JPH06206093A - Method and device for accelerating nitrification for treatment with anaerobic-aerobic activated sludge - Google Patents
Method and device for accelerating nitrification for treatment with anaerobic-aerobic activated sludgeInfo
- Publication number
- JPH06206093A JPH06206093A JP365293A JP365293A JPH06206093A JP H06206093 A JPH06206093 A JP H06206093A JP 365293 A JP365293 A JP 365293A JP 365293 A JP365293 A JP 365293A JP H06206093 A JPH06206093 A JP H06206093A
- Authority
- JP
- Japan
- Prior art keywords
- nitrification
- anaerobic
- aerobic
- tank
- alkalinity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 32
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 38
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims abstract description 24
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 19
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims abstract description 12
- 235000017557 sodium bicarbonate Nutrition 0.000 claims abstract description 12
- 241000894006 Bacteria Species 0.000 claims description 19
- 230000001546 nitrifying effect Effects 0.000 claims description 12
- 239000002351 wastewater Substances 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 230000001737 promoting effect Effects 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000006228 supernatant Substances 0.000 claims description 4
- 239000010865 sewage Substances 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 5
- 239000012530 fluid Substances 0.000 abstract description 4
- 239000002699 waste material Substances 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 230000000694 effects Effects 0.000 description 9
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000005273 aeration Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012851 eutrophication Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 238000011197 physicochemical method Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 241000605159 Nitrobacter Species 0.000 description 2
- 241000605122 Nitrosomonas Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000010170 biological method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000249 desinfective effect Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 241000192147 Nitrosococcus Species 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001651 autotrophic effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は嫌気−好気活性汚泥処理
装置を用いて廃水中の有機物及び窒素を高効率に除去す
る際の硝化促進方法及び装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrification accelerating method and device for highly efficiently removing organic matter and nitrogen in wastewater using an anaerobic-aerobic activated sludge treatment device.
【0002】[0002]
【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。この富栄養化とは、水域中のN,P等
の栄養塩類の濃度が増大し、これらを栄養素とする生物
活動が活発となって生態系が変化することを指してい
る。特に湖沼等に生活排水とか工場廃水が大量に流入す
ると、上記の富栄養化が急速に進行することが知られて
いる。2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. . This eutrophication refers to an increase in the concentration of nutrient salts such as N and P in the water area, which activates biological activities using these nutrients as nutrients and changes the ecosystem. In particular, it is known that the above-mentioned eutrophication rapidly progresses when a large amount of domestic wastewater or industrial wastewater flows into lakes and the like.
【0003】近時、窒素の除去率を高めることが要求さ
れており、窒素に関する規制も厳しくなることが予想さ
れるので、これを除去することができる高度処理プロセ
スを採用する施設が増加するものと考えられる。Recently, it has been required to increase the removal rate of nitrogen, and it is expected that the regulations on nitrogen will be stricter. Therefore, the number of facilities adopting an advanced treatment process capable of removing this will increase. it is conceivable that.
【0004】廃水中の窒素とかリンを除去する手段とし
て、物理化学的な方法及び生物学的方法が提案されてい
るが、物理化学的方法はコストが嵩む関係から普及して
いない現状にある。例えば物理化学的方法として実用化
されているリン除去方法に凝集沈澱及び晶析手段がある
が、この手段はコストや維持管理面で難点がある。Although physicochemical methods and biological methods have been proposed as means for removing nitrogen and phosphorus in wastewater, physicochemical methods are not widely used because of the high cost. For example, a phosphorus removal method which has been put into practical use as a physicochemical method includes a coagulation precipitation method and a crystallization method, but this method has a drawback in terms of cost and maintenance.
【0005】一方、生物学的に窒素とリンを同時に除去
する方法として、従来の活性汚泥法の変法として嫌気−
好気活性汚泥法が注目されている。(例えば水質汚濁研
究、第12巻,第7号 441−448,1989を参
照。)この嫌気−好気活性汚泥法とは、例えば図2に示
したように、生物反応槽を溶存酸素(通常DOと略称)
の存在しない嫌気槽1a,1bとDOの存在する好気槽
2a,2b,2cとに仕切り、この嫌気槽1a,1bに
より、流入する廃水3を無酸素状態下で撹拌機構10に
よる撹拌を行って活性汚泥中の脱窒菌による脱窒を行
い、次に好気槽2a,2b,2cの内方に配置した散気
管4にブロワ5から空気を供給することにより、エアレ
ーションによる酸素の存在下で活性汚泥による有機物の
酸化分解と硝化菌によるアンモニアの硝化を行う。そし
て最終段の好気槽2cの硝化液を硝化液循環ポンプ6を
用いて嫌気槽1aに送り込むことにより、嫌気槽1a,
1bの脱窒効果が促進される。On the other hand, as a biological biological method for simultaneously removing nitrogen and phosphorus, an anaerobic method is a modification of the conventional activated sludge method.
The aerobic activated sludge method is drawing attention. (See, for example, Water Pollution Research, Vol. 12, No. 7, 441-448, 1989.) This anaerobic-aerobic activated sludge method is, for example, as shown in FIG. (Abbreviated as DO)
Is divided into anaerobic tanks 1a and 1b in which no DO exists and aerobic tanks 2a, 2b and 2c in which DO exists, and the inflowing wastewater 3 is stirred by the stirring mechanism 10 under anoxic condition by the anaerobic tanks 1a and 1b. Denitrification by denitrifying bacteria in the activated sludge, and then by supplying air from the blower 5 to the air diffuser 4 arranged inside the aerobic tanks 2a, 2b, 2c, in the presence of oxygen by aeration. Oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria. Then, the nitrification solution in the last-stage aerobic tank 2c is sent to the anaerobic tank 1a by using the nitrification solution circulation pump 6, whereby the anaerobic tank 1a,
The denitrifying effect of 1b is promoted.
【0006】上記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、廃水中のリンは嫌気槽1a,1b
内で放出され、好気槽2a,2b,2c内で活性汚泥に
取り込まれて除去される。7は最終沈澱池であり、この
最終沈澱池7の上澄液は、図外の消毒槽等を経由してか
ら放流され、該最終沈澱池7内に沈降した汚泥の一部は
汚泥返送ポンプ8により嫌気槽1aに返送され、他の汚
泥は余剰汚泥ポンプ9から図外の余剰汚泥処理装置に送
り込まれて処理される。The above-mentioned denitrifying bacterium refers to a bacterium that reduces N0 2 -N and N0 3 -N to N 2 and NO 2 by respiration of nitric acid under anaerobic conditions. Also, phosphorus in wastewater is anaerobic tanks 1a, 1b.
It is released inside and is taken in and removed by the activated sludge in the aerobic tanks 2a, 2b and 2c. Reference numeral 7 denotes a final settling basin, and the supernatant of the final settling basin 7 is discharged after passing through a disinfecting tank not shown in the figure, and a part of the sludge settled in the final settling basin 7 is a sludge return pump. The other sludge is returned to the anaerobic tank 1a by 8 and the other sludge is sent from the excess sludge pump 9 to an excess sludge treatment device (not shown) for treatment.
【0007】かかる嫌気−好気活性汚泥処理装置を用い
ることにより、通常の標準活性汚泥法で達成される有機
物除去効果と同程度の効果が得られる上、窒素とリンに
関しては活性汚泥法よりも高い除去率が達成される。By using such an anaerobic-aerobic activated sludge treatment device, an effect comparable to the organic substance removal effect achieved by the usual standard activated sludge method can be obtained, and nitrogen and phosphorus are more effective than the activated sludge method. A high removal rate is achieved.
【0008】[0008]
【発明が解決しようとする課題】しかしながらこのよう
な従来の嫌気−好気活性汚泥処理法では、好気槽におけ
る硝化効率と、それに伴う嫌気槽における脱窒効果をと
もに充分に高めることが困難であるという課題があっ
た。However, in such a conventional anaerobic-aerobic activated sludge treatment method, it is difficult to sufficiently enhance both the nitrification efficiency in the aerobic tank and the denitrification effect in the anaerobic tank. There was a problem of being there.
【0009】即ち、前記嫌気−好気活性汚泥法における
動作態様は、嫌気槽1a,1bにおける脱窒反応と、好
気槽2a,2b,2cにおける硝化反応とに大別するこ
とが出来るが、反応の律速となっているのは後者,即ち
硝化反応である。That is, the operation mode in the anaerobic-aerobic activated sludge method can be roughly classified into a denitrification reaction in the anaerobic tanks 1a and 1b and a nitrification reaction in the aerobic tanks 2a, 2b and 2c. The latter, that is, the nitrification reaction, is the rate-determining reaction.
【0010】特に嫌気−好気活性汚泥処理法によって効
率的に窒素を除去するためには、嫌気槽における脱窒と
好気槽における硝化を最適な運転条件に保持することが
要求される上、窒素除去工程は硝化工程に影響される度
合が高いため、良好な窒素除去を行うためには硝化工程
が良好に行われていることが必要である。この硝化反応
は、前記したように硝化菌によって引き起こされるが、
この硝化菌の活性は、pH,水温等の微妙な変化により
容易に影響を受けることが知られている。In particular, in order to efficiently remove nitrogen by the anaerobic-aerobic activated sludge treatment method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under optimum operating conditions. Since the nitrogen removal process is highly influenced by the nitrification process, it is necessary that the nitrification process is performed well in order to perform good nitrogen removal. This nitrification reaction is caused by nitrifying bacteria as described above,
It is known that the activity of this nitrifying bacterium is easily affected by subtle changes such as pH and water temperature.
【0011】更に硝化反応自体は有機物除去反応に比し
て反応速度が小さく、これをカバーするためには大きな
反応槽を用意しなければならないが、そのためには大き
な用地を確保しなければならず、特に都市部のように用
地確保が困難な地域では、スペース面での問題とも相俟
って嫌気−好気活性汚泥処理法及び装置が導入しにくい
情勢にある。Furthermore, the nitrification reaction itself has a lower reaction rate than the organic substance removal reaction, and a large reaction tank must be prepared to cover it, but a large site must be secured for that purpose. In particular, in an area where it is difficult to secure a land, such as an urban area, it is difficult to introduce an anaerobic-aerobic activated sludge treatment method and device in combination with a space problem.
【0012】そこで本発明はこのような嫌気−好気活性
汚泥処理が有している課題を解消して、好気槽における
硝化効率を向上させ、それに伴って嫌気槽における脱窒
効果を高めることができる嫌気−好気活性汚泥処理の硝
化促進方法及び装置を提供することを目的とするもので
ある。Therefore, the present invention solves the problems of the anaerobic-aerobic activated sludge treatment, improves the nitrification efficiency in the aerobic tank, and accordingly enhances the denitrification effect in the anaerobic tank. It is an object of the present invention to provide a nitrification accelerating method and device for treating anaerobic-aerobic activated sludge, which can be obtained.
【0013】[0013]
【課題を解決するための手段】本発明は上記の目的を達
成するために、下水等の廃水を嫌気槽で脱窒細菌により
脱窒を行う工程と、好気槽で硝化細菌により硝化を行う
工程と、沈澱槽で固液分離して上澄液を処理水として放
流する工程とを含む嫌気−好気活性汚泥処理において、
上記好気槽に設置したアルカリ度計とアンモニア濃度計
とによって液のアルカリ度とアンモニア濃度を測定し、
この測定結果から硝化に必要とするアルカリ度成分を演
算により求めて、好気槽に不足分のアルカリ度成分を注
入することにより、該好気槽における硝化効率を高める
ように運転制御するようにした嫌気−好気活性汚泥処理
の硝化促進方法と装置を提供する。又、上記アルカリ度
成分として炭酸水素ナトリウムを用いている。In order to achieve the above object, the present invention performs a step of denitrifying wastewater such as sewage with denitrifying bacteria in an anaerobic tank, and nitrifying with nitrifying bacteria in an aerobic tank. In the anaerobic-aerobic activated sludge treatment, which comprises a step and a step of solid-liquid separating in a settling tank and discharging the supernatant as treated water,
Measure the alkalinity and ammonia concentration of the liquid with the alkalinity meter and ammonia concentration meter installed in the aerobic tank,
From this measurement result, the alkalinity component required for nitrification is calculated, and by injecting the insufficient alkalinity component into the aerobic tank, operation control is performed so as to increase the nitrification efficiency in the aerobic tank. A method and apparatus for promoting nitrification in the treatment of anaerobic-aerobic activated sludge. Further, sodium hydrogen carbonate is used as the alkalinity component.
【0014】[0014]
【作用】かかる硝化促進方法及び装置によれば、廃水が
嫌気槽で脱窒され、好気槽で曝気と硝化細菌の作用に基
づく硝化が行われる一方で、指標として好気槽に設置さ
れたアルカリ度計とアンモニア濃度計とによって液のア
ルカリ度とアンモニア濃度が測定され、この測定結果に
基づいてコントローラが硝化に必要とするアルカリ度成
分を演算し、この演算結果に基づいて注入手段により好
気槽に不足分のアルカリ度成分が供給される。According to the method and apparatus for promoting nitrification, the wastewater is denitrified in the anaerobic tank, aeration is performed in the aerobic tank and nitrification based on the effects of nitrifying bacteria is performed, and the nitrification is set in the aerobic tank as an index. The alkalinity and ammonia concentration of the liquid are measured by the alkalinity meter and the ammonia concentration meter, the controller calculates the alkalinity component required for nitrification based on this measurement result, and based on this calculation result, the injection means can improve the The insufficient alkalinity component is supplied to the air tank.
【0015】これによってアルカリ度の不足に起因する
硝化速度の低下を防止して好気槽内における硝化反応が
促進され、ひいては嫌気槽における窒素除去率が向上す
るという作用が得られる。As a result, the nitrification rate is prevented from lowering due to lack of alkalinity, the nitrification reaction in the aerobic tank is promoted, and the nitrogen removal rate in the anaerobic tank is improved.
【0016】[0016]
【実施例】以下、図面に基づいて本発明にかかる嫌気−
好気活性汚泥処理の硝化促進方法及び装置の一実施例
を、前記従来の構成部分と同一の構成部分に同一の符号
を付して詳述する。図1に示した概要図において、1
a,1bは廃水の脱窒を行うための嫌気槽、2a,2
b,2cは硝化を行うための好気槽であり、この嫌気槽
1a,1bと好気槽2a,2b,2cとは同一の生物反
応槽を仕切板11で区切って構成されている。嫌気槽1
a,1bの内方には撹拌機構10,10が配置されてい
る。又、好気槽2a,2b,2cの底部にはエア吹出部
材としての散気管4,4,4が配置され、外部にエア供
給用のブロワ5が配備されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The anaerobic of the present invention will be described below with reference to the drawings.
An embodiment of the method and apparatus for promoting nitrification in aerobic activated sludge treatment will be described in detail by assigning the same reference numerals to the same components as the conventional components. In the schematic diagram shown in FIG. 1, 1
a, 1b are anaerobic tanks for denitrifying wastewater, 2a, 2
b and 2c are aerobic tanks for performing nitrification, and the anaerobic tanks 1a and 1b and the aerobic tanks 2a, 2b and 2c are formed by partitioning the same biological reaction tank with a partition plate 11. Anaerobic tank 1
Stirring mechanisms 10 and 10 are arranged inside a and 1b. Further, air diffusers 4, 4, 4 as air blowing members are arranged at the bottoms of the aerobic tanks 2a, 2b, 2c, and a blower 5 for supplying air is provided outside.
【0017】6は好気槽2cの硝化液を嫌気槽1aに送
り込む硝化液循環ポンプ、7は沈澱槽としての最終沈澱
池、8は最終沈澱池7内に沈降した汚泥の一部を嫌気槽
1aに返送する汚泥返送ポンプ8、9は余剰汚泥ポンプ
である。6 is a nitrification solution circulation pump for feeding the nitrification solution from the aerobic tank 2c to the anaerobic tank 1a, 7 is a final settling tank as a settling tank, and 8 is a part of the sludge settled in the final settling tank 7 The sludge return pumps 8 and 9 for returning to 1a are surplus sludge pumps.
【0018】本実施例では、このような嫌気−好気活性
汚泥処理装置の好気槽2aに、アルカリ度計12とアン
モニア濃度計13とが設置され、更に該アルカリ度計1
2とアンモニア濃度計13の測定データが入力されるコ
ントローラ14を配備してある。15はアルカリ度成分
としての炭酸水素ナトリウム(NaHCO3)を充填し
たタンクであり、前記コントローラ14からの制御出力
によって作動する流体ポンプ16の働きにより、タンク
15から所定量の炭酸水素ナトリウムが好気槽2aに注
入されるように構成されている。In this embodiment, an alkali meter 12 and an ammonia concentration meter 13 are installed in the aerobic tank 2a of such an anaerobic-aerobic activated sludge treatment apparatus, and the alkali meter 1 is further installed.
2 and a controller 14 to which the measurement data of the ammonia concentration meter 13 is input. Reference numeral 15 is a tank filled with sodium hydrogencarbonate (NaHCO 3 ) as an alkalinity component, and a predetermined amount of sodium hydrogencarbonate from the tank 15 is aerobic by the action of the fluid pump 16 operated by the control output from the controller 14. It is configured to be injected into the tank 2a.
【0019】かかる嫌気−好気活性汚泥処理装置の基本
的作用は以下の通りである。図1に示したように、先ず
廃棄物としての廃水3が嫌気槽1aへ流入し、水中にあ
る撹拌機構10の撹拌作用と脱窒細菌の作用に基づい
て、NO3−N、NO2−NイオンのN2への還元、即ち
脱窒が行われる。次に廃水が好気槽2a,2b,2cに
流入してブロワ5の駆動に伴って散気管4からのエアレ
ーションによる曝気が行われ、硝化細菌の作用に基づい
てアンモニア性窒素NH4−NのNO2−N又はNO3−
Nへの酸化、即ち硝化が行われる。The basic operation of the anaerobic-aerobic activated sludge treatment device is as follows. As shown in FIG. 1, first, the wastewater 3 as waste flows into the anaerobic tank 1a, based on the stirring action and the action of denitrifying bacteria stirring mechanism 10 in the water, NO 3 -N, NO 2 - Reduction of N ions to N 2 , that is, denitrification, is performed. Next, the wastewater flows into the aerobic tanks 2a, 2b, 2c, and aeration by aeration from the diffuser pipe 4 is performed as the blower 5 is driven. Based on the action of nitrifying bacteria, ammonia nitrogen NH 4 -N NO 2 -N or NO 3 -
Oxidation to N, that is, nitrification is performed.
【0020】この好気槽2cの硝化液は、硝化液循環ポ
ンプ6を用いて嫌気槽1aに送り込まれて嫌気槽1a,
1bの脱窒効果が促進される。廃水中のリンは嫌気槽1
a,1b内で放出され、好気槽2a,2b,2c内で活
性汚泥に取り込まれて除去される。又、最終沈澱池7内
に沈降した汚泥の一部は汚泥返送ポンプ8により嫌気槽
1aに返送され、他の汚泥は余剰汚泥ポンプ9から図外
の余剰汚泥処理装置に送り込まれて処理される。この最
終沈澱池7の上澄液は、図外の消毒槽等を経由してから
放流される。The nitrification solution in the aerobic tank 2c is sent to the anaerobic tank 1a by using the nitrification solution circulation pump 6 and is transferred to the anaerobic tank 1a,
The denitrifying effect of 1b is promoted. Anaerobic tank for phosphorus in wastewater 1
It is released in a and 1b and taken in and removed by activated sludge in aerobic tanks 2a, 2b and 2c. A part of the sludge settled in the final settling basin 7 is returned to the anaerobic tank 1a by the sludge return pump 8 and the other sludge is sent from the excess sludge pump 9 to an excess sludge treatment device (not shown) for treatment. . The supernatant of the final settling basin 7 is discharged after passing through a disinfecting tank (not shown).
【0021】本実施例ではこのような嫌気−好気活性汚
泥処理が進行している間に、指標として好気槽2aに設
置されたアルカリ度計12とアンモニア濃度計13とに
よって液のアルカリ度とアンモニア濃度を測定し、この
測定結果に基づいてコントローラ14が硝化に必要とす
る炭酸水素ナトリウムの分量を演算して、この演算結果
に基づいて注入手段としての流体ポンプ16を駆動し
て、タンク15から好気槽2aに不足分の炭酸水素ナト
リウム(NaHCO3)を注入することが動作上の大き
な特徴となっている。これにより、アルカリ度の不足に
起因する硝化速度の低下が防止され、好気槽2a,2
b,2c内における硝化反応を促進して、ひいては嫌気
槽1a,1bにおける窒素除去率を向上させることがで
きる。In the present embodiment, while such anaerobic-aerobic activated sludge treatment is in progress, the alkalinity meter 12 and the ammonia concentration meter 13 installed in the aerobic tank 2a as indicators are used to measure the alkalinity of the liquid. And the ammonia concentration are measured, the controller 14 calculates the amount of sodium hydrogen carbonate required for nitrification based on the measurement result, and the fluid pump 16 as the injection means is driven based on the calculation result, and the tank Injecting a shortage of sodium hydrogen carbonate (NaHCO 3 ) from 15 into the aerobic tank 2a is a major operational feature. This prevents the nitrification rate from decreasing due to lack of alkalinity, and the aerobic tanks 2a, 2
The nitrification reaction in b and 2c can be promoted, and the nitrogen removal rate in the anaerobic tanks 1a and 1b can be improved.
【0022】これを理論的に説明すると以下の通りであ
る。即ち、硝化を引き起こす硝化菌(Nitrosomonas,Nit
robacter)は独立栄養菌であり、炭素同化作用の能力を
持つ細菌のうち、アンモニア又は亜硝酸を酸化して硝酸
とする菌である。酸化は NH3+3O2 → HNO2+H2O・・・・・・・・・(1) HNO2+1/2・O2 → HNO3・・・・・・・・・・・(2) の形式をとり、(1)はNitrosomonas,Nitrosococcusが
行い、(2)はNitrobacterが行う。Theoretical explanation of this is as follows. That is, nitrifying bacteria that cause nitrification (Nitrosomonas, Nit
robacter) is an autotrophic bacterium, which is a bacterium that oxidizes ammonia or nitrite to nitric acid among bacteria having the ability of carbon assimilation. Oxidation is NH 3 + 3O 2 → HNO 2 + H 2 O ・ ・ ・ ・ ・ ・ ・ ・ (1) HNO 2 +1/2 ・ O 2 → HNO 3・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2) It takes the form of (1) performed by Nitrosomonas and Nitrosococcus, and (2) performed by Nitrobacter.
【0023】硝化菌は無機の窒素化合物を酸化すること
によって増殖に必要なエネルギーを獲得し、無機性の炭
素の細胞合成に利用される。これは以下の反応式で表現
することができる。Nitrifying bacteria acquire energy required for growth by oxidizing inorganic nitrogen compounds, and are used for cell synthesis of inorganic carbon. This can be expressed by the following reaction formula.
【0024】 NH4 ++1.86O2+1.98HCO3 - → 0.021C5H7NO2+1.041H2O+0.98NO3 -+1.88H2CO3・・・(3) 一方のアルカリ度とは、OH-,CO3 2-,HCO3 -等の
酸を消費する成分がどれだけ含まれているかを表わす方
法の1例として用いられ、通常試料液を酸標準溶液であ
る一定のpHになるまで中和滴定し、その際に要した滴
定量から試料液1リットル当たりのmg当量もしくはこ
れに相当するCaCO3のmg数に換算して表わす。ど
のpHまでの中和能力を表わすかによって何種類ものア
ルカリ度が存在するが、一般には「pH4.8アルカリ
度」がHCO3 -の尺度として取り扱われている。The NH 4 + + 1.86O 2 + 1.98HCO 3 - → 0.021C 5 H 7 NO 2 + 1.041H 2 O + 0.98NO 3 - + 1.88H The 2 CO 3 ··· (3) one of alkalinity , OH − , CO 3 2− , HCO 3 −, etc. are used as an example of a method of expressing how much an acid consuming component is contained, and a sample solution is usually brought to a constant pH which is an acid standard solution. Neutralization titration was performed up to, and the titration amount required at that time was converted into mg equivalent per 1 liter of the sample solution or equivalent mg of CaCO 3 and expressed. There are many kinds of alkalinity depending on the pH up to which the neutralizing ability is expressed, but generally "pH 4.8 alkalinity" is treated as a measure of HCO 3 − .
【0025】前記(3)式に示したように、化学量論的
には NH4 +:HCO3 -=1:1.98・・・・・・・・・(4) の比で反応するが、実際には生物反応が絡んでいるため
に反応速度は小さい。As shown in the equation (3), the reaction is stoichiometrically at a ratio of NH 4 + : HCO 3 − = 1: 1.98 ... (4) However, in reality, the reaction rate is small because biological reactions are involved.
【0026】前記「pH4.8アルカリ度」はHCO3 -
の尺度とされているが、その他にもCO3 2-,OH-等を
若干含んでいる。よってNH4 +:HCO3 -=1:3程度
になるまで炭酸水素ナトリウム(NaHCO3)を補給
することが本発明の主眼点となっている。In one embodiment of the invention, the "pH4.8 alkalinity" is HCO 3 -
However, it also contains some CO 3 2− , OH − and the like. Therefore, the main point of the present invention is to supply sodium hydrogen carbonate (NaHCO 3 ) until NH 4 + : HCO 3 − = 1: 3.
【0027】アルカリ度成分として用いる炭酸水素ナト
リウム(Sodium hydrogencarbonate)は重炭酸ナトリウ
ム、或は重炭酸ソーダとも呼称され、アンモニアソーダ
法による炭酸ナトリウム製造の中間生成物として多量に
作られるが、純粋な炭酸ナトリウムの飽和水溶液に二酸
化炭素を通じて結晶を析出させ、濾過してから二酸化炭
素気流中で乾燥して得られる。不純物として塩化ナトリ
ウム,塩化アンモニウムを有しているため、水溶液から
再結晶によって生成する。Sodium hydrogencarbonate used as an alkalinity component is also called sodium bicarbonate or sodium bicarbonate, and is produced in large quantities as an intermediate product of sodium carbonate production by the ammonia soda method. Carbon dioxide is passed through a saturated aqueous solution to precipitate crystals, which is then filtered and dried in a stream of carbon dioxide to obtain crystals. Since it has sodium chloride and ammonium chloride as impurities, it is generated by recrystallization from an aqueous solution.
【0028】加熱すると二酸化炭素と水を放出して分解
し、270℃以上では無水の炭酸ナトリウムとなる。水
溶液は加水分解のため微アルカリ性を示す。When heated, carbon dioxide and water are released to decompose and become anhydrous sodium carbonate at 270 ° C. or higher. The aqueous solution is slightly alkaline due to hydrolysis.
【0029】 NaHCO3+H2O → H2CO3+NaOH・・・・・(5) 従って炭酸水素ナトリウム(NaHCO3)を前記好気
槽2aに補給することにより、該好気槽2a,2b,2
c内におけるアルカリ度の不足が解消され、前記したよ
うに好気槽内での硝化反応を促進することが出来る。NaHCO 3 + H 2 O → H 2 CO 3 + NaOH (5) Therefore, by supplying sodium hydrogencarbonate (NaHCO 3 ) to the aerobic tank 2a, the aerobic tanks 2a, 2b, Two
The lack of alkalinity in c is eliminated, and the nitrification reaction in the aerobic tank can be promoted as described above.
【0030】[0030]
【発明の効果】以上詳細に説明したように、本発明にか
かる嫌気−好気活性汚泥処理の硝化促進方法及び装置に
よれば、嫌気槽での脱窒と好気槽での曝気及び硝化細菌
の作用に基づく硝化が行われる一方で、好気槽内のアル
カリ度とアンモニア濃度が測定され、この測定結果に基
づいてコントローラが硝化に必要とするアルカリ度成分
を演算し、この演算結果に基づいて注入手段により好気
槽に不足分のアルカリ度成分が供給されるので、アルカ
リ度の不足に起因する硝化速度の低下が防止されて、反
応の律速となっている好気槽内における硝化反応が促進
され、これに伴って嫌気槽における窒素除去率を向上さ
せることができる。As described in detail above, according to the method and apparatus for promoting nitrification in anaerobic-aerobic activated sludge treatment according to the present invention, denitrification in an anaerobic tank and aeration and nitrifying bacteria in an aerobic tank are performed. While nitrification is performed based on the action of, the alkalinity and ammonia concentration in the aerobic tank are measured, the controller calculates the alkalinity component required for nitrification based on the measurement results, and based on this calculation result Insufficient alkalinity component is supplied to the aerobic tank by the injection means, which prevents the decrease in nitrification rate due to lack of alkalinity and is the rate-determining reaction. Is promoted, and along with this, the nitrogen removal rate in the anaerobic tank can be improved.
【0031】又、硝化反応速度を高めるために格別大き
な反応槽を用意する必要がなく、且つ大きな用地を要し
ないので、特に都市部のように用地確保が困難な地域で
も嫌気−好気活性汚泥処理装置を導入可能であるという
大きな効果を発揮する。Further, since it is not necessary to prepare a particularly large reaction tank for increasing the nitrification reaction rate and a large land is not required, anaerobic-aerobic activated sludge is required even in an area where it is difficult to secure a land such as an urban area. It has a great effect that a processing device can be introduced.
【図1】本発明の基本的実施例を示す概要図。FIG. 1 is a schematic diagram showing a basic embodiment of the present invention.
【図2】従来の嫌気−好気活性汚泥処理の具体例を示す
概要図。FIG. 2 is a schematic diagram showing a specific example of conventional anaerobic-aerobic activated sludge treatment.
1a,1b…嫌気槽 2a,2b,2c…好気槽 4…散気管 5…ブロワ 6…硝化液循環ポンプ 7…最終沈澱池 8…汚泥返送ポンプ 9…余剰汚泥ポンプ 10…撹拌機構 12…アルカリ度計 13…アンモニア濃度計 14…コントローラ 15…(アルカリ度成分の)タンク 16…流体ポンプ 1a, 1b ... Anaerobic tank 2a, 2b, 2c ... Aerobic tank 4 ... Diffuser pipe 5 ... Blower 6 ... Nitrification liquid circulation pump 7 ... Final sedimentation tank 8 ... Sludge return pump 9 ... Excess sludge pump 10 ... Stirring mechanism 12 ... Alkaline Degree meter 13 ... Ammonia concentration meter 14 ... Controller 15 ... (Alkalinity component) tank 16 ... Fluid pump
Claims (3)
脱窒を行う工程と、好気槽で硝化細菌により硝化を行う
工程と、沈澱槽で固液分離して上澄液を処理水として放
流する工程とを含む嫌気−好気活性汚泥処理において、 上記好気槽に設置したアルカリ度計とアンモニア濃度計
とによって液のアルカリ度とアンモニア濃度を測定し、
この測定結果から硝化に必要とするアルカリ度成分を演
算により求めて、好気槽に不足分のアルカリ度成分を注
入することにより、該好気槽における硝化効率を高める
ように運転制御することを特徴とする嫌気−好気活性汚
泥処理の硝化促進方法。1. A step of denitrifying wastewater such as sewage with denitrifying bacteria in an anaerobic tank, a step of nitrifying with nitrifying bacteria in an aerobic tank, and solid-liquid separation in a precipitation tank to treat a supernatant. In the anaerobic-aerobic activated sludge treatment including a step of discharging as water, the alkalinity and ammonia concentration of the liquid are measured by the alkalinity meter and the ammonia concentration meter installed in the aerobic tank,
From this measurement result, the alkalinity component required for nitrification is calculated, and the insufficient alkalinity component is injected into the aerobic tank to control the operation so as to increase the nitrification efficiency in the aerobic tank. A method for promoting nitrification in treating anaerobic-aerobic activated sludge, which is characterized.
ムである請求項1記載の嫌気−好気活性汚泥処理の硝化
促進方法。2. The nitrification promoting method for anaerobic-aerobic activated sludge treatment according to claim 1, wherein the alkalinity component is sodium hydrogen carbonate.
ンモニア濃度計と、該アルカリ度計とアンモニア濃度計
の測定データに基づいて、硝化に必要とするアルカリ度
成分を演算により求めるコントローラと、該コントロー
ラの制御出力により、不足分のアルカリ度成分を好気槽
に供給する注入手段とを具備してなることを特徴とする
嫌気−好気活性汚泥処理の硝化促進装置。3. An alkalinity meter and an ammonia concentration meter installed in an aerobic tank, and a controller for calculating an alkalinity component required for nitrification based on the measurement data of the alkalinity meter and the ammonia concentration meter. A nitrification accelerating device for anaerobic-aerobic activated sludge treatment, comprising: an injection means for supplying a lacking alkalinity component to the aerobic tank according to the control output of the controller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP365293A JPH06206093A (en) | 1993-01-13 | 1993-01-13 | Method and device for accelerating nitrification for treatment with anaerobic-aerobic activated sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP365293A JPH06206093A (en) | 1993-01-13 | 1993-01-13 | Method and device for accelerating nitrification for treatment with anaerobic-aerobic activated sludge |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06206093A true JPH06206093A (en) | 1994-07-26 |
Family
ID=11563409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP365293A Pending JPH06206093A (en) | 1993-01-13 | 1993-01-13 | Method and device for accelerating nitrification for treatment with anaerobic-aerobic activated sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06206093A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000077171A1 (en) * | 1999-06-10 | 2000-12-21 | Bicom Corporation | Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and mehtod of weight loss treatment of activated sludge |
JP2012206017A (en) * | 2011-03-29 | 2012-10-25 | Kubota Kankyo Service Kk | Method and apparatus for treating wastewater |
WO2016042901A1 (en) * | 2014-09-16 | 2016-03-24 | 栗田工業株式会社 | Biological treatment method and biological treatment device |
-
1993
- 1993-01-13 JP JP365293A patent/JPH06206093A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000077171A1 (en) * | 1999-06-10 | 2000-12-21 | Bicom Corporation | Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and mehtod of weight loss treatment of activated sludge |
US6569334B1 (en) | 1999-06-10 | 2003-05-27 | Bicom Corporation | Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and method of weight loss treatment of activated sludge |
JP4602615B2 (en) * | 1999-06-10 | 2010-12-22 | 株式会社バイコム | High concentration culture method of nitrifying bacteria contained in activated sludge |
JP2012206017A (en) * | 2011-03-29 | 2012-10-25 | Kubota Kankyo Service Kk | Method and apparatus for treating wastewater |
WO2016042901A1 (en) * | 2014-09-16 | 2016-03-24 | 栗田工業株式会社 | Biological treatment method and biological treatment device |
JP2016059843A (en) * | 2014-09-16 | 2016-04-25 | 栗田工業株式会社 | Method and apparatus for biological treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2066466A1 (en) | Method and apparatus for processing manure | |
JP4106203B2 (en) | How to remove nitrogen from water | |
KR100390633B1 (en) | Anoxic-anaerobic sequencing batch reactor and method for nitrogen and phosphorus removal thereby | |
JPS5881491A (en) | Purification of filthy water with activated sludge | |
JP4685224B2 (en) | Waste water treatment method and waste water treatment equipment | |
KR100496122B1 (en) | Method for removal of ammonia nitrogen from waste water | |
JPH05115897A (en) | Waste water treatment using sulfur bacteria and device therefor | |
JPH06206093A (en) | Method and device for accelerating nitrification for treatment with anaerobic-aerobic activated sludge | |
JPH0724492A (en) | Method for controlling operation of activated sludge circulation change method | |
JP3649632B2 (en) | Biological nitrogen removal method | |
JPH08318292A (en) | Waste water treatment method and apparatus | |
JPH08108195A (en) | Method and apparatus for removing nitrogen in water | |
JPH05228493A (en) | Method for treating waste water using sulfur bacterium and apparatus therefor | |
JPH0716595A (en) | Operation control method in modified method for circulating active sludge | |
JPH07148496A (en) | Method for controlling operation of modified process for circulation of activated sludge | |
JP3608256B2 (en) | Operation control method for circulating nitrification denitrification | |
JPH05192688A (en) | Anaerobic-aerobic activated sludge treating device using buffer tank | |
JP2003094096A (en) | Method for treating organic waste, apparatus therefor, and sludge | |
JPH08294698A (en) | Measurement of activity of nitro-bacteria in sewage treatment facilities | |
JPH0141115B2 (en) | ||
CN111320269B (en) | Method for denitrifying ammonia-containing wastewater | |
JPH07275888A (en) | Nitration accelerating method of activated sludge circulation modified method | |
JP2001205295A (en) | Method for treating organic wastewater | |
JPH08117789A (en) | Operation control of two-stage activated sludge circulation variation | |
JPH078994A (en) | Method and apparatus for acceleration of nitrification in anaerobic-aerobic activated sludge treatment |