JPH0620505B2 - Method for refining coke oven gas - Google Patents
Method for refining coke oven gasInfo
- Publication number
- JPH0620505B2 JPH0620505B2 JP59235630A JP23563084A JPH0620505B2 JP H0620505 B2 JPH0620505 B2 JP H0620505B2 JP 59235630 A JP59235630 A JP 59235630A JP 23563084 A JP23563084 A JP 23563084A JP H0620505 B2 JPH0620505 B2 JP H0620505B2
- Authority
- JP
- Japan
- Prior art keywords
- adsorption
- cog
- coke oven
- oven gas
- regeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
- Industrial Gases (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明はコークス炉ガス(以下、COGと略称す
る。)から、これに含まれる水素を回収するCOGの精
製方法に関する。TECHNICAL FIELD The present invention relates to a COG refining method for recovering hydrogen contained in coke oven gas (hereinafter abbreviated as COG).
COGからこれに含まれる水素を回収する方法として、
圧力スイング再生方式によつて運転される吸着精製装置
(以下、PAS装置と略称する。)を用いるものがあ
る。ところが、COG中に含まれる重質炭化水素、BT
X(ベンゼン、トルエン、キシレン)、硫黄化合物、ア
ンモニアン、シアン化水素等の不純物は、上記PSA装
置の吸着像を劣化するため、予め予備精製して除去しお
かねばならない。As a method of recovering hydrogen contained in COG from COG,
Some use an adsorption purification device (hereinafter, abbreviated as PAS device) operated by a pressure swing regeneration system. However, heavy hydrocarbons contained in COG, BT
Impurities such as X (benzene, toluene, xylene), sulfur compounds, ammonia, and hydrogen cyanide deteriorate the adsorption image of the PSA apparatus, and therefore must be preliminarily purified and removed.
重質炭化水素やBTXなどの除去方法には、冷凍法や油
洗浄法がある。しかし、これらの除去法は、エネルギー
消費が多く、高度に除去しようとすると装置が大型化
し、よつてコストが高くなる欠点がある。また、硫黄化
合物の除去には湿式脱硫法活性炭吸着法、酸化鉄法など
がある。しかし、湿式脱硫法は装置および運転がともに
複雑である。活性炭吸着法は除去能力が小さく、かつ再
生が困難である。また酸化鉄法を硫込水素以外の硫黄化
合物には有効でなく、硫化水素に対しても高除去率で除
去しようとすれば装置が大型化する欠点がある。Methods for removing heavy hydrocarbons, BTX, and the like include a freezing method and an oil cleaning method. However, these removal methods have a drawback that they consume a lot of energy, and if they are removed to a high degree, the apparatus becomes large and thus the cost becomes high. In addition, for the removal of sulfur compounds, there are a wet desulfurization method, an activated carbon adsorption method, an iron oxide method and the like. However, the wet desulfurization method is complicated in both equipment and operation. The activated carbon adsorption method has a small removal capacity and is difficult to regenerate. Further, the iron oxide method is not effective for sulfur compounds other than hydrogen sulphate, and if hydrogen sulfide is to be removed at a high removal rate, there is a drawback that the device becomes large.
したがつて、上記不純分を個々に除去することはその装
置が大型化し、かつ除去効率も悪く、極めて不経済であ
る。Therefore, it is very uneconomical to remove the above-mentioned impurities individually because the apparatus becomes large and the removal efficiency is poor.
そこで、これらの不純物を、吸着法によつて一括除去す
ることが考えられる。吸着法は、不純物を低濃度まで除
去するのに極めて適した方法であり、実質的に不純物を
ゼロとすることもできる。しかし、この吸着法において
も次のような門題がある。(イ)多種の成分を吸着しよう
とすると個々の吸着性能が異るので、一種の吸着剤のみ
では目的を達せられない。(ロ) 吸着剤の再生操作が不
可欠であるので吸着性能のみならず再生が容易であるこ
とも重要な要因となる。(ハ)硫黄化合物を吸着した場
合、反応によつて硫黄が吸着剤に蓄積し、その寿命を低
下させることがある。Therefore, it is conceivable to remove these impurities all together by an adsorption method. The adsorption method is a method that is extremely suitable for removing impurities to a low concentration, and the impurities can be substantially zero. However, this adsorption method also has the following topic. (B) When attempting to adsorb various components, the individual adsorbing performances differ, so the purpose cannot be achieved with only one adsorbent. (B) Since it is essential to regenerate the adsorbent, not only the adsorption performance but also the easy regeneration is an important factor. (C) When a sulfur compound is adsorbed, sulfur may be accumulated in the adsorbent due to the reaction and the life thereof may be shortened.
よつて、吸着剤によつて一括除去する方法においては、
最適に吸着剤の組合せを選ぶことが極めて重要で、プロ
セスの成否を決定することになる。Therefore, in the method of removing all at once using an adsorbent,
Choosing the optimal adsorbent combination is extremely important and will determine the success or failure of the process.
この発明は、上記事情に鑑みてなされたもので、吸着筒
でCOG中の多種の不純物を一括除去でき装置の簡素化
が計れ、かつ吸着筒の再生を容易に行うことのできるC
OGの精製方法を提供することを目的とするものであ
る。The present invention has been made in view of the above circumstances, and various impurities in COG can be collectively removed by the adsorption cylinder, the apparatus can be simplified, and the adsorption cylinder can be easily regenerated.
It is intended to provide a method for purifying OG.
以下図面を参照して、この発明を詳しく説明する。 The present invention will be described in detail below with reference to the drawings.
第1図は、この発明の精製方法に用いられる装置の構成
を一例を示すものである。原料COGは管1からまずタ
ール除去器2に導入され、COG中のタール分が除去さ
れる。タール分が除去されたCOGは圧縮機3に送ら
れ、ここで5〜10kg/cm2G程度に加圧されたのち、
弁4aを経て2基の吸着筒5a,5bのうち吸着工程に
ある一方の吸着筒5aに送られる。吸着筒5a,5b
は、互いに吸着工程および再生工程を切換えて運転さ
れ、一方が吸着工程にあるときは他方が再生工程にある
ようになつている。また、吸着筒5a,5b内には、い
ずれも吸着剤としてシリカゲルおよび合成ゼオライト
(商品名:ゼオライトMS13X)がCOGの流入側
(上流側)からこの順序で、所定の量比でもつて充填さ
れている。そして、吸着筒5a,5b内のCOGの流速
は、8cm/秒以下、好ましくは3〜5cm/秒程度となる
ように調節される。流速が8cm/秒を越えると、不純物
の吸着除去が十分に行われず、予備精製がなされなくな
る。FIG. 1 shows an example of the configuration of an apparatus used in the purification method of the present invention. The raw material COG is first introduced into the tar remover 2 from the pipe 1, and the tar content in COG is removed. The COG from which the tar content has been removed is sent to the compressor 3, where it is pressurized to about 5-10 kg / cm 2 G,
It is sent via the valve 4a to one of the two adsorption cylinders 5a and 5b which is in the adsorption step. Adsorption cylinders 5a, 5b
Are operated by switching between the adsorption process and the regeneration process, and when one is in the adsorption process, the other is in the regeneration process. In addition, silica gel and synthetic zeolite (trade name: Zeolite MS13X) are both packed in the adsorption columns 5a and 5b as adsorbents in this order from the COG inflow side (upstream side) in a predetermined amount ratio. There is. The flow rate of COG in the adsorption cylinders 5a and 5b is adjusted to 8 cm / sec or less, preferably about 3 to 5 cm / sec. If the flow rate exceeds 8 cm / sec, the impurities are not sufficiently adsorbed and removed, and the pre-purification cannot be performed.
吸着筒5aを流れるCOGは、まずシリガゲル層Sを通
過し、ここで、BTX、重質炭化水素、アンモニア、シ
アン化水素の全部と極くわずかの硫黄化合物が吸着、除
去される。ついで合成ゼオライト層Gにおいて硫化水素
の一部がこのままの形で吸着され、残余の硫化水表は共
存する炭酸ガスと反応して硫化カルボニルに変化し、こ
の形で吸着除去され、他の硫黄化合物も吸着除去され
る。The COG flowing through the adsorption cylinder 5a first passes through the silica gel layer S, where all of BTX, heavy hydrocarbons, ammonia, and hydrogen cyanide and very small amounts of sulfur compounds are adsorbed and removed. Then, in the synthetic zeolite layer G, a part of hydrogen sulfide is adsorbed as it is, and the remaining surface of the sulfide water reacts with the coexisting carbon dioxide gas to change to carbonyl sulfide, which is adsorbed and removed in this form, and other sulfur compounds are also removed. Adsorbed and removed.
H2S+CO2→COS+H2O また、COG中の不純物の濃度によつては、重質炭化水
素およびBTXの全量とアンモニアおよびシアン化水素
の一部をシリガゲル層Sで吸着除去し、残余のアンモニ
アおよびシアン化水素と硫化水素をゼオライト層Gで吸
着するように、各吸着剤の充填量または吸着工程時間を
設計してもよい。H 2 S + CO 2 → COS + H 2 O Depending on the concentration of impurities in COG, the total amount of heavy hydrocarbons and BTX and part of ammonia and hydrogen cyanide are adsorbed and removed by the silica gel layer S, and residual ammonia and hydrogen cyanide are removed. The adsorbent filling amount or the adsorption step time may be designed so that the adsorbed hydrogen sulfide and the hydrogen sulfide in the zeolite layer G.
吸着筒5aで上述のごとく予備精製されたCOGは弁6
bを経て、PSA装置7に送り込まれる。PSA装置7
は、活性炭、モレキュラーシーブスなどの吸着剤が充填
された複数の吸着筒からなり、ここでCOG中の残余の
水分、軽質炭化水素、炭酸ガス、窒素、一酸化炭素等が
吸着除去され、製品水素が管8から導出される。The COG preliminarily purified as described above by the adsorption column 5a has a valve 6
It is sent to the PSA device 7 via b. PSA device 7
Consists of multiple adsorption columns filled with adsorbents such as activated carbon and molecular sieves, where residual water, light hydrocarbons, carbon dioxide, nitrogen, carbon monoxide, etc. in COG are adsorbed and removed, and product hydrogen From the tube 8.
吸着筒5aが破過したならば、COGを弁4Cを経て吸
着筒5bに導入し、吸着筒5aを再生工程とする。吸着
筒5aの再生はPAS装置7から排出される低圧(0.
5kg/cm2G、程度)の排ガスを管9から導き、弁6a
から吸着筒5aに導入することによつて行われる。ゼオ
ライト層Gからは、硫化水素、硫化カルボニル、その他
の硫黄化合物および場合によつてはアンモニア、シアン
化水素が脱着する。また、シリカゲル層Sからは重質炭
化水素、BTX、アンモニア、シアン化水素が脱着す
る。脱着したこれらの不純物は排ガスに含まれて、弁4
bから外部に排出される。If the adsorption cylinder 5a breaks through, COG is introduced into the adsorption cylinder 5b via the valve 4C, and the adsorption cylinder 5a is used as a regeneration process. Regeneration of the adsorption column 5a is performed at a low pressure (0.
5 kg / cm 2 G of exhaust gas is introduced from the pipe 9 and the valve 6a
To the adsorption cylinder 5a. From the zeolite layer G, hydrogen sulfide, carbonyl sulfide, other sulfur compounds and, in some cases, ammonia and hydrogen cyanide are desorbed. Further, heavy hydrocarbons, BTX, ammonia, and hydrogen cyanide are desorbed from the silica gel layer S. These desorbed impurities are contained in the exhaust gas, and the valve 4
It is discharged from b.
このようなCOGの精製方法によれば、吸着筒5a,5
bにシリカゲルとゼオライトMS13Xを充填したの
で、COG中の不純物の大部分がここで一括して吸着除
去でき、予備精製を極めてコンパクトな装置で行うこと
ができる。また、上記の吸着剤を組み合せたことによ
り、その再生も常温でほぼ完全な行われ、硫黄が蓄積す
ることもない。According to such a COG purification method, the adsorption cylinders 5a, 5
Since b is filled with silica gel and zeolite MS13X, most of impurities in COG can be collectively adsorbed and removed here, and preliminary purification can be performed with an extremely compact apparatus. Further, by combining the above-mentioned adsorbents, the regeneration is almost complete at room temperature, and sulfur is not accumulated.
第2図はこの発明の精製方法に用いられる装置構成の他
の例を示すものである。吸着筒を第1図のように2筒式
とした場合には、切換運転の都合上どうしても再生時間
と吸着時間とを同じくせざるを得ない。このような場
合、再生時若干の不純物が脱着しきれず、残留する場合
が生じる。そこで、第2図に示すように、PSA装置7
からの再生用の排ガスを加温器10に導き、ここで蒸気
等により40〜80℃に加温したうえ吸着筒5a,5b
に送り込んでやれば、限られた時間内でも完全に吸着剤
を再生できる。FIG. 2 shows another example of the apparatus configuration used in the purification method of the present invention. When the adsorption cylinder is of the two-cylinder type as shown in FIG. 1, the regeneration time and the adsorption time must be the same for the convenience of switching operation. In such a case, some impurities may not be completely desorbed during regeneration and may remain. Therefore, as shown in FIG.
The exhaust gas for regeneration from the adsorbents 5a, 5b is introduced to the warmer 10 and heated to 40-80 ° C by steam or the like.
If it is sent to, the adsorbent can be completely regenerated within a limited time.
また、他の再生方法として、通常は再生用ガスを加熱し
ないで再生し、一定サイクル後不純物が蓄積して吸着性
能が低下した時にのみ再生用ガスを加熱する方法、吸着
筒を3筒とし、1筒を吸着工程に、2筒を直列に配設し
て再生工程にし、再生ガスを室温のまま再生時間を2倍
とする方法、吸着筒を3筒とし、1筒を吸着工程に、1
筒を加熱再生ガス導入工程、1筒を冷却工程にする方法
などを採ることもできる。As another regeneration method, the regeneration gas is usually regenerated without heating, and the regeneration gas is heated only when impurities are accumulated and the adsorption performance is deteriorated after a certain cycle. One cylinder is used for the adsorption process, two cylinders are arranged in series for the regeneration process, and the regeneration time is doubled while keeping the regeneration gas at room temperature. Three adsorption cylinders are used and one cylinder is used for the adsorption process.
It is also possible to adopt a method in which the cylinder is subjected to the heating regeneration gas introducing step and the cylinder is subjected to the cooling step.
以下、実施例を示して具体的に示す。Hereinafter, examples will be shown and specifically described.
入口側から24kgのシリカゲルと20kgのゼオライトM
S13Xをこの順序で充填した吸着筒5a,5bを2筒
用意し、交互に切換運転するようにした。いずれか一方
の吸着筒5aにタール分が除去された8kg/cm2GのC
OGを30Nm3/hr流した。。6時間後に吸着筒を切
換えて他方の吸着筒5bに流した。吸着筒で予備精製し
たCOGはPSA装置7に導かれ、ここで11Nm3/h
rの製品水素と19Nm3/hrの排ガスとに分離され
た。19Nm3/hrの排ガスはその全量が室温で再生工
程にある吸着筒に送られた。24 kg of silica gel and 20 kg of zeolite M from the inlet side
Two adsorption cylinders 5a and 5b filled with S13X in this order were prepared and alternately switched. 8 kg / cm 2 G C with tar removed in either one of the adsorption cylinders 5 a
OG was flowed at 30 Nm 3 / hr. . After 6 hours, the adsorption column was switched to flow into the other adsorption column 5b. The COG preliminarily purified by the adsorption column is guided to the PSA unit 7, where it is 11 Nm 3 / h.
It was separated into r product hydrogen and 19 Nm 3 / hr of exhaust gas. The total amount of 19 Nm 3 / hr of exhaust gas was sent to the adsorption column in the regeneration process at room temperature.
この状態で運転を続けたところ、2〜3週間後に若干の
不純物がPSA装置7に流入することが認められ、再生
が不完全であることがわかつた。そこで、第2図によう
にPSA装置7からの排ガスを加温器10で50〜60
℃に加熱したうえ、再生工程中の吸着筒に送り込むよう
にしたところ、1年以上にわたつて不純分がPSA装置
に流入することはなかつた。When the operation was continued in this state, some impurities were found to flow into the PSA apparatus 7 after 2-3 weeks, and it was found that the regeneration was incomplete. Therefore, as shown in FIG. 2, the exhaust gas from the PSA device 7 is heated to 50 to 60 by the warmer 10.
After heating to ℃ and sending it to the adsorption column during the regeneration process, no impurities came into the PSA unit over a year.
以上説明したように、この発明のCOGの精製方法は、
シリカゲルとゼオライトとを流入口側からこの順序で充
填した吸着筒にCOGを導入して予備精製したうえPS
A装置に送り込むものである。よつて、この吸着筒にお
いてCOG中の重質炭化水素、BTX、硫黄化合物、ア
ンモニア等の大部分が不純分を一括して吸着除去するこ
とができ、予備精製を極めてコンパクトな装置で行え
る。また、再生も常温またはわずかに加温した再生用ガ
スを流すことによつて完全に行われ、不純物の蓄積もな
く、吸着剤を長期間使用することができ、予備精製のコ
ストを低く抑えることができる。As described above, the COG purification method of the present invention is
COG is introduced into the adsorption column filled with silica gel and zeolite in this order from the inlet side to pre-purify and then PS
It is sent to the A device. Therefore, most of the heavy hydrocarbons, BTX, sulfur compounds, ammonia, etc. in COG can be adsorbed and removed at once in this adsorption column, and the preliminary purification can be performed with an extremely compact apparatus. In addition, regeneration is also carried out completely by flowing a regeneration gas at room temperature or slightly heated, there is no accumulation of impurities, the adsorbent can be used for a long time, and the cost of preliminary purification can be kept low. You can
第1図および第2図はいずれもこの発明の精製方法に用
いられる装置の例を示す概略構成図である。 5a,5b……吸着筒、7……PSA装置、S……シリ
カゲル層、G……ゼオライト層。1 and 2 are each a schematic configuration diagram showing an example of an apparatus used in the purification method of the present invention. 5a, 5b ... Adsorption cylinder, 7 ... PSA device, S ... Silica gel layer, G ... Zeolite layer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 若泉 章 東京都大田区西蒲田4−27―14 (72)発明者 岡本 宏 神奈川県横浜市磯子区氷取沢150―4 (72)発明者 田中 通 神奈川県横浜市戸塚区原宿町1080―11 (72)発明者 菱沼 一弘 東京都大田区池上8−21―5 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akira Wakaizumi 4-27-14 Nishi-Kamata, Ota-ku, Tokyo (72) Inventor Hiroshi Okamoto 150-4, Hitorizawa, Isogo-ku, Yokohama, Kanagawa Prefecture 1080-11 Harajuku-cho, Totsuka-ku, Yokohama (72) Inventor Kazuhiro Hishinuma 8-21-5 Ikegami, Ota-ku, Tokyo
Claims (1)
製装置にコークス炉ガスを導入してコークス炉ガス中の
水素を回収するに際して、コークス炉ガスの流入側から
シリカゲル、ゼオライトの順序で充填した吸着筒にコー
クス炉ガスを流して予備精製したのち上記吸着精製装置
を導入することを特徴とするコークス炉ガスの精製方
法。1. When recovering hydrogen in a coke oven gas by introducing the coke oven gas into an adsorption refining device operated by a pressure swing regeneration system, silica gel and zeolite are charged in this order from the inflow side of the coke oven gas. A method for purifying a coke oven gas, which comprises introducing the coke oven gas into an adsorption column for preliminary purification and then introducing the adsorption refining apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59235630A JPH0620505B2 (en) | 1984-11-08 | 1984-11-08 | Method for refining coke oven gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59235630A JPH0620505B2 (en) | 1984-11-08 | 1984-11-08 | Method for refining coke oven gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61113689A JPS61113689A (en) | 1986-05-31 |
JPH0620505B2 true JPH0620505B2 (en) | 1994-03-23 |
Family
ID=16988858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59235630A Expired - Lifetime JPH0620505B2 (en) | 1984-11-08 | 1984-11-08 | Method for refining coke oven gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0620505B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6483001B2 (en) * | 2000-12-22 | 2002-11-19 | Air Products And Chemicals, Inc. | Layered adsorption zone for hydrogen production swing adsorption |
JP4573650B2 (en) * | 2005-01-11 | 2010-11-04 | 財団法人電力中央研究所 | Fuel gas purification equipment |
US7621987B2 (en) | 2006-04-13 | 2009-11-24 | Siemens Energy, Inc. | Self regenerating desulfurizer for gaseous fuels |
JP5074116B2 (en) * | 2007-07-12 | 2012-11-14 | 株式会社日立製作所 | Regenerative desulfurization apparatus and desulfurization system |
US9970071B2 (en) * | 2014-09-23 | 2018-05-15 | Midrex Technologies, Inc. | Method for reducing iron oxide to metallic iron using coke oven gas |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5580701A (en) * | 1978-12-08 | 1980-06-18 | Jgc Corp | Recovering method for hydrogen from coke oven gas |
JPS55152517A (en) * | 1979-05-18 | 1980-11-27 | Hitachi Ltd | Removing method for carbonic acid gas in gas by pressure variation type adsorption method |
JPS58168877A (en) * | 1982-03-31 | 1983-10-05 | 日本酸素株式会社 | Method of refining gas |
-
1984
- 1984-11-08 JP JP59235630A patent/JPH0620505B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5580701A (en) * | 1978-12-08 | 1980-06-18 | Jgc Corp | Recovering method for hydrogen from coke oven gas |
JPS55152517A (en) * | 1979-05-18 | 1980-11-27 | Hitachi Ltd | Removing method for carbonic acid gas in gas by pressure variation type adsorption method |
JPS58168877A (en) * | 1982-03-31 | 1983-10-05 | 日本酸素株式会社 | Method of refining gas |
Also Published As
Publication number | Publication date |
---|---|
JPS61113689A (en) | 1986-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3594983A (en) | Gas-treating process and system | |
US3957463A (en) | Oxygen enrichment process | |
US5486227A (en) | Integrated process for purifying and liquefying a feed gas mixture with respect to its less strongly adsorbed component of lower volatility | |
US4784672A (en) | Regeneration of adsorbents | |
RU2408664C2 (en) | Composite method for removing heavy hydrocarbons, amine purification and drying | |
JP3308248B2 (en) | Purification of air | |
KR100966064B1 (en) | Syngas Purification Method | |
US4264340A (en) | Vacuum swing adsorption for air fractionation | |
EP0128580B1 (en) | Process for drying gas streams | |
KR100702370B1 (en) | Zeolite Adsorbents, Processes For Preparing Them And Removing Carbonates From A Gas Flow | |
US4259091A (en) | Adiabatic adsorption method for gas purification or separation | |
JPH11518A (en) | Temperature swing adsorption method | |
CA2246212A1 (en) | Purification of gases using solid adsorbents | |
JP2000033218A (en) | Method and apparatus for psa device using mixture of adsorbent | |
JPH0688768B2 (en) | Selective adsorption method of CO 2) by zeolite | |
JPH10263392A (en) | Adsorption of carbon dioxide and water and adsorbent | |
WO2002058818A2 (en) | Selective removal of nitrogen from natural gas by pressure swing adsorption | |
US5840099A (en) | Process for the removal of water, CO2, ethane and C3 + hydrocarbons from a gas stream | |
CN1101118A (en) | Production of ultrahigh purity nitrogen | |
JP2002306918A (en) | Gas separating method and device thereof | |
JPH06171B2 (en) | Improved adsorption purification method | |
JP3084248B2 (en) | Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas | |
JP2004148315A (en) | Process and device for removing nitrous oxide from feed gas stream | |
JPS63107720A (en) | Method for separating and removing water content and carbon dioxide gas in air | |
JPH0620505B2 (en) | Method for refining coke oven gas |