JPH06203742A - Electron emitting element, electron beam generator and image forming device - Google Patents
Electron emitting element, electron beam generator and image forming deviceInfo
- Publication number
- JPH06203742A JPH06203742A JP36135392A JP36135392A JPH06203742A JP H06203742 A JPH06203742 A JP H06203742A JP 36135392 A JP36135392 A JP 36135392A JP 36135392 A JP36135392 A JP 36135392A JP H06203742 A JPH06203742 A JP H06203742A
- Authority
- JP
- Japan
- Prior art keywords
- electron
- fine particles
- emitting
- image forming
- emitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010894 electron beam technology Methods 0.000 title claims description 27
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000011248 coating agent Substances 0.000 claims abstract description 24
- 238000000576 coating method Methods 0.000 claims abstract description 24
- 239000010419 fine particle Substances 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 35
- 239000002245 particle Substances 0.000 claims description 5
- 239000010408 film Substances 0.000 description 51
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 26
- 238000000034 method Methods 0.000 description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 17
- 239000010409 thin film Substances 0.000 description 14
- 229910052763 palladium Inorganic materials 0.000 description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 229910052697 platinum Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000011521 glass Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 229910052792 caesium Inorganic materials 0.000 description 6
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 238000004402 ultra-violet photoelectron spectroscopy Methods 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 2
- 229910003445 palladium oxide Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- -1 R e Inorganic materials 0.000 description 1
- 239000012327 Ruthenium complex Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002772 conduction electron Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/316—Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
- H01J2201/3165—Surface conduction emission type cathodes
Landscapes
- Electrodes For Cathode-Ray Tubes (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子放出源として用い
られる冷陰極型の電子放出素子及び該素子を用いた電子
線発生装置並びに画像形成装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold cathode type electron-emitting device used as an electron-emitting source, an electron beam generator using the device, and an image forming apparatus.
【0002】[0002]
【従来の技術】従来、簡単な構造で電子の放出が得られ
る素子として、例えばエム アイ エリンソン(M.
I.Elinson)等によって発表された冷陰極素子
が知られている[ラジオ エンジニアリング エレクト
ロン フィジックス(RadioEng.Electr
on Phys.)第10巻,1290〜1296頁,
1965年]。2. Description of the Related Art Conventionally, as a device which can emit electrons with a simple structure, for example, MI Elinson (M.
I. A cold cathode device announced by Elinson et al. Is known [Radio Engineering Electron Physics (Radio Eng.
on Phys. ) Volume 10, pp. 1290-1296,
1965].
【0003】これは、基板上に形成された小面積の薄膜
に、膜内に平行に電流を流すことにより、電子放出が生
ずる現象を利用するもので、一般には表面伝導形電子放
出素子と呼ばれている。This utilizes a phenomenon in which a thin film having a small area formed on a substrate causes electron emission by causing a current to flow in the film in parallel, and is generally called a surface conduction electron-emitting device. Has been.
【0004】この表面伝導形電子放出素子としては、前
記エリンソン等により開発されたSnO2 (Sb)薄膜
を用いたもの、Au薄膜によるもの[ジー・ディトマー
“スイン ソリド フィルムス”(G.Dittme
r:“Thin SolidFilms”),9巻 3
17頁,(1972年)]、ITO薄膜によるもの[エ
ム ハートウェル アンド シージーフォンスタッド
“アイイーイーイートランス”イーディーコンファレン
ス(M.Hartwell and C.G.Fons
tad;“IEEE Trans.ED Con
f.”)519頁,(1975年)]、カーボン薄膜に
よるもの[荒木久他:“真空”第26巻,第1号,22
頁,(1983年)]などが報告されている。As the surface conduction electron-emitting device, one using a SnO 2 (Sb) thin film developed by Elinson et al., One using an Au thin film [G. Ditmer "Sin Solid Films" (G. Dittme
r: “Thin Solid Films”), vol. 3, 3
P. 17, (1972)], by ITO thin film [M. Hartwell and CG Fonds, M. Hartwell and CG Fons]
tad; “IEEE Trans.ED Con
f. ") 519, (1975)], by carbon thin film [Hiraki Araki et al .:" Vacuum ", Vol. 26, No. 1, 22.
P., (1983)] and the like are reported.
【0005】これらの表面伝導形電子放出素子の典型的
な素子構成を図6に示す。同図において、62及び63
は電気的接続を得るための電極、65は電子放出材料で
形成される薄膜、61は基板、66は電子放出部を示
す。FIG. 6 shows a typical device configuration of these surface conduction electron-emitting devices. In the figure, 62 and 63
Is an electrode for obtaining electrical connection, 65 is a thin film formed of an electron emitting material, 61 is a substrate, and 66 is an electron emitting portion.
【0006】従来、これらの表面伝導形電子放出素子に
おいては、電子放出を行う前に予めフォーミングと呼ば
れる通電加熱処理によって電子放出部を形成する。即
ち、前記電極62と電極63の間に電圧を印加する事に
より、薄膜65に通電し、これにより発生するジュール
熱で薄膜65を局所的に破壊、変形もしくは変質せし
め、電気的に高抵抗な状態にした電子放出部66を形成
することにより電子放出機能を得ている。Conventionally, in these surface conduction electron-emitting devices, an electron-emitting portion is formed in advance by an electric heating process called forming before the electron emission. That is, by applying a voltage between the electrode 62 and the electrode 63, the thin film 65 is energized, and the Joule heat generated thereby locally destroys, deforms or deteriorates the thin film 65, and has an electrically high resistance. The electron emission function is obtained by forming the electron emission portion 66 in the state.
【0007】なお、電気的に高抵抗状態とは、薄膜65
の一部に、0.5μm〜5μmの亀裂を有し、かつ亀裂
内が、いわゆる島構造を有する不連続状態膜であって、
空間的に不連続で電気的に連続な膜を形成している。The electrically high resistance state means the thin film 65.
A discontinuous state film having a crack of 0.5 μm to 5 μm in a part thereof and having a so-called island structure inside the crack,
A spatially discontinuous and electrically continuous film is formed.
【0008】従来、表面伝導形電子放出素子は上述の高
抵抗不連続膜に電極62,63により電圧を印加し、素
子表面に電流を流すことにより、上述微粒子より電子を
放出せしめるものである。Conventionally, in the surface conduction electron-emitting device, a voltage is applied to the high resistance discontinuous film by electrodes 62 and 63, and a current is caused to flow on the surface of the device, so that electrons are emitted from the fine particles.
【0009】しかしながら、上記の様な従来の通電加熱
によるフォーミング処理によって製造された電子放出素
子には、次のような問題点があった。 (1)加熱による薄膜の溶融と通電終了による温度低
下、溶融した薄膜の凝固といった過程を経て不連続な電
子放出部を形成するため、電子放出部を構成する島状微
粒子の大きさ、密度、配置、配列といった素子特性に関
わる構造設計は事実上不可能なため、素子の改良が難し
く、素子間のばらつきも生じやすい。 (2)フォーミング工程で発生するジュール熱が大きい
為、素子を形成する基板に多大な影響を与え、素子を構
成する薄膜の材料によっては基板破壊を生じやすく、マ
ルチ化が難しい。 (3)島の材料が金、銀、SnO2 、ITO等に限定さ
れ、仕事関数の小さい材料が使えないため、大電流を得
ることができない。However, the above-described conventional electron-emitting device manufactured by the conventional forming process by electric heating has the following problems. (1) Since the discontinuous electron emission portion is formed through the processes of melting the thin film by heating, lowering the temperature due to termination of energization, and solidifying the melted thin film, the size and density of the island-shaped fine particles constituting the electron emitting portion, Structural design related to device characteristics such as arrangement and arrangement is virtually impossible, so it is difficult to improve devices and variations among devices are likely to occur. (2) Since the Joule heat generated in the forming step is large, it has a great influence on the substrate on which the element is formed, and depending on the material of the thin film forming the element, the substrate is likely to be broken, and it is difficult to perform multi-processing. (3) The material of the island is limited to gold, silver, SnO 2 , ITO, etc., and a material having a small work function cannot be used, so that a large current cannot be obtained.
【0010】以上のような問題点があるため、表面伝導
形電子放出素子は、素子構造が簡単であるという利点が
あるにもかかわらず、産業上積極的に応用されるには至
っていなかった。Due to the above problems, the surface conduction electron-emitting device has not been positively applied industrially, although it has the advantage that the device structure is simple. .
【0011】本発明者等は上記問題点を鑑みて検討した
結果、特願昭63−107570号、特願昭63−11
0480号に於いて電極間に微粒子膜を配置しこれに通
電処理を施すことにより電子放出部を設ける新規な表面
伝導形電子放出素子を提案した。この新規な電子放出素
子の構成図を図7に示す。The present inventors have studied in view of the above problems, and as a result, have found that Japanese Patent Application Nos. 63-107570 and 63-11.
In 0480, a novel surface conduction electron-emitting device was proposed in which a fine particle film was placed between electrodes and an electron-emitting portion was provided by subjecting it to an electric current treatment. FIG. 7 shows a block diagram of this novel electron-emitting device.
【0012】同図において、72及び73は電極、75
は微粒子膜、76は電子放出部、71は基板である。In the figure, 72 and 73 are electrodes, and 75
Is a fine particle film, 76 is an electron emitting portion, and 71 is a substrate.
【0013】この電子放出素子の特徴としては次のよう
なことが挙げられる。 (1)微粒子膜75に非常に少ない電流を流すことで電
子放出部76を形成できるので素子劣化のない素子が形
成でき、さらに電極の形状を任意に設計できる。 (2)微粒子膜を形成する微粒子自身が電子放出の構成
材となる為、微粒子の材料や形状等の設計が可能とな
り、電子放出特性を変えることができる。 (3)素子の構成材である基板71や電極の材料の選択
性が広がる。The characteristics of this electron-emitting device are as follows. (1) Since the electron emission portion 76 can be formed by passing a very small current through the fine particle film 75, an element without element deterioration can be formed, and the shape of the electrode can be arbitrarily designed. (2) Since the fine particles forming the fine particle film themselves serve as a component for emitting electrons, the material and shape of the fine particles can be designed, and the electron emission characteristics can be changed. (3) The selectivity of the materials of the substrate 71 and the electrodes, which are the constituent materials of the element, is expanded.
【0014】また、従来より、面状に展開した複数の電
子放出素子とこの電子放出素子から放出された電子線の
照射を各々受ける蛍光体ターゲットとを各々相対向させ
た薄形の画像表示装置が存在する。これら電子線ディス
プレイ装置は、基本的に次のような構造からなる。Further, conventionally, a thin image display device in which a plurality of planar electron-emitting devices and phosphor targets which respectively receive irradiation of electron beams emitted from the electron-emitting devices are opposed to each other. Exists. These electron beam display devices basically have the following structure.
【0015】図8は従来のディスプレイ装置の概要を示
すものである。同図において81は基板、82は支持
体、83は素子配線電極、84は電子放出部、85は電
子通過孔、86は変調電極(グリッド電極)、87はガ
ラス板、88は画像形成部材で、例えば蛍光体、レジス
ト材等、電子が衝突することにより発光,変色,帯電,
変質等する部材から成る。89は蛍光体の輝点である。FIG. 8 shows an outline of a conventional display device. In the figure, 81 is a substrate, 82 is a support, 83 is an element wiring electrode, 84 is an electron emission portion, 85 is an electron passage hole, 86 is a modulation electrode (grid electrode), 87 is a glass plate, and 88 is an image forming member. , For example, phosphors, resist materials, etc. emit light, discolor, charge when electrons collide,
It consists of members that change in quality. 89 is the bright spot of the phosphor.
【0016】ここで、電子放出部84は薄膜技術により
形成され、ガラス基板81とは接触することがない中空
構造を成すものである。素子配線電極83は電子放出部
材と同一の材料を用いて形成しても、別材料を用いても
良く、一般に融点が高く電気抵抗の小さいものが用いら
れる。支持体82は絶縁体材料もしくは導電体材料で形
成されている。Here, the electron emitting portion 84 is formed by a thin film technique and has a hollow structure that does not come into contact with the glass substrate 81. The element wiring electrode 83 may be formed of the same material as the electron emitting member or may be formed of a different material. Generally, one having a high melting point and a low electric resistance is used. The support body 82 is made of an insulating material or a conductive material.
【0017】上記電子線ディスプレイ装置は、素子配線
電極83に電圧を印加せしめ、中空構造をなす電子放出
部より電子を放出させ、これら電子流を情報信号に応じ
て変調する変調電極86に電圧を印加することにより電
子を取り出し、取り出した電子を加速させ蛍光体88に
衝突させるものである。また、素子配線電極83と変調
電極86でXYマトリックスを形成せしめ、画像形成部
材たる蛍光体88上に画像表示を行うものである。In the electron beam display device, a voltage is applied to the element wiring electrode 83, electrons are emitted from the electron emitting portion having a hollow structure, and a voltage is applied to the modulation electrode 86 which modulates the electron flow according to the information signal. Electrons are taken out by applying, and the taken out electrons are accelerated to collide with the phosphor 88. Further, an XY matrix is formed by the element wiring electrodes 83 and the modulation electrodes 86, and an image is displayed on the phosphor 88 which is an image forming member.
【0018】[0018]
【発明が解決しようとする課題】先述したように、図6
に示したような従来の通電加熱処理を必要とする表面伝
導形放出素子では、素子の電子放出部形状の改良が困難
であると共に、素子特性の向上もまた事実上不可能であ
った。具体的には、電子放出効率、放出電流の安定性、
素子ごとの均一性、再現性等、電子放出素子としての基
本的な特性改良が困難であった。また、通電加熱に要す
るパワーが大きいため、電子放出部や基板の劣化が著し
く、かかる素子を複数、面状に展開した電子源への応用
は事実上不可能であった。As described above, FIG.
In the conventional surface conduction electron-emitting device that requires the current-flowing heat treatment as shown in (1), it is difficult to improve the shape of the electron-emitting portion of the device and it is practically impossible to improve the device characteristics. Specifically, electron emission efficiency, emission current stability,
It was difficult to improve the basic characteristics of the electron-emitting device such as uniformity and reproducibility for each device. In addition, since the power required for heating by energization is large, the electron emitting portion and the substrate are significantly deteriorated, and it is practically impossible to apply to such an electron source in which a plurality of such elements are developed in a plane.
【0019】また、図8に示したような画像表示装置の
電子源として従来の表面伝導形電子放出素子を応用する
と、各素子の電子放出効率の違いにより蛍光体の発光輝
度がばらつき、表示むらを生じていた。Further, when a conventional surface conduction electron-emitting device is applied as an electron source of the image display device as shown in FIG. 8, the emission brightness of the phosphor varies due to the difference in electron emission efficiency of each device, resulting in display unevenness. Was occurring.
【0020】即ち、本発明の目的とするところは、上述
のような問題点を解消し得る電子放出素子及び該素子を
用いた電子線発生装置並びに画像形成装置を提供するこ
とにある。That is, an object of the present invention is to provide an electron-emitting device capable of solving the above-mentioned problems, an electron beam generator using the device, and an image forming apparatus.
【0021】[0021]
【課題を解決するための手段及び作用】上記目的を達成
するために、本発明で講じられた手段は、基板上の電極
間に、電子放出部を形成する微粒子が分散配置された電
子放出素子において、該微粒子表面に、該微粒子に含有
される元素よりも原子量の大きな元素及び/または低仕
事関数材料を含む被覆部材を有し、且つ、該被覆部材
が、該被覆部材を通過する電子の平均自由行程以上の厚
さを有することとした。Means and Actions for Solving the Problems In order to achieve the above-mentioned object, the means taken in the present invention is an electron-emitting device in which fine particles forming an electron-emitting portion are dispersedly arranged between electrodes on a substrate. In the above, the surface of the fine particles has a coating member containing an element having a larger atomic weight than the element contained in the fine particles and / or a low work function material, and the coating member has an electron beam passing through the coating member. It was decided to have a thickness not less than the mean free path.
【0022】また、本発明の電子線発生装置では、上記
本発明の電子放出素子の複数と、該電子放出素子から放
出される電子線を情報信号に応じて変調する変調手段と
を有することとした。Further, the electron beam generator of the present invention comprises a plurality of the electron-emitting devices of the present invention and a modulation means for modulating the electron beam emitted from the electron-emitting devices according to an information signal. did.
【0023】また、本発明の画像形成装置では、上記本
発明の電子放出素子の複数と、該電子放出素子から放出
される電子線を情報信号に応じて変調する変調手段と、
該電子線の照射により画像を形成する画像形成部材とを
有することとした。Further, in the image forming apparatus of the present invention, a plurality of the electron-emitting devices of the present invention, and a modulation means for modulating an electron beam emitted from the electron-emitting devices according to an information signal,
And an image forming member that forms an image by irradiation with the electron beam.
【0024】以下に本発明の構成要素及び作用について
詳述する。The components and operations of the present invention will be described in detail below.
【0025】図1に本発明の電子放出素子の一実施態様
を示す上面図を、図2に図1のA−A断面の概略的部分
断面図を示す。FIG. 1 is a top view showing one embodiment of the electron-emitting device of the present invention, and FIG. 2 is a schematic partial cross-sectional view taken along the line AA of FIG.
【0026】これらの図において、11は素子形成基
板、12,13は基板11上に形成された一対の電極、
14は電極12,13間の微小間隔部、15は電極1
2,13間に分散配置された微粒子膜、16は微粒子膜
15の材料からなり電子放出部を形成している微粒子、
17は微粒子16の表面を被覆している被覆部材であ
る。In these figures, 11 is an element forming substrate, 12 and 13 are a pair of electrodes formed on the substrate 11,
14 is a minute gap between the electrodes 12 and 13, and 15 is the electrode 1.
2 and 13, a fine particle film dispersedly arranged, 16 is a fine particle made of the material of the fine particle film 15 and forming an electron emitting portion,
Reference numeral 17 is a covering member that covers the surface of the fine particles 16.
【0027】本発明に用いられる素子構成基板11は、
概平坦な表面を持つものであればいかなる材料のもので
も良いが、導電性の高い材料からなる基板を用いた場合
には素子駆動時に基板を流れる電流が多くなるため、効
率の点で好ましくない。従って、絶縁性材料を用いるこ
とが望ましく、具体的には通常のガラス、SiO2 薄
膜、シリコン等が適当である。The element constituting substrate 11 used in the present invention is
Any material may be used as long as it has a substantially flat surface, but when a substrate made of a highly conductive material is used, the current flowing through the substrate increases when the device is driven, which is not preferable in terms of efficiency. . Therefore, it is desirable to use an insulating material, and specifically, ordinary glass, SiO 2 thin film, silicon or the like is suitable.
【0028】また、電極12,13は電子放出部に電圧
を供給するものであり、通常使われる電極材料であれば
いかなるものを用いても良い。更に、微小電極間隔部1
4は0.1μm〜100μm程度の範囲が可能である
が、実用的には0.5μm〜20μm程度の範囲が好ま
しい。かかる電極の形成方法は通常のリソグラフィー、
印刷等いかなる方法を用いても良い。Further, the electrodes 12 and 13 supply a voltage to the electron emitting portion, and any commonly used electrode material may be used. Furthermore, the minute electrode spacing portion 1
4 can be in the range of about 0.1 μm to 100 μm, but is preferably in the range of about 0.5 μm to 20 μm for practical use. The method for forming such an electrode is a conventional lithography,
Any method such as printing may be used.
【0029】電極12,13間に設ける微粒子膜15は
本発明の電子放出素子において、通電処理あるいは通電
加熱処理により電子放出部を形成するものであり、かか
る微粒子は粒径が十数Åから数μmの導電性材料が使用
できる。具体的には、LaB6 ,C8 B6 ,YB4 ,G
dB4 等のホウ化物、TiC,ZrC,HfC,Ta
C,SiC,WC等の炭化物、TiN,ZrN,HfN
等の窒化物、Nb,Mo,Rh,Hf,Ta,W,R
e,Ir,Pt,Ti,Au,Ag,Cu,Cr,A
l,Co,Ni,Fe,Pb,Pd,Ca,Ba等の金
属、等が挙げられるが、これらに限定されるものではな
い。また、上記の微粒子膜の形成方法としては、分散塗
布後焼成を行って微粒子化する、あるいはガスデポジシ
ョン法によって形成する等適当な手法を用いれば良く、
該微粒子膜のシート抵抗は5×103 〜1×107 Ω/
□程度が望ましい。The fine particle film 15 provided between the electrodes 12 and 13 forms an electron emitting portion by an electric current treatment or an electric current heat treatment in the electron-emitting device of the present invention, and the fine particles have a particle diameter of from several dozen to several tens. A conductive material of μm can be used. Specifically, LaB 6 , C 8 B 6 , YB 4 , and G
Borides such as dB 4 , TiC, ZrC, HfC, Ta
Carbides such as C, SiC, WC, TiN, ZrN, HfN
Nitride such as Nb, Mo, Rh, Hf, Ta, W, R
e, Ir, Pt, Ti, Au, Ag, Cu, Cr, A
Examples thereof include metals such as 1, Co, Ni, Fe, Pb, Pd, Ca, and Ba, but are not limited to these. As a method for forming the above-mentioned fine particle film, a suitable method such as performing dispersion coating followed by baking to make fine particles, or forming by a gas deposition method may be used.
The sheet resistance of the fine particle film is 5 × 10 3 to 1 × 10 7 Ω /
□ A degree is desirable.
【0030】次に、本発明の特徴であるところの、上記
微粒子表面に付設した被覆部材について詳述する。Next, the covering member attached to the surface of the fine particles, which is a feature of the present invention, will be described in detail.
【0031】本発明に係る被覆部材17は、例えば図2
に示すように電子放出部を形成する微粒子16の表面を
被覆するように付設される。上記被覆部材には導電体、
半導体、絶縁体等のいかなる材料を用いても構わない
が、本発明においては、特に、電子放出部を構成する微
粒子16に含有される元素よりも原子量の大きい元素及
び/または低仕事関数材料を含むものが用いられる。The covering member 17 according to the present invention is shown in FIG.
As shown in (3), it is attached so as to cover the surface of the fine particles 16 forming the electron emitting portion. The covering member is a conductor,
Although any material such as a semiconductor or an insulator may be used, in the present invention, in particular, an element having a larger atomic weight than the element contained in the fine particles 16 constituting the electron emitting portion and / or a low work function material is used. What is included is used.
【0032】かかる被覆部材の材料としては、具体的に
はRu,Pd,Ag,Cd,Sn,Sb,Te,Ta,
W,Re,Pt,Au,Pb,Bi,Cs,Ba等の金
属材料及びこれらの化合物が挙げられる。本発明におい
て、例えば、電子放出部にPd微粒子を用いた場合、被
覆部材はPdよりも原子量の大きいPb,Pt等の材料
で形成すれば良い。Specific examples of the material of the covering member include Ru, Pd, Ag, Cd, Sn, Sb, Te, Ta,
Examples thereof include metal materials such as W, Re, Pt, Au, Pb, Bi, Cs, and Ba, and compounds thereof. In the present invention, for example, when Pd fine particles are used for the electron emitting portion, the covering member may be formed of a material such as Pb or Pt having an atomic weight larger than Pd.
【0033】本発明の電子放出素子では、上記のように
電子放出部を形成する微粒子の表面に、該微粒子材料を
構成している元素よりも原子量の大きい元素を含む材料
からなる被覆部材を設けることにより、高い電子放出効
率を得ることができる。実際、上記被覆部材が電子放出
効率の向上にいかなる役割を果しているかは不明である
が、本発明者等は被覆部材が電子放出部の微粒子表面で
の電子の屈折、回折、あるいは散乱等の効率を向上させ
ているものと考えている。即ち、微粒子膜内で加速され
た電子は、外部から印加された電圧程度のエネルギーを
持って、通電処理,通電加熱処理等により形成された電
子放出部の微粒子に衝突し、屈折、回折あるいは散乱等
の効果により電子放出素子の概鉛直方向に向きを変化さ
せ、素子外部に脱出するものと考えられる。従って、微
粒子材料よりも原子量の大きい材料、即ち原子内部の電
子密度の高い材料を用いて被覆部材を形成することで電
子の放出効率を向上させているものと推測される。In the electron-emitting device of the present invention, as described above, the surface of the fine particles forming the electron-emitting portion is provided with a coating member made of a material containing an element having an atomic weight larger than that of the element forming the fine-particle material. Thereby, high electron emission efficiency can be obtained. In fact, it is unknown what role the coating member plays in improving the electron emission efficiency, but the present inventors have found that the coating member has an efficiency of refraction, diffraction, or scattering of electrons on the surface of the fine particles in the electron emission portion. I think that is improving. That is, the electrons accelerated in the fine particle film collide with the fine particles in the electron emission portion formed by the energization process, the energization heating process, etc., with the energy of the voltage applied from the outside, and are refracted, diffracted, or scattered. It is considered that, due to such effects, the orientation of the electron-emitting device is changed in a substantially vertical direction to escape to the outside of the device. Therefore, it is presumed that the electron emission efficiency is improved by forming the coating member using a material having an atomic weight larger than that of the fine particle material, that is, a material having a high electron density inside the atoms.
【0034】また、先述した低仕事関数材料、例えばC
s,Ba等の材料を被覆部材に用いた場合には、被覆部
材による屈折、回折あるいは散乱等の効果に加え、微粒
子表面の仕事関数の低下により、より一層、高い電子放
出効率が得られる。Further, the above-mentioned low work function material, for example, C
When a material such as s or Ba is used for the coating member, in addition to the effect of the coating member such as refraction, diffraction or scattering, the work function of the surface of the fine particles is lowered, so that a higher electron emission efficiency can be obtained.
【0035】本発明において、上記被覆部材の膜厚は、
該被覆部材を通過する電子の平均自由行程以上の厚さを
有する。このことにより、上述した微粒子表面での電子
の屈折、回折、散乱等の効率がより一層高まり、電子放
出量及び電子放出効率を高めることができると共に、電
子放出量の時間的な変動を低減し、放出電流の安定化を
実現できる。In the present invention, the film thickness of the covering member is
It has a thickness equal to or larger than the mean free path of electrons passing through the covering member. As a result, the efficiency of refraction, diffraction, scattering, etc. of the electrons on the surface of the fine particles is further enhanced, the electron emission amount and the electron emission efficiency can be increased, and the time variation of the electron emission amount is reduced. It is possible to stabilize the emission current.
【0036】一般に、固体内部で運動する電子は固体を
形成する原子の原子核、あるいは電子等に衝突すること
によってその運動エネルギーを失う。その衝突と衝突の
間に電子の進む距離、言い替えれば、固体内部を運動す
る電子がエネルギーを失うことなく進むことのできる距
離を電子の平均自由行程(mean free pat
h)と呼ぶ。Generally, an electron moving inside a solid loses its kinetic energy by colliding with an atomic nucleus of an atom forming the solid, an electron, or the like. The distance traveled by the electron between the collisions, in other words, the distance that the electron moving inside the solid can travel without losing energy, is the mean free path of the electron.
h).
【0037】電子の平均自由行程は固体を形成する原子
の種類にはあまり依存せず、電子の持っているエネルギ
ーに強く依存しており、数eV〜数千eVのエネルギー
を持った電子の平均自由行程はほぼ数Åから100Å程
度である。特に、電子のエネルギーが100eV程度の
場合に平均自由行程は極小値をとることが知られてい
る。(G.Someriai,Chemistry i
n Two Dimensions:Surface
Cornell University Press,
Ithaca,N.Y,1981) 従って、本発明に用いられる被覆部材は、電子放出部を
形成する超微粒子材料よりも原子量の大きい材料を用
い、更に放出部を通過する電子の持っているエネルギー
によって決まる平均自由行程以上の厚みを持たせること
で電子放出効率を向上させることが可能となる。The mean free path of electrons does not depend so much on the kinds of atoms forming a solid but strongly on the energy of electrons, and the average of electrons having an energy of several eV to several thousand eV. The free path is approximately several Å to 100 Å. In particular, it is known that the mean free path takes a minimum value when the electron energy is about 100 eV. (G. Someriai, Chemistry i
n Two Dimensions: Surface
Cornell University Press,
Ithaca, N .; Therefore, the covering member used in the present invention uses a material having a larger atomic weight than the ultrafine particle material forming the electron emitting portion, and further, the mean free path determined by the energy of the electrons passing through the emitting portion. By having the above thickness, the electron emission efficiency can be improved.
【0038】電子の平均自由行程の測定方法としては、
X線を励起光源として固体表面から脱出する電子の運動
エネルギーを測定するX線光電子分光(XPS)、紫外
線を励起光源とする紫外線光電子分光(UPS)、電子
線励起によるオージェ電子の運動エネルギーを測定する
オージェ電子分光(AES)等があげられ、これらよ
り、本発明に用いられる被覆部材中の電子の平均自由行
程を直接測定することができる。As a method of measuring the mean free path of electrons,
X-ray photoelectron spectroscopy (XPS), which measures the kinetic energy of electrons that escape from the solid surface using X-rays as the excitation light source, ultraviolet photoelectron spectroscopy (UPS), which uses ultraviolet light as the excitation light source, and kinetic energy of Auger electrons excited by electron beams Auger electron spectroscopy (AES) and the like, which can directly measure the mean free path of electrons in the coating member used in the present invention.
【0039】また、被覆部材の膜厚は素子の駆動電圧に
よっても異なるが、一般的には数十Åから数百Åが適用
可能であり、本発明においては、上記の電子放出特性の
向上のために、300Å以上であるのが好ましい。Although the film thickness of the coating member varies depending on the drive voltage of the device, generally, several tens of Å to several hundred Å can be applied. In the present invention, the above-mentioned electron emission characteristics can be improved. Therefore, it is preferably 300 Å or more.
【0040】また、本発明に用いられる被覆部材は、必
ずしも連続膜である必要はなく、粒径数十Åから数百Å
の微粒子からなる不連続膜であっても上記と同様の効果
がある。この場合においても、上記不連続膜を構成して
いる膜部分の膜厚は前記平均自由行程以上であり、より
好ましくは被覆部材を構成している微粒子の粒径が前記
平均自由行程以上であるのが望ましい。The covering member used in the present invention does not necessarily have to be a continuous film, and has a particle size of several tens of Å to several hundred Å.
Even a discontinuous film composed of the above fine particles has the same effect as above. Also in this case, the film thickness of the film portion forming the discontinuous film is equal to or larger than the mean free path, and more preferably, the particle diameter of the fine particles forming the covering member is equal to or larger than the mean free path. Is desirable.
【0041】被覆部材の形成方法は通常の真空蒸着、有
機錯体の塗布焼成、等いかなる手法を用いても良い。ま
た、被覆部材の形成手順としては微粒子膜15形成後、
直ちに形成する、あるいは通電処理等を行い微粒子16
から成る不連続な電子放出部を形成した後、形成する等
どちらでも構わない。The coating member may be formed by any method such as ordinary vacuum vapor deposition, coating and firing of an organic complex. In addition, as a procedure for forming the covering member, after forming the fine particle film 15,
Fine particles 16 which are formed immediately or subjected to electric current treatment
It does not matter whether the discontinuous electron emitting portion is formed, and then the discontinuous electron emitting portion is formed.
【0042】また、微粒子16から成る不連続膜部分の
表面を覆う被覆部材の領域の形状(幅や長さ等)を制御
することにより、実効的な電子放出部の形状を容易に制
御することができ、素子ごとの放出電流の均一性,再現
性を向上できる。Further, by controlling the shape (width, length, etc.) of the region of the covering member that covers the surface of the discontinuous film portion composed of the fine particles 16, the effective shape of the electron emitting portion can be easily controlled. Therefore, the uniformity and reproducibility of the emission current for each device can be improved.
【0043】以上のごとく、本発明による電子放出素子
では、通電処理等により形成されるところの電子放出部
を構成する微粒子の位置、配列等の制御を行うことな
く、電子放出量及び電子放出効率等の素子特性の向上を
図るものであり、これにより、安定且つ再現性良く均一
な素子特性を有する電子放出素子を提供できる。As described above, in the electron-emitting device according to the present invention, the electron emission amount and the electron emission efficiency are controlled without controlling the position, arrangement, etc. of the fine particles forming the electron-emitting portion formed by the energization process or the like. It is intended to improve the device characteristics such as the above, and thereby to provide an electron-emitting device having stable and reproducible and uniform device characteristics.
【0044】以上述べたように、本発明は相対向する電
極と、該電極間に設けられた不連続な電子放出部からな
る表面伝導形電子放出素子に適用可能であり、従来の連
続膜を通電加熱することにより電子放出部を形成するい
わゆるフォーミング素子、及び電極間に予め不連続膜を
設けてなる表面伝導形電子放出素子、どちらにも応用で
きるものであり、特に、後者の素子に適用した場合に
は、微粒子膜に非常に少ない電流を流すことで電子放出
させることができ、かかる素子を複数面状に展開した電
子源への応用に好適である。As described above, the present invention can be applied to a surface conduction electron-emitting device including electrodes facing each other and a discontinuous electron-emitting portion provided between the electrodes. It can be applied to both a so-called forming element that forms an electron emitting portion by heating by energization and a surface conduction electron emitting element in which a discontinuous film is previously provided between electrodes, and is particularly applicable to the latter element. In this case, electrons can be emitted by passing a very small current through the fine particle film, which is suitable for application to an electron source in which such an element is developed in a plurality of planes.
【0045】更にまた、本発明の電子放出素子を面状に
複数配置した面状電子源を用いた電子線発生装置及び画
像形成装置では、各素子の電子放出効率が向上すると共
に、各素子の素子特性を均一にできるため、低電力駆動
可能で且つ均一な発光輝度を有する画像表示が得られ
る。Furthermore, in the electron beam generator and the image forming apparatus using the planar electron source in which a plurality of electron-emitting devices of the present invention are arranged in a plane, the electron emission efficiency of each device is improved and at the same time, Since the element characteristics can be made uniform, it is possible to obtain an image display that can be driven at low power and has uniform emission brightness.
【0046】本発明の画像形成装置において、上記電子
源からの電子線の照射により画像を形成する画像形成部
材としては、従来のように、例えば蛍光体、レジスト材
等、電子が衝突することにより発光,変色,帯電,変質
等する部材を用いることができ、特に、前記電子線の照
射により発光するレッド、グリーン、ブルーの三原色発
光体を用いた場合には、カラー画像の表示が可能とな
る。In the image forming apparatus of the present invention, as an image forming member for forming an image by irradiating an electron beam from the electron source, as in a conventional case, for example, a phosphor, a resist material, or the like is formed by collision of electrons. It is possible to use a member that emits light, changes color, charges, changes quality, etc. In particular, when a three-primary-color light emitter of red, green, and blue that emits light by irradiation of the electron beam is used, a color image can be displayed. .
【0047】[0047]
【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.
【0048】実施例1 図1は本実施例の素子構成図であり、図2は図1のA−
A断面図、図3はその製造方法を示した説明図である。 Example 1 FIG. 1 is a structural diagram of an element of this example, and FIG. 2 is a line A- in FIG.
A sectional view and FIG. 3 are explanatory views showing the manufacturing method.
【0049】先ず、これらの図を用いて、本実施例の電
子放出素子の製造方法を説明する。First, a method of manufacturing the electron-emitting device of this embodiment will be described with reference to these drawings.
【0050】.絶縁性基板11として石英基板を用
い、有機溶剤等により充分洗浄し、真空蒸着技術、フォ
トリソグラフィー技術により電極12,13を形成す
る。電極の材料としては導電性を有するものであればど
のようなものであっても構わないが、本実施例ではNi
金属を用いて形成した。この電極間隔14は、実用的に
は0.5μmから20μmに形成されることが望まし
く、本実施例では6μm間隔とし、膜厚は1000Åと
した(図3(a)参照)。.. A quartz substrate is used as the insulating substrate 11, sufficiently washed with an organic solvent or the like, and electrodes 12 and 13 are formed by a vacuum deposition technique or a photolithography technique. Any material may be used as the material of the electrode as long as it has conductivity, but in this embodiment, Ni is used.
It was formed using a metal. Practically, the electrode interval 14 is preferably 0.5 μm to 20 μm, and in this embodiment, the electrode interval 14 is 6 μm and the film thickness is 1000 Å (see FIG. 3A).
【0051】.次に、有機パラジウムを電極12と1
3の間に分散塗布する。有機パラジウムは奥野製薬
(株)CCP−4230を用いた。.. Next, organopalladium is applied to electrodes 12 and 1
3 is dispersed and applied. As the organic palladium, Okuno Pharmaceutical Co., Ltd. CCP-4230 was used.
【0052】微粒子を分散したくないところにはテープ
又はレジスト膜を設け、その後ディッピング法又はスピ
ナー法で有機パラジウムを塗布する。次に、テープ又は
レジスト膜を剥離することにより所定の位置に微粒子膜
15を作成した。次に、З00℃で1時間焼成し有機パ
ラジウムを分散し、パラジウムと酸化パラジウムの混合
した微粒子膜を形成する。微粒子膜の幅Wはどのような
値のものでも構わないが本実施例では1mmとした。こ
のとき、パラジウムと酸化パラジウムの微粒子の径は共
に10Å〜150Åであったが本発明はこれに限るもの
ではない(図3(b)参照)。A tape or a resist film is provided in a place where fine particles are not desired to be dispersed, and then organic palladium is applied by a dipping method or a spinner method. Next, the tape or the resist film was peeled off to form the fine particle film 15 at a predetermined position. Next, it is baked at 00 ° C. for 1 hour to disperse organic palladium to form a fine particle film in which palladium and palladium oxide are mixed. The width W of the fine particle film may be any value, but in this embodiment, it is set to 1 mm. At this time, the diameters of the fine particles of palladium and palladium oxide were both 10Å to 150Å, but the present invention is not limited to this (see FIG. 3 (b)).
【0053】.こうして得られた素子を10-6tor
r〜10-7torrの真空度に維持された真空容器中に
入れ、通電処理を行い電子放出部16を形成し、電子放
出を行ったところ、電極12,13間に印加する電圧が
14Vのとき、素子を流れる電流がほぼ5mA、素子か
ら放出される電流がほぼ3μAであった(図3(c)参
照)。.. The element thus obtained is set to 10 −6 torr
It was placed in a vacuum container maintained at a vacuum degree of r to 10 −7 torr, and an electron-emitting process was performed to form an electron emitting portion 16. When electron emission was performed, the voltage applied between the electrodes 12 and 13 was 14V. At that time, the current flowing through the element was approximately 5 mA, and the current emitted from the element was approximately 3 μA (see FIG. 3 (c)).
【0054】こうして得られた電子放出素子の電子放出
部をSEM観察したところ、粒径50〜100Å程度の
不連続な微粒子膜が形成されていた。 .次に、上記素子のパラジウムを含有する微粒子膜形
成部分に、プラチナの有機錯体溶液を分散塗布し、50
0℃−10分間の焼成を行い、プラチナからなる被覆部
材17を設けて素子を完成した(図3(d)参照)。SEM observation of the electron-emitting portion of the thus-obtained electron-emitting device revealed that a discontinuous fine particle film having a particle size of about 50 to 100Å was formed. . Next, an organic complex solution of platinum is dispersed and applied to the portion of the above element on which the palladium-containing fine particle film is to be formed.
Firing was performed at 0 ° C. for 10 minutes, and a covering member 17 made of platinum was provided to complete the device (see FIG. 3D).
【0055】こうして得られた電子放出素子の電子放出
部をSEM観察したところ、前記微粒子膜の表面を覆う
ように、被覆部材が形成されており、その膜厚はほぼ3
00Åであった。SEM observation of the electron-emitting portion of the electron-emitting device thus obtained showed that the covering member was formed so as to cover the surface of the fine particle film, and the film thickness was about 3
It was 00Å.
【0056】こうして形成された被覆部材中での電子の
平均自由行程を測定するために、プラチナ膜のUPS、
AES測定を行ったところ、初速度10〜20eV程度
のエネルギーを持った電子のプラチナ中での平均自由行
程は100〜150Å程度であった。また、本実施例に
おいて作製された電子放出素子の電子放出部表面に形成
されたプラチナ膜の膜厚を測定したところ、ほぼ300
Åであることが確認された。In order to measure the mean free path of electrons in the coating member thus formed, UPS of a platinum film,
When the AES measurement was performed, the mean free path in platinum of electrons having an energy of an initial velocity of about 10 to 20 eV was about 100 to 150Å. The thickness of the platinum film formed on the surface of the electron emitting portion of the electron emitting device manufactured in this example was measured and found to be approximately 300.
It was confirmed to be Å.
【0057】また、電子放出部の組成分析を行ったとこ
ろ、パラジウムとプラチナが検出され、その強度比か
ら、放出部最表面はプラチナ、内部はパラジウムとなっ
ていることが確認された。Further, when the composition analysis of the electron emitting portion was carried out, palladium and platinum were detected, and it was confirmed from the intensity ratio thereof that platinum was the outermost surface of the emitting portion and palladium was the inside.
【0058】上記素子を再度10-6〜10-7torrの
真空中に入れ、素子印加電圧14Vとして電子放出させ
たところ、素子電流がほぼ5mAで、放出電流がほぼ1
0μAであった。また、放出電流の安定性及び経時変化
を測定したところ、放出電流の時間的変動幅はほぼ±3
%以内、100時間連続駆動後の放出電流の増減はほぼ
−5%という結果が得られた。When the above device was put into a vacuum of 10 −6 to 10 −7 torr again and electrons were emitted at an applied voltage of 14 V, the device current was about 5 mA and the emission current was about 1.
It was 0 μA. In addition, when the stability of the emission current and the change with time were measured, the temporal fluctuation range of the emission current was approximately ± 3.
%, The increase / decrease in emission current after continuous driving for 100 hours was almost -5%.
【0059】一方、パラジウムからなる微粒子膜を電子
放出部に用いた素子の場合の放出電流の時間的変動幅は
ほぼ±7%程度であり、前記微粒子膜表面に被覆部材を
形成することで、電子放出効率の向上と共に、放出電流
の安定化も同時に実現できることが示された。On the other hand, in the case of an element using a fine particle film made of palladium in the electron emitting portion, the temporal fluctuation range of the emission current is about ± 7%, and by forming a coating member on the surface of the fine particle film, It was shown that the electron emission efficiency can be improved and the emission current can be stabilized at the same time.
【0060】実施例2 図4は本実施例で作製した本発明の素子構成図である。
同図において41は絶縁性ガラス基板、42,43は相
対向する一対の電極、44は電子放出部を構成する微粒
子からなる不連続膜、46は本発明の特徴である被覆部
材である。図中不図示ではあるが、通電処理後は微粒子
膜44は不連続膜となっている。 Example 2 FIG. 4 is a structural diagram of an element of the present invention manufactured in this example.
In the figure, reference numeral 41 is an insulating glass substrate, 42 and 43 are a pair of electrodes facing each other, 44 is a discontinuous film made of fine particles forming an electron emitting portion, and 46 is a covering member which is a feature of the present invention. Although not shown in the figure, the fine particle film 44 is a discontinuous film after the energization process.
【0061】本実施例では、実施例1同様充分脱脂洗浄
したガラス基板41上に通常のフォトリソグラフィー技
術と真空蒸着技術を用いて、ほぼ2μmの電極間隔を有
する一対の電極42,43を形成した。次に、上記電極
間に有機金属ルテニウム錯体を含有する有機溶媒を回転
塗布した後、450℃−10分間の焼成を行い、電極間
にルテニウム及び酸化ルテニウムからなる微粒子不連続
膜を形成した。更に、上記素子上に有機金属からなる金
を含有する有機溶媒を回転塗布後、450℃−10分間
の焼成を行い素子を完成した。In this example, as in Example 1, a pair of electrodes 42 and 43 having an electrode interval of approximately 2 μm were formed on a glass substrate 41 that had been thoroughly degreased and washed, using ordinary photolithography and vacuum deposition techniques. . Next, an organic solvent containing an organometallic ruthenium complex was spin-coated between the electrodes, followed by baking at 450 ° C. for 10 minutes to form a fine particle discontinuous film composed of ruthenium and ruthenium oxide between the electrodes. Further, an organic solvent containing gold made of an organic metal was spin-coated on the above device, and then baked at 450 ° C. for 10 minutes to complete the device.
【0062】こうして得られた素子をほぼ2×10-6t
orrの真空度に保たれた真空容器中に入れ、通電処理
を行った後、素子鉛直上方5mmの位置に直流電圧1k
Vを印加したアノード電極を設けて素子を駆動し、放出
電流の測定を行ったところ、素子駆動電圧14V時に素
子電流6mA、放出電流15μAが得られた。これは、
通常の表面伝導形素子において、放出部材料にルテニウ
ムを用いた場合と比較して、ほぼ5倍程度の放出電流量
であり、素子電流はほぼ同等であることから、およそ5
倍程度の電子放出効率の向上が見られたことになる。The device thus obtained was subjected to almost 2 × 10 −6 t
After putting in a vacuum container maintained at a vacuum degree of orr and conducting energization, a DC voltage of 1k was applied to a position 5 mm above the element vertically.
When the device was driven by providing an anode electrode to which V was applied and the emission current was measured, a device current of 6 mA and an emission current of 15 μA were obtained when the device drive voltage was 14V. this is,
Compared with the case where ruthenium is used as the material of the emitting portion in a normal surface conduction type element, the amount of emitted current is about 5 times, and the element current is almost the same.
This means that the electron emission efficiency was doubled.
【0063】また、上記素子の電子放出部の形態及び組
成を実施例1同様に確認したところ、放出部を形成して
いる微粒子は金で被覆されたルテニウム微粒子であるこ
とが確認された。The morphology and composition of the electron emitting portion of the above-mentioned device were confirmed in the same manner as in Example 1, and it was confirmed that the fine particles forming the emitting portion were ruthenium fine particles coated with gold.
【0064】また、被覆部材の膜厚は約300Åであ
り、該被覆部材を通過する約20eVのエネルギーを持
った電子の平均自由行程は150Å以上であることが確
認された。Further, it was confirmed that the film thickness of the covering member was about 300Å, and the mean free path of electrons having an energy of about 20 eV passing through the covering member was 150Å or more.
【0065】以上の結果から、本発明は電極間に放出部
材料と被覆部材となる材料を予め積層した後、通電処理
を施しても実施例1と同等の効果があることが確認され
た。From the above results, it was confirmed that the present invention has the same effect as that of the first embodiment, even if the emission part material and the material to be the covering member are preliminarily laminated between the electrodes and then an electric current is applied.
【0066】実施例3 本実施例では、本発明に係る被覆部材に低仕事関数材料
であるセシウムを用いた。本実施例の素子作製方法は実
施例1と同様である。また、電子放出部を形成する微粒
子膜も実施例1と同様に有機金属パラジウムの回転塗布
/焼成により形成した。 Example 3 In this example, cesium which is a low work function material was used for the covering member according to the present invention. The device manufacturing method of this embodiment is the same as that of the first embodiment. The fine particle film forming the electron emitting portion was also formed by spin coating / baking of organometallic palladium as in Example 1.
【0067】本実施例では、上記素子を5×10-8to
rrの真空中に入れ、通電処理を行って電子放出素子と
しての機能及び特性確認後、同一真空容器中でセシウム
の蒸着を行った。In the present embodiment, the above device is used at 5 × 10 -8 to
After being placed in a vacuum of rr and subjected to energization to confirm the function and characteristics as an electron-emitting device, cesium was vapor-deposited in the same vacuum container.
【0068】その結果、セシウム蒸着前の放出電流は1
μA以下、電子放出効率0.1%以下であったが、セシ
ウム蒸着後の放出電流は20μA以上、電子放出効率1
0%以上となり、放出電流、放出効率共に激増した。こ
れは、被覆部材による屈折、回折あるいは散乱等の効率
上昇と共にセシウム蒸着による微粒子表面の仕事関数の
低下が有効に働いていることを示している。As a result, the emission current before cesium vapor deposition was 1
The electron emission efficiency was less than μA and the electron emission efficiency was 0.1% or less, but the emission current after cesium vapor deposition was 20 μA or more, the electron emission efficiency was 1
It was over 0%, and both emission current and emission efficiency increased dramatically. This indicates that the work function of the surface of the fine particles is effectively reduced by vapor deposition of cesium as well as the efficiency of refraction, diffraction, scattering, etc. increased by the coating member.
【0069】また、上記素子の電子放出部の形態及び組
成を実施例1同様に確認したところ、放出部を形成して
いる微粒子はセシウムで被覆されたパラジウム微粒子で
あった。また、被覆部材の膜厚は約300Åであり、該
被覆部材を通過する電子の平均自由行程は150Å以上
であることが確認された。The morphology and composition of the electron emitting portion of the above device were confirmed in the same manner as in Example 1. As a result, the fine particles forming the emitting portion were palladium fine particles coated with cesium. It was also confirmed that the film thickness of the covering member was about 300Å, and the mean free path of electrons passing through the covering member was 150Å or more.
【0070】実施例4 図5は、本実施例の画像形成装置を示す構成図である。
本実施例の面状電子源は、実施例1の電子放出素子を複
数配列したもので、特に、電極502と電極503の間
に電子放出素子を並列に配置した線電子源を複数本基板
に規則正しく設けたものである。 Embodiment 4 FIG. 5 is a block diagram showing the image forming apparatus of this embodiment.
The planar electron source of the present embodiment is an array of a plurality of electron emitting devices of the first embodiment, and in particular, a plurality of linear electron sources in which electron emitting devices are arranged in parallel between an electrode 502 and an electrode 503 are provided on a plurality of substrates. It is provided regularly.
【0071】同図において、501は絶縁性基板、50
5は微粒子膜、506は電子放出部、507はグリッド
電極、508は電子通過孔であり、上記線電子源を複数
本設けた面状電子源と、該電子源から放出される電子線
を情報信号に応じて変調するグリッド電極507により
電子線発生装置が構成されている。In the figure, 501 is an insulating substrate and 50
Reference numeral 5 is a fine particle film, 506 is an electron emitting portion, 507 is a grid electrode, 508 is an electron passage hole, and a planar electron source provided with a plurality of the above-mentioned electron sources and an electron beam emitted from the electron source are used as information. An electron beam generator is constituted by the grid electrode 507 which is modulated according to a signal.
【0072】また、509はアルミニウム材からなるメ
タルバック、510は画像形成部材であるところの蛍光
体、511はガラス板であり、これらによってフェース
プレート513を構成している。尚、512は蛍光体の
輝点である。Further, 509 is a metal back made of an aluminum material, 510 is a phosphor serving as an image forming member, 511 is a glass plate, and these constitute a face plate 513. In addition, 512 is a bright spot of the phosphor.
【0073】本実施例において、グリッド電極507は
複数のライン電極群からなり、面状電子源の電極群と直
角方向に配置される。電子通過孔508は電子放出部5
06のほぼ鉛直上に設けられ、グリッド電極507を信
号電極、線電子源群を走査電極として、XYマトリック
ス駆動を行い画像を形成するものである。In this embodiment, the grid electrode 507 is composed of a plurality of line electrode groups and is arranged in the direction perpendicular to the electrode group of the planar electron source. The electron passage hole 508 is the electron emitting portion 5.
The grid electrode 507 is provided almost vertically above 06, and the XY matrix drive is performed using the grid electrode 507 as a signal electrode and the line electron source group as a scanning electrode to form an image.
【0074】フェースプレート513は透明なガラス板
511の上に蛍光体510が一様に塗布され、さらにそ
の上にメタルバック509を設けたものである。The face plate 513 is a transparent glass plate 511 to which a phosphor 510 is uniformly applied, and a metal back 509 is further provided thereon.
【0075】本実施例の画像形成装置に於いて、電極5
02と電極503に14Vの電圧を印加することにより
各電子放出部506から電子を放出させ、グリッド電極
507に適当な電圧を印加することにより電子を引き出
し蛍光体510に電子を衝突させた。尚、本画像形成装
置は、当然ながら真空度1×10-5torr〜1×10
-7torrの環境下に置かれ、蛍光体に500〜500
0Vの電圧を印加した。In the image forming apparatus of this embodiment, the electrode 5
02 and the electrode 503 were applied with a voltage of 14 V to emit electrons from each electron emitting portion 506, and by applying an appropriate voltage to the grid electrode 507, the electrons were extracted and collided with the phosphor 510. It should be noted that the present image forming apparatus naturally has a vacuum degree of 1 × 10 −5 torr to 1 × 10 5.
-It is placed under the environment of -7 torr, and the fluorescent substance is 500-500.
A voltage of 0V was applied.
【0076】本発明の特徴である被覆部材を設けた電子
放出素子を用いて形成した本実施例の画像形成装置と、
被覆部材を設けない同様の電子放出素子を用いて形成し
た従来の画像形成装置とを比較検討したところ、次のよ
うな結果が得られた。 (1)本実施例の画像形成装置は、各電子放出部から放
出される電流量が、従来装置に比べ2〜3倍増加し、極
めて明るい表示画像が得られた。 (2)本実施例の画像形成装置は、明るさのばらつき及
び各発光輝点のチラツキの少ない良好な表示画像が得ら
れた。 (3)本実施例の画像形成装置は、従来装置より明るい
表示画像が得られるにもかかわらず、消費電力は従来装
置とほぼ同等であった。An image forming apparatus of the present embodiment formed by using an electron-emitting device provided with a covering member which is a feature of the present invention,
As a result of comparative examination with a conventional image forming apparatus formed by using a similar electron-emitting device without a covering member, the following results were obtained. (1) In the image forming apparatus of the present embodiment, the amount of current emitted from each electron emitting portion is increased by 2 to 3 times compared with the conventional apparatus, and an extremely bright display image is obtained. (2) With the image forming apparatus of this embodiment, it is possible to obtain a good display image with less variation in brightness and less flicker in each emission bright spot. (3) Although the image forming apparatus of the present embodiment can obtain a brighter display image than the conventional apparatus, the power consumption is almost the same as that of the conventional apparatus.
【0077】以上のことから、本発明の電子放出素子を
用いた画像形成装置は、カラー画像、高精細画像を得る
のに好適に用いることができる。From the above, the image forming apparatus using the electron-emitting device of the present invention can be suitably used for obtaining a color image and a high definition image.
【0078】以上、本実施例は画像形成装置についての
み説明してきたが、電子ビーム応用装置としては、記録
装置,記憶装置,電子ビーム描画装置等の様々な装置が
あり、本発明は電子放出素子が複数配置された面状電子
源を用いた装置であれば同等の効果がある。Although the present embodiment has described only the image forming apparatus, the electron beam application apparatus includes various apparatuses such as a recording apparatus, a storage apparatus and an electron beam drawing apparatus. A device using a planar electron source in which a plurality of are arranged has the same effect.
【0079】[0079]
【発明の効果】以上説明したように、電子放出部を形成
する微粒子表面に被覆部材を付設した本発明の電子放出
素子及び、該素子を用いて構成した電子線発生装置並び
に画像形成装置は以下の効果を奏する。 (1)電子放出部を構成する微粒子の位置,配列等の制
御を行うことなく、電子放出量及び電子放出効率等の素
子特性を大幅に向上させることができる。 (2)放出電流の時間的変動(ゆらぎ)を低減すること
ができる。 (3)安定且つ再現性良い電子放出素子を提供でき、該
素子を複数面状に展開した電子線発生装置は、均一な電
子放出量が得られる。 (4)画像形成装置として、均一な発光輝度の画像表示
が得られる。 (5)画像形成装置として、低消費電力化が可能とな
る。As described above, the electron-emitting device of the present invention in which the coating member is attached to the surface of the fine particles forming the electron-emitting portion, the electron beam generating device and the image forming apparatus configured by using the device are as follows. Produce the effect of. (1) The device characteristics such as the electron emission amount and the electron emission efficiency can be significantly improved without controlling the position, arrangement, etc. of the fine particles forming the electron emitting portion. (2) The temporal fluctuation (fluctuation) of the emission current can be reduced. (3) It is possible to provide a stable and reproducible electron-emitting device, and the electron beam generator having the devices spread in a plurality of planes can obtain a uniform electron emission amount. (4) As an image forming apparatus, an image display with uniform emission brightness can be obtained. (5) It is possible to reduce the power consumption of the image forming apparatus.
【図1】本発明の表面伝導形電子放出素子の構成図であ
る。FIG. 1 is a configuration diagram of a surface conduction electron-emitting device of the present invention.
【図2】図1のA−A断面の概略図である。FIG. 2 is a schematic view of the AA cross section of FIG.
【図3】実施例1における本発明の電子放出素子の製造
工程を説明するための工程図である。FIG. 3 is a process drawing for explaining the manufacturing process of the electron-emitting device of the present invention in Embodiment 1.
【図4】実施例2で作製した本発明の電子放出素子の概
略図である。FIG. 4 is a schematic view of an electron-emitting device of the present invention manufactured in Example 2.
【図5】本発明の電子放出素子を用いた画像形成装置の
構成図である。FIG. 5 is a configuration diagram of an image forming apparatus using the electron-emitting device of the present invention.
【図6】従来の通電加熱によって作製された電子放出素
子の構成図である。FIG. 6 is a configuration diagram of an electron-emitting device manufactured by conventional electric heating.
【図7】従来の微粒子膜を通電処理することにより作製
された電子放出素子の構成図である。FIG. 7 is a configuration diagram of an electron-emitting device manufactured by subjecting a conventional fine particle film to electric conduction.
【図8】従来型電子源を用いた画像形成装置の構成図で
ある。FIG. 8 is a configuration diagram of an image forming apparatus using a conventional electron source.
11 素子形成基板 12,13 電極 14 電極間隔部 15 微粒子膜 16 電子放出部を形成する微粒子 17 被覆部材 11 Element Forming Substrate 12, 13 Electrode 14 Electrode Spacing Part 15 Fine Particle Film 16 Fine Particles Forming Electron Emission Part 17 Covering Member
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 一郎 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 鱸 英俊 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 浜元 康弘 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ichiro Nomura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Hidetoshi Haru 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Incorporated (72) Inventor Yasuhiro Hamamoto 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.
Claims (9)
る微粒子が分散配置された電子放出素子において、該微
粒子表面に、該微粒子に含有される元素よりも原子量の
大きな元素を含む被覆部材を有し、且つ、該被覆部材
が、該被覆部材を通過する電子の平均自由行程以上の厚
さを有することを特徴とする電子放出素子。1. In an electron-emitting device in which fine particles forming an electron-emitting portion are dispersedly arranged between electrodes on a substrate, the surface of the fine particles is coated with an element having an atomic weight larger than that of the elements contained in the fine particles. An electron-emitting device comprising a member, wherein the covering member has a thickness equal to or larger than a mean free path of electrons passing through the covering member.
る微粒子が分散配置された電子放出素子において、該微
粒子表面に、低仕事関数材料を含む被覆部材を有し、且
つ、該被覆部材が、該被覆部材を通過する電子の平均自
由行程以上の厚さを有することを特徴とする電子放出素
子。2. An electron-emitting device in which fine particles forming an electron-emitting portion are dispersedly arranged between electrodes on a substrate, and a coating member containing a low work function material is provided on the surface of the fine particles, and the coating is provided. An electron-emitting device characterized in that the member has a thickness equal to or larger than the mean free path of electrons passing through the covering member.
程以上で、且つ、300Å以上であることを特徴とする
請求項1又は2に記載の電子放出素子。3. The electron-emitting device according to claim 1, wherein the coating member has a thickness not less than the mean free path and not less than 300Å.
連続膜よりなることを特徴とする請求項1又は2に記載
の電子放出素子。4. The electron-emitting device according to claim 1, wherein the covering member is made of a discontinuous film composed of fine particles.
が、前記平均自由行程以上であることを特徴とする請求
項4記載の電子放出素子。5. The electron-emitting device according to claim 4, wherein the particle diameter of the fine particles forming the coating member is equal to or larger than the mean free path.
素子の複数と、該電子放出素子から放出される電子線を
情報信号に応じて変調する変調手段とを有することを特
徴とする電子線発生装置。6. A plurality of electron-emitting devices according to any one of claims 1 to 5, and a modulation means for modulating an electron beam emitted from the electron-emitting devices according to an information signal. Electron beam generator.
素子の複数と、該電子放出素子から放出される電子線を
情報信号に応じて変調する変調手段と、該電子線の照射
により画像を形成する画像形成部材とを有することを特
徴とする画像形成装置。7. A plurality of electron-emitting devices according to any one of claims 1 to 5, modulation means for modulating an electron beam emitted from the electron-emitting device according to an information signal, and irradiation with the electron beam. An image forming apparatus having an image forming member for forming an image.
により発光する発光体であることを特徴とする請求項7
記載の画像形成装置。8. The image forming member is a light-emitting body that emits light when irradiated with the electron beam.
The image forming apparatus described.
により発光するレッド、グリーン、ブルーの三原色発光
体であることを特徴とする請求項7記載の画像形成装
置。9. The image forming apparatus according to claim 7, wherein the image forming member is a three-primary-color light-emitting body of red, green, and blue that emits light when irradiated with the electron beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36135392A JPH06203742A (en) | 1992-12-29 | 1992-12-29 | Electron emitting element, electron beam generator and image forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36135392A JPH06203742A (en) | 1992-12-29 | 1992-12-29 | Electron emitting element, electron beam generator and image forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06203742A true JPH06203742A (en) | 1994-07-22 |
Family
ID=18473239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36135392A Pending JPH06203742A (en) | 1992-12-29 | 1992-12-29 | Electron emitting element, electron beam generator and image forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06203742A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0741402A3 (en) * | 1995-05-02 | 1997-11-26 | Philips Patentverwaltung GmbH | Electric discharge tubes or discharge lamps, flat panel display, low-temperature cathode and method for their fabrication |
US6184626B1 (en) | 1995-01-31 | 2001-02-06 | Canon Kabushiki Kaisha | Electron beam apparatus and method of driving the same |
CN100372047C (en) * | 2005-09-09 | 2008-02-27 | 清华大学 | A kind of thin film field emission display device and its field emission cathode preparation method |
-
1992
- 1992-12-29 JP JP36135392A patent/JPH06203742A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6184626B1 (en) | 1995-01-31 | 2001-02-06 | Canon Kabushiki Kaisha | Electron beam apparatus and method of driving the same |
EP0741402A3 (en) * | 1995-05-02 | 1997-11-26 | Philips Patentverwaltung GmbH | Electric discharge tubes or discharge lamps, flat panel display, low-temperature cathode and method for their fabrication |
CN100372047C (en) * | 2005-09-09 | 2008-02-27 | 清华大学 | A kind of thin film field emission display device and its field emission cathode preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3072795B2 (en) | Electron emitting element, electron beam generator and image forming apparatus using the element | |
US5470265A (en) | Multi-electron source, image-forming device using multi-electron source, and methods for preparing them | |
US6824437B2 (en) | Electron-emitting device, electron source, and manufacture method for image-forming apparatus | |
JP3072809B2 (en) | Electron emitting element, electron beam generator and image forming apparatus using the element | |
JP2946140B2 (en) | Electron emitting element, electron source, and method of manufacturing image forming apparatus | |
JP2854385B2 (en) | Electron emitting element, multi-electron source, and method of manufacturing image forming apparatus | |
JPH06203742A (en) | Electron emitting element, electron beam generator and image forming device | |
JPH06203741A (en) | Electron emitting element, electron beam generator and image forming device | |
JP2631007B2 (en) | Electron emitting element, method of manufacturing the same, and image forming apparatus using the element | |
JP3000467B2 (en) | Multi-electron source and image forming apparatus | |
JPH0547297A (en) | Display element | |
JPH06231678A (en) | Manufacture of electron emitting film and electron emitting element | |
JP2805326B2 (en) | Electron source and image forming apparatus using the same | |
JP2961477B2 (en) | Electron emitting element, electron beam generator, and method of manufacturing image forming apparatus | |
JP3198362B2 (en) | Electron emitting device and image forming apparatus | |
JP2923787B2 (en) | Electron emitting element, electron source and image forming apparatus using the same | |
JP2916807B2 (en) | Electron emitting element, electron source, image forming apparatus, and method of manufacturing them | |
JP2949639B2 (en) | Electron emitting element, electron source, image forming apparatus, and method of manufacturing them | |
JP3131752B2 (en) | Electron-emitting device, electron beam generator, image forming apparatus, and manufacturing method thereof | |
JPH0765708A (en) | Manufacture of electron emission element and image formng device | |
JP2961523B2 (en) | Electron emitting element, electron source and image forming apparatus | |
EP1032012B1 (en) | Electron-emitting device, electron source, and manufacture method for image-forming apparatus | |
JP2976134B2 (en) | Electron beam generator, image forming apparatus and recording apparatus using the same | |
JPH052984A (en) | Surface conductive electron emitting element, electron emission device, and image forming device | |
JP2961524B2 (en) | Electron emitting element, electron source and image forming apparatus |