放出される
二次電子のうち、±90゜未満の方位角内にのみ放出さ
れるものを検出すると、二次電子強度は原子配列と同じ
2回対称性を持つ。この二次電子の放出強度の2回対称
性における山と谷の強度差は、表面に垂直な方向の二次
電子まで検出するよりも、表面に対して低角に放出され
る二次電子だけを検出した方が大きくなる。図3の原子
配列のA方向の向きが90゜異なる二つの領域(ドメイ
ン)が共存している場合(Si(100)面では1×2
領域と2×l領域に対応する)、本発明装置を用いてA
方向あるいはB方向に放出される二次電子を選択的に検
出すると、それぞれのドメインが明あるいは暗に分か
れ、ドメイン分布を反映した像を得ることができる。At this time, the reason why the scan image reflects the surface atomic arrangement distribution will be described below. The emission direction of secondary electrons is not completely isotropic and has a spatial distribution that reflects the anisotropy of atomic arrangement. This state is S with two-fold symmetry
The l × 2 structure of i (100) will be described as an example with reference to FIG. Looking at the atomic arrangement of the 1 × 2 structure from the side, A
The atomic arrangement differs between the direction shown as the direction and the B direction perpendicular to the direction. Therefore, the emission intensity of secondary electrons also has a slight difference between the A direction and the B direction. Therefore, when the emitted secondary electrons that are emitted only within the azimuth angle of less than ± 90 ° are detected, the secondary electron intensity has the same two-fold symmetry as the atomic arrangement. The intensity difference between the peak and the valley in the two-fold symmetry of the emission intensity of the secondary electrons is only the secondary electrons emitted at a low angle with respect to the surface, rather than detecting the secondary electrons in the direction perpendicular to the surface. Is larger when detected. In the case where two regions (domains) whose atomic directions in the atomic arrangement of FIG. 3 differ by 90 ° coexist (1 × 2 on the Si (100) plane)
Area and 2 × l area), using the device of the present invention
When the secondary electrons emitted in the B direction or in the B direction are selectively detected, each domain is divided into bright or dark, and an image reflecting the domain distribution can be obtained.
【0011】なお、電極10には、上記のように二次電
子検出器9の高電圧印加部分と同じ形状のものを用い、
二次電子検出器9とは試料7を挟んで対称な位置に設置
し、二次電子検出器9の引き込み電圧と同じ電圧を印加
するのが望ましいが、形状、位置、印加電圧ともにこれ
に限定されるわけではない。例えば、電極10の位置を
二次電子検出器9と対称な位置より試料7側に近付け、
かつ、印加電圧を低くすることにより、試料7の表面上
での電界を面対称にすることも可能である。The electrode 10 has the same shape as the high voltage application portion of the secondary electron detector 9 as described above.
It is desirable that the secondary electron detector 9 is installed at a symmetrical position with the sample 7 in between and the same voltage as the pull-in voltage of the secondary electron detector 9 is applied, but the shape, position, and applied voltage are not limited to this. It is not done. For example, the position of the electrode 10 is brought closer to the sample 7 side than the position symmetrical with the secondary electron detector 9,
In addition, it is possible to make the electric field on the surface of the sample 7 plane-symmetric by reducing the applied voltage.
【0012】(実施例2)図4に本発明の第2の実施例
における走査電子顕微鏡の電極配置を示す。他の部分は
実施例1と同様であるので省略した。本実施例では、試
料7の周囲の二次電子検出器9を含む同一平面上に複数
個の正電圧を印加できる電極を配置している。図4には
二次電子検出器9の高電圧印加部分と同じ形状をもつ3
個の電極101〜103を、試料7を中心に二次電子検
出器9を一つの頂点とする正方形の他の3つ頂点に配置
した例を示した。各電極ヘの印加電圧は二次電子検出器
9の引き込み電圧に等しくしている。試料7上で電子ビ
ーム2の照射点と二次電子検出器9を結ぶ直線と垂直な
方向に近い角度に放出された二次電子81は電極101
及び103に引き込まれ、反対方向に放出された二次電
子82は電極l02に引き込まれるため、二次電子検出
器9に到達しない。このため、実施例l以上に検出でき
る二次電子の角度制限性が高まり、ドメインコントラス
トが向上できる。なお、電極の数、形状、試料からの距
離、印加電圧は図4の例に限定されるわけでななく、試
料7の表面上で二次電子81を二次電子検出器9以外の
方向に引き出す電界を発生できればよい。例えば、電極
102を使用せずに用いることも可能である。また、電
極101と102を図4の例よりも試料7に近付け、印
加電圧を低くすることもできる。(Embodiment 2) FIG. 4 shows an electrode arrangement of a scanning electron microscope according to a second embodiment of the present invention. The other parts are the same as those in the first embodiment and therefore omitted. In this embodiment, a plurality of electrodes capable of applying a positive voltage are arranged on the same plane including the secondary electron detector 9 around the sample 7. FIG. 4 shows the same shape as the high voltage application part of the secondary electron detector 9.
An example is shown in which the electrodes 101 to 103 are arranged at the other three vertices of a square with the secondary electron detector 9 as one vertex with the sample 7 as the center. The applied voltage to each electrode is made equal to the pull-in voltage of the secondary electron detector 9. The secondary electrons 81 emitted on the sample 7 at an angle close to the direction perpendicular to the straight line connecting the irradiation point of the electron beam 2 and the secondary electron detector 9 are the electrodes 101.
The secondary electrons 82 that are drawn into the electrodes 103 and 103 and emitted in the opposite direction do not reach the secondary electron detector 9 because they are drawn into the electrode 102. For this reason, the angle limiting property of the secondary electrons that can be detected more than in Example 1 is enhanced, and the domain contrast can be improved. The number of electrodes, the shape, the distance from the sample, and the applied voltage are not limited to those in the example of FIG. 4, and the secondary electrons 81 are directed to the direction other than the secondary electron detector 9 on the surface of the sample 7. It suffices if it can generate an electric field for extraction. For example, it is possible to use without using the electrode 102. Further, the applied voltage can be lowered by bringing the electrodes 101 and 102 closer to the sample 7 than in the example of FIG.
【0013】なお、ここではSi(100)表面の1×
2のような2回対称性を持つ構造を対象に説明を行った
が、3回対称性、4回対称性、あるいはさらに高次の対
称性を持つ構造に対してドメインコントラストを観察す
る場合には、観察対象の対称性に応じた電極配置をとれ
ばよい。Here, 1 × of the Si (100) surface is used.
The description has been made for a structure having a 2-fold symmetry such as 2, but when observing the domain contrast for a structure having a 3-fold symmetry, a 4-fold symmetry, or a higher-order symmetry. May have an electrode arrangement according to the symmetry of the observation target.
【0014】(実施例3)図5に本発明の第3の実施例
における走査電子顕微鏡の電極配置および検出器の配置
を示す。他の部分は実施例1と同様であるので省略し
た。本実施例では、試料7の周囲の二次電子検出器9を
含む同一平面上に配置した複数個の正電圧を印加できる
電極の一部を、別の二次電子検出器91、92に置き換
えている。図5には、3回対称性をもつ原子配列構造の
観察を対象に、二次電子検出器9の高電圧印加部分と同
じ形状をもつ3個の電極104〜l06と新たに付加し
た二次電子検出器91、92を、試料7を中心に二次電
子検出器9を一つの頂点とする正六角形の頂点に配置し
た例を示した。各電極および付加した二次電子検出器9
1、92ヘの印加電圧は二次電子検出器9の引き込み電
圧に等しくしている。試料7上で電子ビーム2の照射点
と二次電子検出器9を結ぶ直線と60゜に近い角度より
大きな角度に放出された二次電子82〜86は、電極1
04〜106、および付加した二次電子検出器91、9
2に引き込まれるので、二次電子検出器9には±60゜
未満の角度内に放出された二次電子のみが検出される。
一方、二次電子検出器91には、同様な理由で、二次電
子検出器9とは120゜の角度をなす方向を中心に、6
0゜より大きく180゜を超えない角度に放出された二
次電子84が検出される。同様に、二次電子検出器92
には二次電子検出器9とは240゜の角度をなす方向を
中心に180゜より大きく300゜を超えない放出され
た二次電子85が検出される。これにより各二次電子検
出器は3回対称性を持つ原子配列の異なる3種のドメイ
ンを別々に検出できる。従って、それぞれの検出器から
の信号を別々の表示手段に表示することにより、3種の
ドメインの分布を同時に観察することができる。なお、
二次電子検出器および電極の数、形状、試料からの距
離、印加電圧は図5の例に限定されるわけでななく、試
料7の表面上で所望の方向に発生した二次電子のみを選
択的に検出できる電界を発生できればよい。例えば、図
4に示した実施例2において、電極101を別の二次電
子検出器に置き換えることにより、2回対称性を持つ表
面原子配列の2つのドメインを同時に観察することがで
きる。(Embodiment 3) FIG. 5 shows the arrangement of electrodes and detectors of a scanning electron microscope according to a third embodiment of the present invention. The other parts are the same as those in the first embodiment and therefore omitted. In this embodiment, some secondary electron detectors 91 and 92 arranged on the same plane including the secondary electron detector 9 around the sample 7 and capable of applying a positive voltage are replaced with other secondary electron detectors 91 and 92. ing. FIG. 5 shows three electrodes 104 to 106 having the same shape as the high voltage application part of the secondary electron detector 9 and a secondary electrode newly added for the purpose of observing an atomic arrangement structure having three-fold symmetry. An example is shown in which the electron detectors 91 and 92 are arranged at the apex of a regular hexagon with the sample 7 as the center and the secondary electron detector 9 as one apex. Each electrode and additional secondary electron detector 9
The applied voltage to Nos. 1 and 92 is set equal to the pull-in voltage of the secondary electron detector 9. Secondary electrons 82 to 86 emitted at an angle larger than an angle close to 60 ° with the straight line connecting the irradiation point of the electron beam 2 and the secondary electron detector 9 on the sample 7 are
04-106, and added secondary electron detectors 91, 9
The secondary electron detector 9 detects only secondary electrons emitted within an angle of less than ± 60 ° because the secondary electrons are pulled to 2.
On the other hand, for the same reason, the secondary electron detector 91 has a 6-axis centered on a direction forming an angle of 120 ° with the secondary electron detector 9.
Secondary electrons 84 emitted at an angle larger than 0 ° and not exceeding 180 ° are detected. Similarly, the secondary electron detector 92
The emitted secondary electrons 85, which are larger than 180 ° and not larger than 300 °, are detected centering on a direction forming an angle of 240 ° with the secondary electron detector 9. As a result, each secondary electron detector can separately detect three types of domains having different atomic arrangements with three-fold symmetry. Therefore, by displaying the signals from the respective detectors on different display means, the distributions of the three types of domains can be observed simultaneously. In addition,
The number and shape of the secondary electron detectors and electrodes, the distance from the sample, and the applied voltage are not limited to the example of FIG. 5, and only the secondary electrons generated in a desired direction on the surface of the sample 7 are detected. It is only necessary to generate an electric field that can be selectively detected. For example, in Example 2 shown in FIG. 4, by replacing the electrode 101 with another secondary electron detector, two domains of the surface atom arrangement having two-fold symmetry can be observed at the same time.
【0015】[0015]
【発明の効果】以上説明したように、試料を挟んで前記
二次電子検出手段と反対側に正電圧を印加できる電極を
有する走査電子顕微鏡、および、試料の周囲の二次電子
検出器を含む同一平面上に複数個の正電圧を印加できる
電極を配置したことを特徴とする走査電子顕微鏡を用い
ることにより、従来は困難であった走査電子顕微鏡によ
る表面原子配列の実空間分布観察が可能となり、半導体
や金属の表面構造の研究に多大な進歩をもたらし、材料
開発および素子開発に大きく貢献することは疑う余地の
ないところである。As described above, the scanning electron microscope having an electrode capable of applying a positive voltage to the side opposite to the secondary electron detecting means with the sample sandwiched between the scanning electron microscope and the secondary electron detector around the sample is included. By using a scanning electron microscope characterized by arranging multiple electrodes that can apply a positive voltage on the same plane, it becomes possible to observe the real space distribution of the surface atomic arrangement with a scanning electron microscope, which was difficult in the past. There is no doubt that it will make great progress in the research of the surface structure of semiconductors and metals, and will make a great contribution to material development and device development.
【図1】本発明の第lの実施例における走査電子顕微鏡
を説明する図FIG. 1 is a diagram illustrating a scanning electron microscope according to a first embodiment of the present invention.
【図2】第1の実施例における試料付近の電界分布を説
明する図FIG. 2 is a diagram for explaining an electric field distribution near a sample in the first embodiment.
【図3】Si(100)面のl×2構造の原子配列の異
方性を説明する図FIG. 3 is a diagram for explaining the anisotropy of the atomic arrangement of the 1 × 2 structure on the Si (100) plane.
【図4】本発明の第2の実施例における電極配置を説明
する図FIG. 4 is a view for explaining an electrode arrangement in the second embodiment of the present invention.
【図5】本発明の第3の実施例における電極配置と二次
電子検出器の配置を説明する図FIG. 5 is a view for explaining the arrangement of electrodes and the arrangement of secondary electron detectors in the third embodiment of the present invention.
【図6】従来の走査電子顕微鏡を説明する図FIG. 6 is a diagram illustrating a conventional scanning electron microscope.
【図7】従来の走査電子顕微鏡を説明する図FIG. 7 is a diagram illustrating a conventional scanning electron microscope.
【図8】従来の走査電子顕微鏡における二次電子の放出
方向の選択性を持つ検出手段を説明する図である。FIG. 8 is a diagram illustrating a detection unit having a selectivity in the emission direction of secondary electrons in a conventional scanning electron microscope.
1 電子銃、 2 電子ビーム、 3 コンデンサレンズ、 4 偏向コイル、 5 対物レンズ、 6 試料台、 7 試料、 8 二次電子検出器9の方向に放出された二次電
子、 9 二次電子検出器 81 二次電子検出器9に対し垂直に近い方向に放出
された二次電子、 82 二次電子検出器9と反対方向に放出された二次
電子、 83 二次電子検出器9に対し60゜に近い方向に放
出された二次電子、 84 二次電子検出器9に対し120゜に近い方向に
放出された二次電子、 85 二次電子検出器9に対し240゜に近い方向に
放出された二次電子、 86 二次電子検出器9に対し300゜に近い方向に
放出された二次電子、 91 二次電子検出器、 91 二次電子検出器、 10 電極、 101 電極、 102 電極、 103 電極、 lO4 電極、 105 電極、 106 電極、 11 表示手段、 21 電子銃、 22 電子ビーム、 23 コンデンサレンズ、 24 偏向コイル、 25 対物レンズ、 26 試料台、 27 試料、 28 二次電子、 29 二次電子検出器、 30 表示手段、 31 電子銃、 32 電子ビーム、 33 コンデンサレンズ、 34 偏向コイル、 35 対物レンズ、 36 試料台、 37 試料、 38 二次電子、 39 二次電子検出器、 40 表示手段、 41 円筒電極、 42 上部電極。1 electron gun, 2 electron beam, 3 condenser lens, 4 deflection coil, 5 objective lens, 6 sample stage, 7 sample, 8 secondary electron emitted in the direction of secondary electron detector 9, 9 secondary electron detector 81 secondary electrons emitted in a direction nearly perpendicular to the secondary electron detector 9, 82 secondary electrons emitted in a direction opposite to the secondary electron detector 9, 83 60 ° to the secondary electron detector 9 Secondary electron emitted in the direction close to the direction 84, secondary electron emitted in the direction close to 120 degrees to the secondary electron detector 9 84, emitted in the direction close to 240 degree to the secondary electron detector 85. Secondary electrons, 86 secondary electrons emitted from the secondary electron detector 9 in a direction close to 300 °, 91 secondary electron detectors, 91 secondary electron detectors, 10 electrodes, 101 electrodes, 102 electrodes, 103 electrodes, 104 electrodes, 105 electrodes 106 electrodes, 11 display means, 21 electron gun, 22 electron beam, 23 condenser lens, 24 deflection coil, 25 objective lens, 26 sample stage, 27 sample, 28 secondary electron, 29 secondary electron detector, 30 display means, 31 electron gun, 32 electron beam, 33 condenser lens, 34 deflection coil, 35 objective lens, 36 sample stage, 37 sample, 38 secondary electron, 39 secondary electron detector, 40 display means, 41 cylindrical electrode, 42 upper electrode .
───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 雅人 東京都千代田区内幸町1丁目1番6号日本 電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masato Tomita 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation
Claims (3)
査し、その際に発生する二次電子を二次電子検出手段に
引き込み、二次電子検出手段からの信号を電子ビームの
走査と同期させて表示することにより試料表面の走査像
を得る走査電子顕微鏡において、試料を挟んで前記二次
電子検出手段と反対側に正電圧を印加できる電極を有す
ることを特徴とする走査電子顕微鏡。1. The electron beam is converged finely to scan the surface of the sample, secondary electrons generated at that time are drawn into the secondary electron detection means, and the signal from the secondary electron detection means is synchronized with the scanning of the electron beam. A scanning electron microscope, wherein a scanning image of the surface of a sample is obtained by displaying the scanning electron microscope, wherein the scanning electron microscope has an electrode capable of applying a positive voltage on the side opposite to the secondary electron detecting means with the sample interposed therebetween.
査し、その際に発生する二次電子を二次電子検出手段に
引き込み、二次電子検出手段からの信号を電子ビームの
走査と同期させて表示することにより試料表面の走査像
を得る走査電子顕微鏡において、試料の周囲の前記二次
電子検出器を含む同一平面上に複数個の正電圧を印加で
きる電極を配置したことを特徴とする走査電子顕微鏡。2. The electron beam is converged finely to scan the sample surface, secondary electrons generated at that time are drawn into the secondary electron detection means, and the signal from the secondary electron detection means is synchronized with the scanning of the electron beam. In the scanning electron microscope, which obtains a scanning image of the sample surface by displaying the same, a plurality of electrodes capable of applying a positive voltage are arranged on the same plane including the secondary electron detector around the sample. Scanning electron microscope.
任意のものを二次電子検出器に置き換えたことを特徴と
する請求項2に記載の走査電子顕微鏡。3. The scanning electron microscope according to claim 2, wherein any one of the electrodes to which a plurality of positive voltages can be applied is replaced with a secondary electron detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4200595A JPH0620634A (en) | 1992-07-03 | 1992-07-03 | Scanning electron microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4200595A JPH0620634A (en) | 1992-07-03 | 1992-07-03 | Scanning electron microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0620634A true JPH0620634A (en) | 1994-01-28 |
Family
ID=16426971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4200595A Pending JPH0620634A (en) | 1992-07-03 | 1992-07-03 | Scanning electron microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0620634A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6348690B1 (en) | 1997-08-07 | 2002-02-19 | Hitachi, Ltd. | Method and an apparatus of an inspection system using an electron beam |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132173A (en) * | 1974-09-12 | 1976-03-18 | Nippon Electron Optics Lab | SOSADENSHIKENBIKYO |
JPH01143127A (en) * | 1987-11-27 | 1989-06-05 | Hitachi Ltd | Surface shape measuring method by scanning electron microscope |
-
1992
- 1992-07-03 JP JP4200595A patent/JPH0620634A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132173A (en) * | 1974-09-12 | 1976-03-18 | Nippon Electron Optics Lab | SOSADENSHIKENBIKYO |
JPH01143127A (en) * | 1987-11-27 | 1989-06-05 | Hitachi Ltd | Surface shape measuring method by scanning electron microscope |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6348690B1 (en) | 1997-08-07 | 2002-02-19 | Hitachi, Ltd. | Method and an apparatus of an inspection system using an electron beam |
US6452178B2 (en) | 1997-08-07 | 2002-09-17 | Hitachi, Ltd. | Method and an apparatus of an inspection system using an electron beam |
US6987265B2 (en) | 1997-08-07 | 2006-01-17 | Hitachi, Ltd. | Method and an apparatus of an inspection system using an electron beam |
US7012252B2 (en) | 1997-08-07 | 2006-03-14 | Hitachi, Ltd. | Method and an apparatus of an inspection system using an electron beam |
US7232996B2 (en) | 1997-08-07 | 2007-06-19 | Hitachi, Ltd. | Method and an apparatus of an inspection system using an electron beam |
US7439506B2 (en) | 1997-08-07 | 2008-10-21 | Hitachi, Ltd. | Method and an apparatus of an inspection system using an electron beam |
US8134125B2 (en) | 1997-08-07 | 2012-03-13 | Hitachi, Ltd. | Method and apparatus of an inspection system using an electron beam |
US8604430B2 (en) | 1997-08-07 | 2013-12-10 | Hitachi, Ltd. | Method and an apparatus of an inspection system using an electron beam |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6586733B1 (en) | Apparatus and methods for secondary electron emission microscope with dual beam | |
JP3291880B2 (en) | Scanning electron microscope | |
US4236073A (en) | Scanning ion microscope | |
JP2919170B2 (en) | Scanning electron microscope | |
US4352985A (en) | Scanning ion microscope | |
US5408098A (en) | Method and apparatus for detecting low loss electrons in a scanning electron microscope | |
US20110284744A1 (en) | Method and system for 4d tomography and ultrafast scanning electron microscopy | |
EP1305816B1 (en) | Collection of secondary electrons through the objective lens of a scanning electron microscope | |
JP2000200579A (en) | Scanning electron microscope | |
EP1183707B1 (en) | Apparatus and methods for secondary electron emission microscopy with dual beam | |
JPH0620634A (en) | Scanning electron microscope | |
Clarke | Image contrast in the scanning electron microscope | |
JPS59155941A (en) | Electron-beam inspection device | |
JP2790575B2 (en) | Scanning electron microscope | |
KR102207711B1 (en) | Apparatus and method for observing specimen | |
JP3132796B2 (en) | Method for observing semiconductor device and scanning electron microscope used therefor | |
JPH0955181A (en) | Scanning electron microscope | |
Darlington et al. | Imaging of weak Lorentz objects (pn junctions) by high voltage Fresnel TEM and STEM | |
JP2966438B2 (en) | Scanning interference electron microscope | |
US20240412943A1 (en) | Substrate inspection method | |
JP2003500821A (en) | Apparatus and method for secondary electron emission microscope with double beam | |
Russ | Use of the Scanning Electron Microscope in the Materials Sciences | |
Anstead | Failure analysis using a scanning electron microscope | |
JPH10208683A (en) | Scanning electron microscope | |
JPH05264485A (en) | Observation of surface atomic arrangement |