[go: up one dir, main page]

JPH06206077A - Chlorine injection rate controller for water supply - Google Patents

Chlorine injection rate controller for water supply

Info

Publication number
JPH06206077A
JPH06206077A JP13938793A JP13938793A JPH06206077A JP H06206077 A JPH06206077 A JP H06206077A JP 13938793 A JP13938793 A JP 13938793A JP 13938793 A JP13938793 A JP 13938793A JP H06206077 A JPH06206077 A JP H06206077A
Authority
JP
Japan
Prior art keywords
injection rate
chlorine
chlorine injection
pipe network
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13938793A
Other languages
Japanese (ja)
Other versions
JP3218807B2 (en
Inventor
Kenichi Kurotani
憲一 黒谷
Masakazu Kubota
真和 窪田
Masanori Morimoto
正範 守本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13938793A priority Critical patent/JP3218807B2/en
Publication of JPH06206077A publication Critical patent/JPH06206077A/en
Application granted granted Critical
Publication of JP3218807B2 publication Critical patent/JP3218807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

(57)【要約】 【目的】 目標地点の残留塩素濃度を常に最適な状態に
保つようにする。 【構成】 管網モデル、予測および実績需要量、目標濃
度時系列値、仮設定注入率、注入率上下限値の各データ
を演算装置1に入力し、管網モデルおよび予測・実績需
要量を用いた動的水質解析演算により塩素の注入率を仮
設定注入率の値とした場合における管網内の残留塩素濃
度分布を算出し、次いで、管網モデルおよび予測・実績
需要量を用いた動的水質解析演算により塩素の注入率を
単位時間ごとに単位量増加した場合における管網内の残
留塩素濃度分布の変化を繰り返し算出する。得られた塩
素の注入率と残留塩素濃度分布との関係から、管網上の
目標地点の残留塩素濃度が目標濃度時系列値に近い値と
する注入率スケジュールを算出し、注入比率コントロー
ラ5へ送り塩素の注入率を制御する。
(57) [Summary] [Purpose] To keep the residual chlorine concentration at the target point at an optimum level. [Configuration] Pipe network model, forecast and actual demand, target concentration time series value, temporary set injection rate, injection rate upper and lower limit data are input to the computing device 1, and the network model and forecast / actual demand are calculated. The residual water concentration distribution in the pipe network when the chlorine injection rate was set to the value of the provisional injection rate was calculated by the dynamic water quality analysis calculation used, and then the dynamics using the network model and forecast / actual demand were calculated. The change of residual chlorine concentration distribution in the pipe network is repeatedly calculated when the chlorine injection rate is increased by a unit amount per unit time by the dynamic water quality analysis calculation. From the relationship between the obtained chlorine injection rate and residual chlorine concentration distribution, calculate the injection rate schedule that makes the residual chlorine concentration at the target point on the pipe network close to the target concentration time-series value, and then to the injection ratio controller 5. Controls the injection rate of feed chlorine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上水道の消毒のために
設置された塩素注入設備において、送配水管網内の残留
塩素濃度を適正な値に維持するための塩素注入率制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chlorine injection rate control device for maintaining an appropriate residual chlorine concentration in a water distribution network in a chlorine injection facility installed for disinfecting waterworks.

【0002】[0002]

【従来の技術】上水道では消毒のため塩素を注入するこ
とが義務付けられており、またその注入量も末端の給水
栓において、規定の残留塩素濃度0.1mg/l以上が
検出されなければならない。そこで従来は、末端の給水
栓で残留塩素の濃度を手分析またはセンサを用いて計測
することにより適当な注入率を決め、日単位または月単
位で塩素の注入率のスケジュールを決定していた。
2. Description of the Related Art In waterworks, it is obligatory to inject chlorine for disinfection, and the amount of injection must also be detected at a prescribed residual chlorine concentration of 0.1 mg / l or more at a water tap at the end. Therefore, conventionally, an appropriate injection rate is determined by manually analyzing the concentration of residual chlorine at the water tap at the end or by using a sensor, and a schedule of the injection rate of chlorine is determined on a daily or monthly basis.

【0003】[0003]

【発明が解決しようとする課題】ところで、注入された
塩素は時間の経過とともに減衰するため、管路の流量が
少ないと停滞時間が長くなり残留塩素濃度の低下が著し
くなる。また配水流量が多いとその反対に低下が少な
い。つまり、塩素を同一の注入率で注入していた場合、
末端での残留塩素濃度は配水量により増減することにな
る。
By the way, since the injected chlorine is attenuated with the passage of time, if the flow rate in the pipeline is small, the stagnation time becomes long and the residual chlorine concentration drops remarkably. On the other hand, when the flow rate of water is large, on the contrary, the decrease is small. In other words, if chlorine was injected at the same injection rate,
The residual chlorine concentration at the terminal will change depending on the amount of water distribution.

【0004】実際の配水量は、一日の間に大きく変動す
るため、一日単位で塩素注入率が決定される場合、最も
配水量の少ない時間帯を基準にして注入率が決定され
る。そのため配水量の多い時間帯では、残留塩素の濃度
が過度に高い値となる。残留塩素の濃度が高い場合は、
いわゆるカルキ臭い水となり、利用者に対して不快感を
与えるとともに、発癌性物質であるトリハロメタンが生
成されることになる。しかも、過剰に塩素を注入するこ
とは、水道事業にとっても不要な出費となり不経済であ
る。
Since the actual water distribution varies greatly during the day, when the chlorine injection rate is determined on a daily basis, the injection rate is determined on the basis of the time zone with the smallest water distribution. Therefore, the concentration of residual chlorine becomes an excessively high value during the time when the amount of water distribution is large. If the concentration of residual chlorine is high,
The water becomes so-called chlorine-smelling water, which gives uncomfortable feeling to the user, and trihalomethane which is a carcinogen is generated. Moreover, injecting chlorine excessively is uneconomical because it is an unnecessary expense for the water supply business.

【0005】そこで、配水管網における残留塩素濃度減
少特性の時間的変動を考慮して末端の給水栓で常時必要
最小限の残留塩素濃度が保たれるような塩素注入率の制
御方法が必要となる。そのためには、目標とする末端に
残留塩素濃度を計測するセンサを設置し、この信号をフ
ィードバックして、残留塩素濃度が目標の値となるよう
に制御する方法が考えられる。
Therefore, a method of controlling the chlorine injection rate is required so that the minimum residual chlorine concentration can be always maintained at the water tap at the end in consideration of the temporal variation of the residual chlorine concentration decreasing characteristic in the water distribution network. Become. For that purpose, a method of installing a sensor for measuring the residual chlorine concentration at a target end and feeding back this signal to control the residual chlorine concentration to a target value can be considered.

【0006】しかしながら、この場合も対象とする現象
は物質そのものの移動であるため、一般に無駄時間が非
常に長くなるとともにその変動幅も大きくなり、目標値
からの偏差が少なくなるように残留塩素濃度を制御する
ことは不可能であった。本発明は上記問題点を解決する
ためになされたもので、その目的とするところは、配水
量に変動があっても、常に末端の残留塩素濃度を基準値
に保つことができる塩素注入率制御装置を提供すること
にある。
However, in this case as well, since the phenomenon to be targeted is the movement of the substance itself, the dead time is generally very long and its fluctuation range is large, and the residual chlorine concentration is reduced so as to reduce the deviation from the target value. It was impossible to control. The present invention has been made to solve the above problems, and an object of the present invention is to control a chlorine injection rate capable of always maintaining a residual chlorine concentration at a terminal at a reference value, even if there is a variation in water distribution. To provide a device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明は、管網モデル、予測および実績需要
量、目標濃度時系列値、仮設定注入率、注入率上下限値
の各データを入力する手段と、管網モデルおよび予測・
実績需要量を用いた動的水質解析演算により塩素の注入
率を仮設定注入率の値とした場合における管網内の残留
塩素濃度分布を算出する手段と、管網モデルおよび予測
・実績需要量を用いた動的水質解析演算により塩素の注
入率を単位時間ごとに単位量増加した場合における管網
内の残留塩素濃度分布の変化を繰り返し算出する手段
と、算出された塩素の注入率と残留塩素濃度分布との関
係から得られる連立方程式またはその関係を用いた最小
二乗法により、管網上の目標地点の残留塩素濃度が目標
濃度時系列値に近くなる注入率スケジュールを算出する
手段と、算出された注入率スケジュールの値が注入率上
下限値を越えた場合に、上下限値以内に補正する手段と
を備えたことを特徴とする。
In order to achieve the above object, a first aspect of the present invention provides a pipe network model, a forecast and actual demand amount, a target concentration time series value, a temporary set injection rate, an injection rate upper and lower limit values. Means to input each data, pipe network model and prediction
Means to calculate the residual chlorine concentration distribution in the pipe network when the chlorine injection rate is set as the value of the provisional injection rate by the dynamic water quality analysis calculation using the actual demand, the pipe network model, and the forecast / actual demand A method for repeatedly calculating changes in the residual chlorine concentration distribution in the pipe network when the chlorine injection rate is increased by a unit amount per unit time by the dynamic water quality analysis calculation using By means of the least squares method using the simultaneous equations obtained from the relationship with the chlorine concentration distribution or the relationship, means for calculating the injection rate schedule in which the residual chlorine concentration at the target point on the pipe network is close to the target concentration time series value, When the calculated value of the infusion rate schedule exceeds the upper and lower limits of the infusion rate, a means for correcting the value within the upper and lower limits is provided.

【0008】第2の発明は、第1の発明において、線形
計画法を用いて注入率上下限値以内となる注入率スケジ
ュールを算出する手段を備えたことを特徴とする。
A second invention is characterized in that, in the first invention, there is provided means for calculating an injection rate schedule within the upper and lower limits of the injection rate by using a linear programming method.

【0009】ここで、管網上の目標地点または/および
塩素注入地点を複数とすることも可能である。また、塩
素注入地点を複数とした場合、塩素注入間隔を互いに異
なるようにすることもある。
Here, it is possible to provide a plurality of target points and / or chlorine injection points on the pipe network. Further, when there are a plurality of chlorine injection points, the chlorine injection intervals may be different from each other.

【0010】[0010]

【作用】第1の発明においては、管網モデル、予測およ
び実績需要量、目標濃度時系列値、仮設定注入率、注入
率上下限値の各データが入力されると、管網モデルおよ
び予測・実績需要量を用いた動的水質解析演算により塩
素の注入率を仮設定注入率の値とした場合における管網
内の残留塩素濃度分布が算出される。次いで、管網モデ
ルおよび予測・実績需要量を用いた動的水質解析演算に
より塩素の注入率を単位時間ごとに単位量増加した場合
における管網内の残留塩素濃度分布の変化が繰り返し算
出される。
In the first aspect of the invention, when the pipe network model, the forecast and actual demand, the target concentration time series value, the temporary set injection rate, and the injection rate upper and lower limit values are input, the pipe network model and the prediction are obtained. -The distribution of residual chlorine concentration in the pipe network is calculated by the dynamic water quality analysis calculation using the actual demand when the chlorine injection rate is set to the value of the provisional injection rate. Then, the change in residual chlorine concentration distribution in the pipe network is repeatedly calculated by the dynamic water quality analysis calculation using the pipe network model and the forecast / actual demand amount when the chlorine injection rate is increased by the unit amount per unit time. .

【0011】算出された塩素の注入率と残留塩素濃度分
布との関係から得られる連立方程式またはその関係を用
いた最小二乗法により、管網上の目標地点の残留塩素濃
度がその目標濃度時系列値に近い注入率スケジュールが
算出される。算出された注入率スケジュールの値が注入
率上下限値を越えた場合、スケジュール値は上下限値以
内に補正される。
The residual chlorine concentration at the target point on the pipe network is determined by the least squares method using the simultaneous equations obtained from the relation between the calculated chlorine injection rate and the residual chlorine concentration distribution, or the target concentration time series. An infusion rate schedule close to the value is calculated. When the calculated infusion rate schedule value exceeds the infusion rate upper and lower limits, the schedule value is corrected within the upper and lower limits.

【0012】第2の発明においては、線形計画法を用い
て注入率の上下限値以内となるように注入率スケジュー
ルが算出される。なお、管網上の目標地点、塩素注入地
点は1個所または複数箇所のいずれでも注入率スケジュ
ールが算出される。また、塩素注入地点を複数とした場
合に、塩素注入間隔が互いに異なる場合も同様に注入率
スケジュールが算出される。
In the second aspect of the invention, the injection rate schedule is calculated using the linear programming so that the injection rate is within the upper and lower limit values. It should be noted that the injection rate schedule is calculated at either one or a plurality of target points and chlorine injection points on the pipe network. Further, when there are a plurality of chlorine injection points and the chlorine injection intervals are different from each other, the injection rate schedule is similarly calculated.

【0013】[0013]

【実施例】以下、図に沿って本発明の実施例を説明す
る。最初にT時間先までの最適な塩素注入率の時間スケ
ジュールを決定する手順について説明する。なお、ここ
での塩素注入率は浄水場浄水池あるいは配水池の出口に
おける残留塩素濃度を意味する。したがって、ろ過水に
塩素を添加後、池出口までの間に消費される塩素は現場
の制御によって補償されるものとする。
Embodiments of the present invention will be described below with reference to the drawings. First, the procedure for determining the time schedule of the optimum chlorine injection rate up to T hours ahead will be described. The chlorine injection rate here means the residual chlorine concentration at the outlet of a water treatment plant or distribution reservoir. Therefore, after the chlorine is added to the filtered water, the chlorine consumed up to the outlet of the pond shall be compensated by the on-site control.

【0014】(1)管網を管網計算に用いるのと同等
に、節点、管路でモデル化する。管路モデルとしては、
例えば図4に示すようなモデルが設定される。 (2)需要予測または計画水量により、T時間先までの
Δt1時間ごと、節点ごとの需要水量を決定する。 (3)塩素注入点における塩素注入率のT時間先まで、
Δt2時間ごとの時間スケジュールを仮に設定する。こ
こでは、例えば一定の塩素注入率とした時間スケジュー
ルとする。
(1) Similar to using a pipe network for pipe network calculation, modeling is performed with nodes and pipe lines. As a pipeline model,
For example, a model as shown in FIG. 4 is set. (2) The demand water amount for each node is determined for each Δt 1 hour before the T time by the demand forecast or the planned water amount. (3) T time ahead of the chlorine injection rate at the chlorine injection point,
Temporarily set a time schedule for every Δt 2 hours. Here, for example, the time schedule is set to a constant chlorine injection rate.

【0015】(4)(1),(2),(3)のデータを
使って、T時間先までのΔt1時間ごとの各節点の残留
塩素濃度の時間変動を計算する(これを動的水質解析計
算とよぶ)。ただし、残留塩素濃度は過去の履歴も影響
するため、影響のある過去L時間前から計算する。過去
の時間の塩素注入率は実績の値を用い、節点ごとの需要
水量は実績値あるいは推定値を用いる。
(4) Using the data of (1), (2), and (3), the time variation of the residual chlorine concentration at each node for each Δt 1 hour up to the time T is calculated. It is called water quality analysis calculation). However, since the residual chlorine concentration also affects the past history, it is calculated from the time before the last L time when it has an influence. The actual value is used as the chlorine injection rate in the past time, and the actual value or estimated value is used as the demand water amount for each node.

【0016】ここで動的水質解析計算は以下のように計
算する。 1)当該時間の節点需要量、注入点水頭などの条件で管
網計算を行い、各管路の流量分布を計算する。 2)各管路について次式により滞留時間ts、濃度減少
率Rを計算する。
The dynamic water quality analysis calculation is calculated as follows. 1) Pipe network calculation is performed under the conditions such as the nodal demand and injection point head at that time, and the flow distribution of each pipeline is calculated. 2) The residence time t s and the concentration decrease rate R are calculated for each pipeline by the following formula.

【0017】[0017]

【数1】 [Equation 1]

【0018】[0018]

【数2】R=exp(−k・ts[Number 2] R = exp (-k · t s )

【0019】但し、kは残留塩素濃度減少速度係数、t
は時間、t0は当該時間、Q(t)は管路流量、Dは管
内径、Lは管路区間長である。tsは数式1を満たす値
を数値解法にて求める。 3)管路の流向にしたがって上流側の(t0−ts)時間
の残留塩素濃度CAをその時間をはさむ前後の計算点の
濃度から補間により、計算する。 4)下流側の当該時間の残留塩素濃度CBを次式により
計算する。
Where k is the residual chlorine concentration reduction rate coefficient, t
Is time, t 0 is the time, Q (t) is the pipe flow rate, D is the pipe inner diameter, and L is the pipe section length. t s determine the value that satisfies the equation (1) in the numerical solution. 3) by interpolation on the upstream side (t 0 -t s) time of residual chlorine concentration C A from the concentration calculation points before and after sandwiching the time according to the flow direction of the conduit, to calculate. 4) Calculate the residual chlorine concentration C B of the downstream side at the time concerned by the following formula.

【0020】[0020]

【数3】CB(t0)=R・CA(t0−ts## EQU3 ## C B (t 0 ) = R · C A (t 0 −t s ).

【0021】5)節点ごとに次式により、合流後に完全
混合するものとして、流入管路下流側残留塩素濃度から
流出管路上流側残留塩素濃度CCを計算する。ただし、
0は塩素注入点の場合の注入濃度である。
5) For each node, the residual chlorine concentration C C of the outflow pipe upstream is calculated from the concentration of the residual chlorine downstream of the inflow pipe by the following formula, assuming that they are completely mixed after merging. However,
C 0 is the injection concentration at the chlorine injection point.

【0022】[0022]

【数4】 [Equation 4]

【0023】1)〜5)を計算時間間隔ごとに−L時間
からT時間まで繰り返し計算する。
The steps 1) to 5) are repeatedly calculated for each calculation time interval from -L time to T time.

【0024】(5)動的水質解析で得られた目標節点の
Δt1時間間隔の濃度をx0(i),(i=1〜n)とす
る。そのときのΔt2時間間隔の注入率をu0(j),
(j=1〜m)とする。ここでn,mはそれぞれ、n=
T/Δt1,m=T/Δt2である。ただし、一般的には
n≧mである。
(5) Let the concentrations of the target nodes at Δt 1 time intervals obtained by the dynamic water quality analysis be x 0 (i), (i = 1 to n). The injection rate at Δt 2 time interval at that time is u 0 (j),
(J = 1 to m). Here, n and m are n =
T / Δt 1 and m = T / Δt 2 . However, in general, n ≧ m.

【0025】j時の注入点濃度u(j)に対するi時の
目標点の濃度x(i)との関係を以下のような数値計算
により、定式化する。次いで、j時の注入点濃度u
(j)に対するi時の目標点の濃度x(i)の感度を求
めるため、u(j)をj=1から順にj=mまで、Δu
ずつ増やして順次、動的水質解析の計算を行い、x
(i)の変動分Δx(i,j)を得る。但し、Δx
(i,j)はu(j)をΔu増分したときのx(i)の
0(i)からの増分である。すなわち、これらの関係
は次式のようになる。
The relationship between the injection point concentration u (j) at the time j and the concentration x (i) at the target point at the time i is formulated by the following numerical calculation. Then, the injection point concentration u at time j
In order to obtain the sensitivity of the density x (i) of the target point at time i with respect to (j), u (j) is sequentially changed from j = 1 to j = m by Δu.
Incremented by 1 and calculated sequentially for dynamic water quality analysis, x
The variation Δx (i, j) of (i) is obtained. However, Δx
(I, j) is the increment of x (i) from x 0 (i) when u (j) is incremented by Δu. That is, these relationships are as follows.

【0026】[0026]

【数5】 [Equation 5]

【0027】ここでa(i,j)≧0である。数式5よ
りx(i)を次式のように表すことができる。
Here, a (i, j) ≧ 0. From Expression 5, x (i) can be expressed as the following expression.

【0028】[0028]

【数6】 [Equation 6]

【0029】但し、Δx、Δuをそれぞれ以下の式のよ
うにする。
However, Δx and Δu are respectively expressed by the following equations.

【0030】[0030]

【数7】Δx(i)=x(i)−x0(i)Δx (i) = x (i) −x 0 (i)

【0031】[0031]

【数8】Δu(j)=u(j)−u0(j)Δu (j) = u (j) −u 0 (j)

【0032】ここで、 目標節点が複数のN点である場合、XI,XI 0,A
I(j),ΔXIをそれぞれ以下の式のようにする。
Here, when the target node is a plurality of N points, X I , X I 0 , A
Let I (j) and ΔX I be the following equations, respectively.

【0033】[0033]

【数9】XI=〔xI(1)…xI(n)〕T [Formula 9] X I = [x I (1) ... x I (n)] T

【0034】[0034]

【数10】XI 0=〔xI 0(1)…xI 0(n)〕T [Expression 10] X I 0 = [x I 0 (1) ... x I 0 (n)] T

【0035】[0035]

【数11】 AI(j)=〔aI(1,j)…aI(n,j)〕T [Expression 11] A I (j) = [a I (1, j) ... a I (n, j)] T

【0036】[0036]

【数12】ΔXI=XI−XI 0 [Expression 12] ΔX I = X I −X I 0

【0037】それにより、数式6は次式のように表され
る。
[Mathematical formula-see original document] Therefore, the equation 6 is expressed as the following equation.

【0038】[0038]

【数13】 [Equation 13]

【0039】塩素注入点が複数のM点である場合、U
J,UJ 0,AJ(i),ΔUJを次式のようにする。
When the chlorine injection points are a plurality of M points, U
Let J , U J 0 , A J (i), and ΔU J be as follows.

【0040】[0040]

【数14】UJ=〔uJ(1)…uJ(m)〕T [Equation 14] U J = [u J (1) ... u J (m)] T

【0041】[0041]

【数15】UJ 0=〔uJ 0(1)…uJ 0(m)〕T [Equation 15] U J 0 = [u J 0 (1) ... u J 0 (m)] T

【0042】[0042]

【数16】 AJ(i)=〔aJ(i,1)…aJ(i,m)〕## EQU16 ## A J (i) = [a J (i, 1) ... a J (i, m)]

【0043】[0043]

【数17】ΔUJ=UJ−UJ 0 [Expression 17] ΔU J = U J −U J 0

【0044】それにより、数式6は次のように表され
る。
Accordingly, Equation 6 is expressed as follows.

【0045】[0045]

【数18】 [Equation 18]

【0046】目標節点が複数のN点であり、かつ塩素
注入点が複数のM点である場合、AIJを次式のようにす
る。
When the target nodes are a plurality of N points and the chlorine injection points are a plurality of M points, A IJ is expressed by the following equation.

【0047】[0047]

【数19】 [Formula 19]

【0048】さらに、数式9,10,12,14,1
5,17の関係から、数式6は次式のように表される。
Further, equations 9, 10, 12, 14, 1
From the relationship of Nos. 5 and 17, Formula 6 is expressed as the following formula.

【0049】[0049]

【数20】 [Equation 20]

【0050】塩素注入点が複数(M点)であり、かつ
注入率スケジュールの時間間隔がそれぞれ異なる場合。 J番目の注入点の時間間隔をΔt2Jとし、mJ=T/Δ
2Jとするとともに、UJ,UJ 0,ΔUJ,AJ(i)を
それぞれ次式のようにする。
When there are a plurality of chlorine injection points (M points) and the injection rate schedules have different time intervals. When the time interval of the J-th injection point is Δt 2J , m J = T / Δ
In addition to t 2J , U J , U J 0 , ΔU J , and A J (i) are respectively set as in the following equations.

【0051】[0051]

【数21】UJ=〔uJ(1)…uJ(mJ)〕T [Expression 21] U J = [u J (1) ... u J (m J )] T

【0052】[0052]

【数22】UJ 0=〔uJ 0(1)…uJ 0(mJ)〕T [Equation 22] U J 0 = [u J 0 (1) ... u J 0 (m J )] T

【0053】[0053]

【数23】ΔUJ=UJ−UJ 0 [Expression 23] ΔU J = U J −U J 0

【0054】[0054]

【数24】 AJ(i)=〔aJ(i,1)…aJ(i,mJ)〕A J (i) = [a J (i, 1) ... a J (i, m J )]

【0055】それにより、数式6は次式のように表され
る。
Accordingly, the equation 6 is expressed as the following equation.

【0056】[0056]

【数25】 [Equation 25]

【0057】目標節点が複数(N点)、塩素注入点が
複数(M点)であり、かつ注入率スケジュールの時間間
隔がそれぞれ異なる場合、AIJを次式のようにする。
When there are a plurality of target nodes (N points), a plurality of chlorine injection points (M points), and the time intervals of the injection rate schedules are different, AIJ is set as follows.

【0058】[0058]

【数26】 [Equation 26]

【0059】さらに、数式9,10,12,21,2
2,23の関係から、数式6は次式のように表される。
Further, equations 9, 10, 12, 21, 21
From the relationship of 2 and 23, Equation 6 is expressed as the following equation.

【0060】[0060]

【数27】 [Equation 27]

【0061】ここで、数式6,13,18,20,2
5,27は一般的に次式のように表すことができる。
Here, equations 6, 13, 18, 20, 2
5,27 can be generally expressed by the following equation.

【0062】[0062]

【数28】X−X0=A・(U−U0X-X 0 = A · (U-U 0 )

【0063】ここで、X,U,Aの要素を改めてxi
j,aijと表すと、それぞれ次式のようになる。
Here, the elements of X, U and A are re-established as x i ,
When expressed as u j and a ij , the following expressions are respectively obtained.

【0064】[0064]

【数29】X=〔x1…xpT X = [x 1 ... X p ] T

【0065】[0065]

【数30】U=〔u1…uqT [Equation 30] U = [u 1 ... u q ] T

【0066】[0066]

【数31】 [Equation 31]

【0067】X,Uの要素の数p,qは最も一般的な
の場合で示すと、それぞれ次式のようになる。
The numbers p and q of the elements of X and U are expressed by the following equations in the most general case.

【0068】[0068]

【数32】p=N・n[Expression 32] p = N · n

【0069】[0069]

【数33】 [Expression 33]

【0070】さらに、Furthermore,

【0071】[0071]

【数34】 [Equation 34]

【0072】[0072]

【数35】B=〔b1…bpT [Equation 35] B = [b 1 ... B p ] T

【0073】とすると、Xは次式のようになる。Then, X is given by the following equation.

【0074】[0074]

【数36】X=A・U+B[Equation 36] X = A ・ U + B

【0075】ところで、塩素注入点と目標地点との遅れ
時間の関係から、あるxiについて次式の関係となる場
合がある。
By the way, from the relationship of the delay time between the chlorine injection point and the target point, there is a case where there is a relationship of the following formula for a certain x i .

【0076】[0076]

【数37】 [Equation 37]

【0077】このとき、Aのi行の要素はすべて0であ
り、xiは制御不能である(xi=xi 0)。したがって、
X,A,Bから対応するi行の要素を削除する。削除後
のものをX′,A′,B′と表す。削除後のX′の要素
数をp′とする。逆にあるuiについては、次式の関係
となる場合もある。
At this time, all the elements in the i-th row of A are 0, and x i is out of control (x i = x i 0 ). Therefore,
Delete the corresponding element in row i from X, A, B. Those after deletion are represented as X ', A', B '. The number of elements of X'after deletion is p '. On the other hand, for some u i, there is a case where the following relationship is established.

【0078】[0078]

【数38】 [Equation 38]

【0079】このとき、Aのj列の要素はすべて0であ
り、ujはXの制御に無関係であり、決定することはで
きない。したがって、U,A′から対応するj列の要素
を削除する。削除後のものをU′,A′′と表す。削除
後のU′の要素数をq′とする。これらから、数式36
は次式のようになる。
At this time, all the elements of the j column of A are 0, and u j is irrelevant to the control of X and cannot be determined. Therefore, the corresponding element in column j is deleted from U and A '. Those after deletion are represented as U ′ and A ″. The number of elements of U ′ after deletion is q ′. From these, Equation 36
Is as follows.

【0080】[0080]

【数39】X′=A′′・U′+B′X '= A' '· U' + B '

【0081】数式6,39をもとにして、目標とする
X′に対して、最適なU′の解Usを求める。以後、記
号を簡単にするため、X′,A′′,U′,B′,
p′,q′を改めて、X,A,U,B,p,qとおく
と、Xは次式のように表される。
Based on the equations 6 and 39, the optimum solution U s of U ′ is obtained for the target X ′. Hereafter, in order to simplify the symbols, X ', A'',U', B ',
If p ′ and q ′ are set again as X, A, U, B, p and q, X is expressed by the following equation.

【0082】[0082]

【数40】X=A・U+B[Formula 40] X = AU + B

【0083】さらに、=〔1 p 〕とし、i をxi
の目標濃度とする。
Further, X = [ x 1 ... X p ], and x i is x i
The target concentration of

【0084】1)目標地点の残留塩素濃度を目標値にで
きるだけ近づけるための最適注入。 p=qで行列Aが正則(逆行列が存在)のとき、X=
とおくと、数式40はU=Usについて解くことがで
き次式のようになる。
1) Optimal injection for making the residual chlorine concentration at the target point as close as possible to the target value. When p = q and the matrix A is regular (there is an inverse matrix), X =
If X is set, the equation 40 can be solved for U = U s , and the following equation can be obtained.

【0085】[0085]

【数41】Us=A-1・(−B)[Expression 41] U s = A -1 · ( X −B)

【0086】ただし、ujの値に制約がある場合、uj
j′のとき、uj=uj′とする。ujj のとき、uj
j とする。ここで、uj′は注入率上限値、j は注
入率下限値である。 p>qで行列Aのrankがqのとき、評価関数を次
式のようにする。
[0086] However, if there is a limitation on the value of u j, u j>
When u j ′, u j = u j ′. When u j < u j , u j
= U j . Here, u j ′ is the upper limit value of the injection rate and u j is the lower limit value of the injection rate. When p> q and rank of the matrix A is q, the evaluation function is as follows.

【0087】[0087]

【数42】J=(X−T・(X−) =(A・U+B−T・(A・U+B−(42) J = (X− X ) T · (X− X ) = (A · U + B− X ) T · (A · U + B− X )

【0088】すると、数式42を最小化するUsは最小
二乗法で解くことができ、その解は次式のようになる。
Then, U s that minimizes the equation 42 can be solved by the least squares method, and the solution is as follows.

【0089】[0089]

【数43】Us=(AT・A)-1・AT・(−B)[Expression 43] U s = (A T · A) −1 · A T · ( X −B)

【0090】ただし、ujの値に制約がある場合の処理
はと同様である。 2)目標地点の残留塩素濃度を必要最小限の残留塩素濃
度に保つための最適注入。 各時間の濃度をできるだけ、目標値に近づけ、注入塩素
量を少なくするため、次の目的関数Jを最小化する。
However, when the value of u j is restricted, the process is the same as. 2) Optimal injection to keep the residual chlorine concentration at the target point at the required minimum residual chlorine concentration. The following objective function J is minimized in order to make the concentration of each time as close to the target value as possible and reduce the amount of injected chlorine.

【0091】[0091]

【数44】 [Equation 44]

【0092】ただし、ei,fjはそれぞれの重みで、例
えば、対応する時間の流量に比例した値とする。制約条
件として、注入率の上下限を考慮すると、Uはそれぞれ
次式のようになる。
However, e i and f j are respective weights, and, for example, are values proportional to the flow rate at the corresponding time. If the upper and lower limits of the injection rate are taken into consideration as a constraint condition, U will be as follows.

【0093】[0093]

【数45】U≦U′ (uj≦uj′)(45) U ≦ U ′ (u j ≦ u j ′)

【0094】[0094]

【数46】U≧ (ujj (46) U ≧ U (u ju j )

【0095】さらに、濃度を目標値以上にするため、X
を次式のようにする。
Further, in order to make the density equal to or higher than the target value, X
As follows.

【0096】[0096]

【数47】X≧ (xii (47) X ≧ X (x ix i )

【0097】このとき、数式44の評価関数は、次式の
ようになる。
At this time, the evaluation function of Expression 44 is as follows.

【0098】[0098]

【数48】 [Equation 48]

【0099】ただし、E,Fは次式として表わされる。However, E and F are expressed as the following equations.

【0100】[0100]

【数49】E=〔e1…ep[Equation 49] E = [e 1 ... E p ]

【0101】[0101]

【数50】F=〔f1…fqF = [f 1 ... f q ]

【0102】数式40の等号制約条件、および数式4
5,46,47の不等号制約条件のもとで、制約条件を
みたすX,Uの解の組が存在すれば、数式48の評価関
数を最小化する解Xs,Usを線形計画法によって解くこ
とができる。
EQUATION 40 Equal sign constraint and EQUATION 4
If there is a pair of solutions of X and U that satisfy the constraint conditions under the inequality constraint conditions of 5, 46, 47, the solution X s , U s that minimizes the evaluation function of Expression 48 is obtained by linear programming. Can be solved.

【0103】図1に本発明の実施例の構成図を示す。管
網モデル、予測需要量、実績需要量をもとにコンピュー
タなどの演算装置1により、最適注入スケジュールを演
算する。本演算は1日1回定時に24時間先までの計画
を演算するか、あるいは定時間周期で起動して最適注入
スケジュールを順時、更新する。
FIG. 1 shows a block diagram of an embodiment of the present invention. The optimum injection schedule is calculated by the arithmetic unit 1 such as a computer based on the pipe network model, the predicted demand, and the actual demand. This calculation calculates a plan up to 24 hours ahead at a fixed time once a day, or starts it at a fixed time cycle and updates the optimal infusion schedule in order.

【0104】最適注入スケジュールから、定時間周期で
当該時間の目標残留塩素濃度を定時送信装置2により、
テレメータ3,4を介して浄水場の注入比率コントロー
ラ5へ送信する。注入比率コントローラ5は浄水池12
に設置した残留塩素濃度計13からの残留塩素濃度信号
をフィードバックして目標に一致するように注入比率を
演算出力し、比率設定器6に与える。比率設定器6はろ
過池9出口の流量計10からのろ過水量に注入比率を乗
じて塩素注入量を塩素注入機7に指令する。塩素注入機
7は注入量指令に基づいて混和池11へ塩素注入を行
う。
From the optimum injection schedule, the target residual chlorine concentration at the time is periodically measured by the regular transmission device 2 by the constant time transmitter 2.
It transmits to the injection ratio controller 5 of a water purification plant via the telemeters 3 and 4. The injection ratio controller 5 is the clean water reservoir 12
The residual chlorine concentration signal from the residual chlorine concentration meter 13 installed at is fed back, the injection ratio is calculated and output so as to match the target, and the result is given to the ratio setter 6. The ratio setter 6 multiplies the amount of filtered water from the flow meter 10 at the outlet of the filter basin 9 by the injection ratio to instruct the chlorine injector 7 about the chlorine injection amount. The chlorine injecting machine 7 injects chlorine into the mixing basin 11 based on the injection amount command.

【0105】図2、図3は注入率の時間スケジュールを
求めるための計算の手順の実施例を示すフローチャート
である。図2は第1の発明の計算手順で、図3は、第2
の発明の計算手順を示す。
2 and 3 are flow charts showing an embodiment of the calculation procedure for obtaining the time schedule of the infusion rate. FIG. 2 shows the calculation procedure of the first invention, and FIG.
The calculation procedure of the invention of is shown.

【0106】これらの実施例によると、目標とする地点
での残留塩素濃度を目標値にできるだけ近づけることが
できる。または、目標値以上でできるだけ低くするがで
きる。その結果として、配水管網内での適正な残留塩素
濃度分布が常時得られると共に、注入点での塩素注入量
の削減を図ることが可能となる。これを計算機シミュレ
ーション結果により示す。
According to these embodiments, the residual chlorine concentration at the target point can be made as close as possible to the target value. Alternatively, it can be made as low as possible above the target value. As a result, it is possible to always obtain an appropriate residual chlorine concentration distribution in the water distribution network and to reduce the amount of chlorine injection at the injection point. This is shown by computer simulation results.

【0107】図4は、対象とした地域の管網図を示す。
この例では目標地点、注入点とも1か所ずつである。図
5は管網図において仮に設定した注入点の注入率を示す
(0.5mg/lで一定)。図6はそのときの目標地点に
おける残留塩素濃度の時間変化を示す。目標地点では需
要量の変動による残留時間の変動によって残留塩素濃度
が変化していることがわかる。
FIG. 4 shows a network diagram of a target area.
In this example, there is one target point and one injection point. FIG. 5 shows the injection rate at a temporarily set injection point in the network diagram (constant at 0.5 mg / l). FIG. 6 shows the change over time in the residual chlorine concentration at the target point at that time. It can be seen that the residual chlorine concentration at the target site changes due to the change in the remaining time due to the change in demand.

【0108】図7は、同じ管網で目標地点の残留塩素濃
度が目標値以上であってしかもできるだけ低くするよう
に、線形計画法によって解いた場合の注入点の注入率の
時間変化を示す。図8はそのときの目標節点での残留塩
素濃度の時間変化を示す。これらのことから目標節点で
の残留塩素濃度がほぼ一定となるように制御され、かつ
注入点での注入率が下がり、塩素注入量を削減できるこ
とがわかる。
FIG. 7 shows the change over time in the injection rate at the injection point when the residual chlorine concentration at the target point in the same network is equal to or higher than the target value and is as low as possible by linear programming. FIG. 8 shows the change over time in the residual chlorine concentration at the target node at that time. From these facts, it is understood that the residual chlorine concentration at the target node is controlled to be almost constant, the injection rate at the injection point is lowered, and the chlorine injection amount can be reduced.

【0109】[0109]

【発明の効果】以上述べたように第1および第2の発明
によれば、入力された管網モデル、予測および実績需要
量、目標濃度時系列値、仮設定注入率、注入率上下限値
の各データに基づき、目標濃度時系列値に近い目標地点
の残留塩素濃度が得られる注入率スケジュールを算出す
ることが可能になる。それにより目標地点の残留塩素濃
度が常に安定した最適な状態に保たれる。また、注入地
点でも過度な塩素投入が防止されるため経済性が向上す
る。
As described above, according to the first and second inventions, the input pipe network model, the predicted and actual demand amount, the target concentration time series value, the temporarily set injection rate, and the injection rate upper and lower limit values. It becomes possible to calculate the injection rate schedule that obtains the residual chlorine concentration at the target point close to the target concentration time-series value based on each data of. As a result, the residual chlorine concentration at the target point is always kept stable and optimal. In addition, the excessive injection of chlorine is prevented even at the injection point, improving the economic efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1および第2の発明の実施例を示す構成図で
ある。
FIG. 1 is a configuration diagram showing an embodiment of first and second inventions.

【図2】第1の発明の動作を示すフローチャートであ
る。
FIG. 2 is a flowchart showing the operation of the first invention.

【図3】第2の発明の動作を示すフローチャートであ
る。
FIG. 3 is a flowchart showing the operation of the second invention.

【図4】実施例が適用される管網モデルの一例を示す図
である。
FIG. 4 is a diagram showing an example of a pipe network model to which the embodiment is applied.

【図5】仮設定注入量の一例を示すグラフである。FIG. 5 is a graph showing an example of a temporarily set injection amount.

【図6】仮設定注入時の目標節点残留濃度の時間変動の
一例を示すグラフである。
FIG. 6 is a graph showing an example of a temporal change of a target nodal residual concentration at the time of temporary setting injection.

【図7】最適注入スケジュールの一例を示すグラフであ
る。
FIG. 7 is a graph showing an example of an optimal infusion schedule.

【図8】最適注入時の目標節点残留塩素濃度の時間変動
の一例を示すグラフである。
FIG. 8 is a graph showing an example of time variation of the target residual chlorine concentration in the target node at the time of optimum injection.

【符号の説明】[Explanation of symbols]

1 演算装置 2 定時送信装置 3 テレメータ親局 4 テレメータ子局 5 注入比率コントローラ 6 比率設定器 7 塩素注入機 8 塩素貯槽 9 ろ過池 10 流量計 11 混和池 12 浄水池 13 残留塩素濃度計 1 Computing Device 2 Time Transmitter 3 Telemeter Master Station 4 Telemeter Slave Station 5 Injection Ratio Controller 6 Ratio Setting Device 7 Chlorine Injector 8 Chlorine Storage Tank 9 Filtration Tank 10 Flowmeter 11 Mixing Pond 12 Purification Tank 13 Residual Chlorine Concentration Meter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 管網モデル、予測および実績需要量、目
標濃度時系列値、仮設定注入率、注入率上下限値の各デ
ータを入力する手段と、 管網モデルおよび予測・実績需要量を用いた動的水質解
析演算により塩素の注入率を仮設定注入率の値とした場
合における管網内の残留塩素濃度分布を算出する手段
と、 管網モデルおよび予測・実績需要量を用いた動的水質解
析演算により塩素の注入率を単位時間ごとに単位量増加
した場合における管網内の残留塩素濃度分布の変化を繰
り返し算出する手段と、 算出された塩素の注入率と残留塩素濃度分布との関係か
ら得られる連立方程式またはその関係を用いた最小二乗
法により、管網上の目標地点の残留塩素濃度が目標濃度
時系列値に近くなる注入率スケジュールを算出する手段
と、 算出された注入率スケジュールの値が注入率上下限値を
越えた場合に、上下限値以内に補正する手段と、 を備えたことを特徴とする上水道の塩素注入率制御装
置。
1. A means for inputting each data of a pipe network model, forecast and actual demand, target concentration time series value, temporary set injection rate, upper and lower limits of injection rate, and a network model and forecast / actual demand A means for calculating the residual chlorine concentration distribution in the pipe network when the chlorine injection rate is set to the value of the provisional injection rate by the dynamic water quality analysis calculation used, and the dynamics using the pipe network model and forecast / actual demand. Means for repeatedly calculating changes in the residual chlorine concentration distribution in the pipe network when the chlorine injection rate is increased by a unit amount per unit time by dynamic water quality analysis calculation, and the calculated chlorine injection rate and residual chlorine concentration distribution. By means of the simultaneous equations obtained from the relationship or the least squares method using the relationship, the means for calculating the injection rate schedule in which the residual chlorine concentration at the target point on the pipe network is close to the target concentration time series value, and the calculated injection If the value of the schedule exceeds infusion rate upper and lower limit values, the chlorine injection rate control apparatus for water supply, characterized in that it comprises a means for correcting within the upper and lower limit value.
【請求項2】 請求項1記載の上水道の塩素注入率制御
装置において、 線形計画法を用いて注入率上下限値以内となる注入率ス
ケジュールを算出する手段を備えたことを特徴とする上
水道の塩素注入率制御装置。
2. The chlorine injection rate control device for water supply according to claim 1, further comprising means for calculating an injection rate schedule within an upper and lower limit of the injection rate by using a linear programming method. Chlorine injection rate control device.
【請求項3】 請求項1または2記載の上水道の塩素注
入率制御装置において、管網上の目標地点を複数とした
上水道の塩素注入率制御装置。
3. The chlorine injection rate control device for water supply according to claim 1 or 2, wherein a plurality of target points on the pipe network are provided.
【請求項4】 請求項1または2記載の上水道の塩素注
入率制御装置において、塩素注入地点を複数とした上水
道の塩素注入率制御装置。
4. The chlorine injection rate control device for waterworks according to claim 1, wherein the chlorine injection rate control device for waterworks has a plurality of chlorine injection points.
【請求項5】 請求項3記載の上水道の塩素注入率制御
装置において、塩素注入地点を複数とした上水道の塩素
注入率制御装置。
5. The chlorine injection rate control device for waterworks according to claim 3, wherein the chlorine injection rate control device for waterworks has a plurality of chlorine injection points.
【請求項6】 請求項4記載の上水道の塩素注入率制御
装置において、複数の塩素注入地点の塩素注入間隔が互
いに異なる上水道の塩素注入率制御装置。
6. The chlorine injection rate control device for water supply according to claim 4, wherein chlorine injection intervals at a plurality of chlorine injection points are different from each other.
【請求項7】 請求項5記載の上水道の塩素注入率制御
装置において、複数の塩素注入地点の塩素注入間隔が互
いに異なる上水道の塩素注入率制御装置。
7. The chlorine injection rate control device for water supply according to claim 5, wherein chlorine injection intervals at a plurality of chlorine injection points are different from each other.
JP13938793A 1992-11-20 1993-05-18 Water supply chlorine injection rate control device Expired - Lifetime JP3218807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13938793A JP3218807B2 (en) 1992-11-20 1993-05-18 Water supply chlorine injection rate control device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33544092 1992-11-20
JP4-335440 1992-11-20
JP13938793A JP3218807B2 (en) 1992-11-20 1993-05-18 Water supply chlorine injection rate control device

Publications (2)

Publication Number Publication Date
JPH06206077A true JPH06206077A (en) 1994-07-26
JP3218807B2 JP3218807B2 (en) 2001-10-15

Family

ID=26472210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13938793A Expired - Lifetime JP3218807B2 (en) 1992-11-20 1993-05-18 Water supply chlorine injection rate control device

Country Status (1)

Country Link
JP (1) JP3218807B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366954B1 (en) * 1999-10-23 2003-01-15 양운진 automatic chlorine supplier
JP2014030780A (en) * 2012-08-01 2014-02-20 Miura Co Ltd Water treatment system
JP2020170493A (en) * 2019-04-03 2020-10-15 株式会社東芝 Controller, control method, and computer program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102526819B1 (en) * 2021-02-05 2023-04-27 정혜린 Integrated management of small-scale water supply with AI self-test function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366954B1 (en) * 1999-10-23 2003-01-15 양운진 automatic chlorine supplier
JP2014030780A (en) * 2012-08-01 2014-02-20 Miura Co Ltd Water treatment system
JP2020170493A (en) * 2019-04-03 2020-10-15 株式会社東芝 Controller, control method, and computer program

Also Published As

Publication number Publication date
JP3218807B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
CN103011356B (en) Method for controlling automatic chemical dosing of high-turbidity water system
CN102385315B (en) Intelligent coagulation chemical dosing control system for water plant and control method thereof
Koech et al. A real-time optimisation system for automation of furrow irrigation
KR101877459B1 (en) Power control system and method of water pipe network based on Internet of Things
JP4366244B2 (en) Flocculant injection control system and alkaline agent injection control system for water purification plant
CN112978919A (en) Carbon source adding system and method for sewage treatment plant
JP2001252691A (en) Water quality controlling device for sewage treatment plant
CN117690518A (en) Method and system for determining drug addition amount for treating coal water slurry wastewater
JPH06206077A (en) Chlorine injection rate controller for water supply
JP6219239B2 (en) Water treatment plant
JP6726954B2 (en) Sewage treatment control device
CN112266073A (en) Intelligent control method and system for carbon source addition in sewage treatment
CN116969596A (en) Intelligent carbon source feeding system for sewage plant
JP4432359B2 (en) Hypochlorite injector
Yoo et al. Industrial experience of process identification and set-point decision algorithm in a full-scale treatment plant
JPS60106590A (en) Controller of sewage treatment
Dold et al. An equalization control strategy for activated sludge process control
JPH01231990A (en) Apparatus for controlling injection of chlorine into water purification plant
JPH0147237B2 (en)
Koech et al. Recent Trends in Water-Use Optimization of Surface Irrigation Systems in Australia
US20230150836A1 (en) Autonomous chemical dosing system and methods of use thereof
JPS5861889A (en) Controlling method for sewage treatment
JPH0790226B2 (en) Pre-chlorination control system for water treatment plant
JPH04180894A (en) Apparatus for controlling quantity of sludge
JPS62237994A (en) Apparatus for controlling injection of chlorine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

EXPY Cancellation because of completion of term