JPH06202073A - Active matrix liquid crystal display device - Google Patents
Active matrix liquid crystal display deviceInfo
- Publication number
- JPH06202073A JPH06202073A JP34793492A JP34793492A JPH06202073A JP H06202073 A JPH06202073 A JP H06202073A JP 34793492 A JP34793492 A JP 34793492A JP 34793492 A JP34793492 A JP 34793492A JP H06202073 A JPH06202073 A JP H06202073A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- display device
- crystal display
- active element
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 127
- 239000011159 matrix material Substances 0.000 title claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 230000005684 electric field Effects 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims description 18
- 239000003990 capacitor Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 description 38
- 239000010408 film Substances 0.000 description 24
- 239000010410 layer Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000007547 defect Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 206010047571 Visual impairment Diseases 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000004988 Nematic liquid crystal Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
(57)【要約】
【目的】低コスト,視角特性が良好で、表示特性が良く
多階調表示が容易といった特徴を有するアクティブマト
リクス型液晶表示装置を得る。
【構成】m×n個のマトリクス状の画素と、画素内のア
クティブ素子と、所定電圧波形を印加する駆動手段と、
画素内に基板面に平行な電界を印加し、かつ、走査時の
信号配線の電位と隣接走査配線の電位の電位差により液
晶分子の配向状態を制御し光を変調し得る所定構造を有
する。
(57) [Summary] [Objective] To obtain an active matrix type liquid crystal display device having features such as low cost, good viewing angle characteristics, good display characteristics and easy multi-gradation display. [Structure] m × n matrix-shaped pixels, active elements in the pixels, and driving means for applying a predetermined voltage waveform,
The pixel has a predetermined structure capable of applying an electric field parallel to the surface of the substrate and controlling the alignment state of liquid crystal molecules by the potential difference between the potential of the signal wiring during scanning and the potential of the adjacent scanning wiring to modulate light.
Description
【0001】[0001]
【産業上の利用分野】本発明は、表示特性が良好かつ量
産性が良好で低コストのアクティブマトリクス型液晶表
示装置およびその駆動方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low cost active matrix type liquid crystal display device having good display characteristics, good mass productivity and a driving method thereof.
【0002】[0002]
【従来の技術】従来のアクティブマトリクス型液晶表示
装置では、液晶層を駆動する電極としては2枚の基板界
面上に形成し相対向させた透明電極を用いていた。これ
は、液晶に印加する電界の方向を基板界面にほぼ垂直な
方向とすることで動作する、ツイステッドネマティック
表示方式を採用していることによる。一方、液晶に印加
する電界の方向を基板界面にほぼ平行な方向とする方式
は、櫛型電極対を用いた方式が、例えば特開平1−12052
8 号により提案されている。2. Description of the Related Art In a conventional active matrix type liquid crystal display device, transparent electrodes, which are formed on the interface between two substrates and face each other, are used as electrodes for driving a liquid crystal layer. This is because a twisted nematic display method is adopted, which operates by making the direction of the electric field applied to the liquid crystal substantially perpendicular to the substrate interface. On the other hand, as a method for setting the direction of the electric field applied to the liquid crystal to be substantially parallel to the substrate interface, a method using a comb-shaped electrode pair is disclosed in, for example, Japanese Patent Laid-Open No. 12052/1991.
Proposed by Issue 8.
【0003】[0003]
【発明が解決しようとする課題】しかし、前記のツイス
テッドネマティック表示方式を用いた従来技術において
は、ITOに代表される透明電極を形成する為にスパッ
タ等の真空系製造設備を使用する必要があり、設備コス
トが巨額になっていた。また、真空系製造設備の使用
は、スループットの低下を引き起こし、このことが製造
コストを著しく引き上げている。また、一般に透明電極
はその表面に数10nm程度の凹凸があり、薄膜トラン
ジスタのような微細なアクティブ素子の加工を困難にし
ている。さらに、透明電極の凸部はしばしば離脱し電極
等の他の部分に混入し、点状或いは線状の表示欠陥を引
き起こし、歩留まりを低下させる要因の一つになってい
た。これらの為に、マーケットニーズに対応した低価格
の液晶表示装置を安定的に提供することが出来ずにい
た。また、前記の従来技術においては、画質面でも多く
の課題を有していた。特に、視角方向を変化させた際の
輝度変化が著しく、中間調表示を困難にしていた。更
に、従来の構成では、共通電極が必要であるため、それ
を形成するプロセスが必要であり、歩留まり,スループ
ットを低下させていた。また、従来の構成では、アクテ
ィブ素子の動作に起因する直流成分の発生は、純交流駆
動を必要とする液晶の駆動を妨げ、これによる輝度傾
斜,フリッカ,残像等の画質不良を引き起こし、アクテ
ィブ素子の特性のバラツキは、輝度のむらを引き起こし
ていた。However, in the prior art using the twisted nematic display system described above, it is necessary to use a vacuum-type manufacturing facility such as sputtering in order to form a transparent electrode typified by ITO. , The equipment cost was huge. Also, the use of vacuum-based manufacturing equipment causes a reduction in throughput, which significantly increases manufacturing costs. Further, in general, the transparent electrode has irregularities of about several tens of nm on its surface, which makes it difficult to process a fine active element such as a thin film transistor. Further, the convex portion of the transparent electrode often separates and mixes into other portions such as the electrode, which causes a dot-shaped or linear-shaped display defect, which is one of the factors that lower the yield. For these reasons, it has been impossible to stably provide a low-cost liquid crystal display device that meets market needs. Further, the above-mentioned conventional techniques have many problems in terms of image quality. In particular, the luminance changes significantly when the viewing angle direction is changed, making it difficult to display halftone. Furthermore, in the conventional structure, since the common electrode is required, a process for forming the common electrode is required, which lowers the yield and the throughput. Further, in the conventional configuration, the generation of the DC component due to the operation of the active element hinders the driving of the liquid crystal that requires pure AC driving, which causes image quality defects such as luminance inclination, flicker, and afterimage. The variation in the characteristics of (3) caused uneven brightness.
【0004】また、基板界面にほぼ平行な方向の電界を
液晶に印加する従来の公知技術においては、アクティブ
マトリクスを用いて液晶を駆動する技術は考案されてい
ない。Further, in the conventional publicly known technology for applying an electric field to the liquid crystal in a direction substantially parallel to the substrate interface, no technology for driving the liquid crystal using an active matrix has been devised.
【0005】本発明はこれらの課題を同時に解決するも
ので、本発明の目的は、第1に、透明電極がなくとも高
コントラスト、かつ、低価格の設備で高い歩留まりで量
産可能な低コストのアクティブマトリクス型液晶表示装
置を提供することにある。第2に、視角特性が良好で多
階調表示が容易であるアクティブマトリクス型液晶表示
装置を提供することにある。第3に、輝度傾斜,フリッ
カ,残像,むら等の画質不良のないアクティブマトリク
ス型液晶表示装置を提供することにある。更に、これら
の目的に加え、第4に、信号電圧の低電圧化ができ、低
消費電力で、低耐圧の安価なLSIを用いることができ
るアクティブマトリクス型液晶表示装置を提供すること
にある。The present invention solves these problems at the same time. The first object of the present invention is, at the low cost, high contrast without a transparent electrode and mass production with a low yield of a high yield. An object is to provide an active matrix type liquid crystal display device. Secondly, it is to provide an active matrix type liquid crystal display device having good viewing angle characteristics and easy multi-gradation display. Thirdly, it is to provide an active matrix type liquid crystal display device free from image quality defects such as luminance inclination, flicker, afterimage and unevenness. Further, in addition to these objects, a fourth object is to provide an active matrix type liquid crystal display device capable of lowering a signal voltage, low power consumption, and an inexpensive LSI having a low breakdown voltage.
【0006】[0006]
【課題を解決するための手段】前記目的を達成するため
に、本発明は、第1の装置として、少なくとも一方が透
明な一対の基板と、前記基板間に挟持された液晶組成物
層と、前記基板の一方に配設されたm本の走査配線及び
n本の信号配線と、m×n個のマトリクス状の画素と、
前記画素内に配設されたアクティブ素子及び容量素子
と、所定電圧波形を前記走査配線及び前記信号配線に印
加する駆動手段とを備えた液晶表示装置において、前記
画素には、前記信号配線のうち1本の信号配線Iと前記
走査配線のうち1本の走査配線IIが配設され、前記画素
には、前記液晶組成物層に対して主に前記基板面に平行
な電界を印加し、かつ、走査時の前記信号配線Iの電位
V1と前記走査配線IIの電位V2の電位差|V1−V2
|により、液晶分子の配向状態を制御し光を変調し得る
所定構造を有することを特徴とする液晶表示装置を構成
したものである。To achieve the above object, the present invention provides, as a first device, a pair of substrates, at least one of which is transparent, and a liquid crystal composition layer sandwiched between the substrates. M scan wirings and n signal wirings arranged on one side of the substrate, m × n matrix-shaped pixels,
In a liquid crystal display device including an active element and a capacitive element arranged in the pixel, and a driving unit that applies a predetermined voltage waveform to the scanning wiring and the signal wiring, in the pixel, among the signal wiring One signal wiring I and one scanning wiring II among the scanning wirings are arranged, and an electric field mainly applied to the liquid crystal composition layer in parallel to the substrate surface is applied to the pixel, and , The potential difference between the potential V1 of the signal wiring I and the potential V2 of the scanning wiring II at the time of scanning | V1-V2
With |, the liquid crystal display device is configured to have a predetermined structure capable of controlling the alignment state of liquid crystal molecules and modulating light.
【0007】第1の装置を含む第2の装置として、前記
画素には、前記信号配線Iに接続されたアクティブ素子
Aと、前記走査配線IIに接続されたアクティブ素子B
と、前記アクティブ素子Aに接続された画素電極と、前
記アクティブ素子Bに接続された対向電極を有し、前記
画素電極と前記対向電極の間の電界が主に前記基板面に
平行な電界である所定構造を有することを特徴とする液
晶表示装置を構成したものである。As a second device including the first device, an active element A connected to the signal wiring I and an active element B connected to the scanning wiring II are provided in the pixel.
And a pixel electrode connected to the active element A and a counter electrode connected to the active element B, and the electric field between the pixel electrode and the counter electrode is mainly an electric field parallel to the substrate surface. A liquid crystal display device characterized by having a certain predetermined structure.
【0008】第1の装置を含む第3の装置として、前記
画素には、前記信号配線Iに接続されたアクティブ素子
Aと、前記アクティブ素子Aと接続された画素電極と、
前記走査配線IIに接続されたアクティブ素子Bと、前記
アクティブ素子Bと接続された対向電極と、前記画素電
極と前記対向電極との間に容量素子を有し、前記画素電
極と前記対向電極の間の電界が主に前記基板面に平行な
電界である所定構造を有することを特徴とする液晶表示
装置を構成したものである。As a third device including the first device, the pixel includes an active element A connected to the signal line I, and a pixel electrode connected to the active element A.
An active element B connected to the scan line II, a counter electrode connected to the active element B, and a capacitive element between the pixel electrode and the counter electrode are provided. The liquid crystal display device is configured to have a predetermined structure in which an electric field between them is mainly an electric field parallel to the surface of the substrate.
【0009】第4の装置として、少なくとも一方が透明
な一対の基板と、前記基板間に挟持された液晶組成物層
と、前記基板の一方に配設されたm本の走査配線及びn
本の信号配線と、m×n個のマトリクス状の画素と、前
記画素に配設されたアクティブ素子および容量素子と、
所定電圧波形を前記走査配線及び前記信号配線に印加す
る駆動手段とを備え、前記液晶組成物層に対して主に前
記基板面に平行な電界を印加する所定構造を有すること
を特徴とする液晶表示装置において、前記所定構造が、
1本以上の細長い突起を持った櫛型の形状を持つ電極か
らなることを特徴とする液晶表示装置を構成したもので
ある。As a fourth device, a pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates, m scanning wirings and n arranged on one of the substrates.
Book signal wiring, m × n matrix-shaped pixels, active elements and capacitive elements arranged in the pixels,
A liquid crystal having a predetermined structure for applying a predetermined voltage waveform to the scanning wiring and the signal wiring, and for applying an electric field mainly parallel to the substrate surface to the liquid crystal composition layer. In the display device, the predetermined structure is
A liquid crystal display device is constituted by an electrode having a comb shape having one or more elongated protrusions.
【0010】第2の装置を含む第5の装置として、前記
画素が、前記信号配線に接続されたアクティブ素子A
と、前記走査配線IIに接続されたアクティブ素子Bと、
前記アクティブ素子Aに接続された画素電極と、前記ア
クティブ素子Bに接続された対向電極を有し、前記画素
電極と前記対向電極の間の電界が主に前記基板面に平行
な電界である所定構造を有する液晶表示装置において、
該走査配線Iの選択に供する電圧パルスIにほぼ同期し
て、前記信号配線を通じて、画素電極に電位1を与える
ための駆動手段と、前記走査配線IIを通して対向電極に
電位2を与える駆動手段を具備したものである。As a fifth device including the second device, an active element A in which the pixel is connected to the signal wiring is provided.
And an active element B connected to the scan line II,
A pixel electrode connected to the active element A and a counter electrode connected to the active element B are provided, and an electric field between the pixel electrode and the counter electrode is mainly an electric field parallel to the substrate surface. In a liquid crystal display device having a structure,
Driving means for applying the potential 1 to the pixel electrode through the signal wiring and driving means for applying the potential 2 to the counter electrode through the scanning wiring II are provided in synchronism with the voltage pulse I used for selecting the scanning wiring I. It is equipped.
【0011】第5の装置を含む第6の装置として、対向
電極に与える前記電位2の正負両極性の電圧差が、液晶
組成物層に電界を印加した時に(液晶表示装置の白表示
をする電圧VW )と(液晶表示装置の黒表示をする電圧
VBLK )との電圧差よりも大きいか或いは等しいことを
特徴とする液晶表示装置としたものである。As a sixth device including the fifth device, the positive and negative polarities of the potential 2 applied to the counter electrode cause a voltage difference when an electric field is applied to the liquid crystal composition layer (white display of the liquid crystal display device is performed. The liquid crystal display device is characterized in that it is greater than or equal to the voltage difference between the voltage V W ) and the voltage V BLK for displaying black in the liquid crystal display device.
【0012】第1の装置を含む第7の装置として、前記
走査配線Iにより選択される複数の前記画素が、前記走
査配線Iに隣接する第1の前記走査配線IIまたは、走査
配線Iに隣接する他の走査配線III に接続されたアクテ
ィブ素子Bと、前記信号配線に接続されたアクティブ素
子Aと、前記アクティブ素子Aに接続された画素電極
と、前記アクティブ素子Bに接続された対向電極を有
し、前記画素電極と前記対向電極の間の電界が主に前記
基板面に平行な電界である所定構造を有することを特徴
とする液晶表示装置としたものである。As a seventh device including the first device, the plurality of pixels selected by the scan wiring I are adjacent to the first scan wiring II adjacent to the scan wiring I or the scan wiring I. The active element B connected to the other scan wiring III, the active element A connected to the signal wiring, the pixel electrode connected to the active element A, and the counter electrode connected to the active element B. The liquid crystal display device has a predetermined structure in which the electric field between the pixel electrode and the counter electrode is mainly an electric field parallel to the substrate surface.
【0013】第7の装置を含む第8の装置として、前記
隣接する画素のアクティブ素子Bが走査配線Iの前後に
配置した走査配線IIまたは走査配線III に接続されてい
ることを特徴とする液晶表示装置としたものである。An eighth device including the seventh device is characterized in that the active element B of the adjacent pixel is connected to the scan wiring II or the scan wiring III arranged before and after the scan wiring I. It is a display device.
【0014】第7または第8の装置を含む第9の装置と
して、該走査配線Iにより選択される複数の前記画素
が、前記走査配線Iに隣接する第1の前記走査配線IIま
たは、走査配線Iに隣接する他の走査配線III に接続さ
れたアクティブ素子Bと、前記信号配線に接続されたア
クティブ素子Aと、前記アクティブ素子Aに接続された
画素電極と、前記アクティブ素子Bに接続された対向電
極を有し、前記画素電極と前記対向電極の間の電界が主
に前記基板面に平行な電界である所定構造を有する液晶
表示装置において、該走査配線Iの選択期間に該走査配
線Iの前後の走査配線IIまたは走査配線III に(液晶表
示装置の白表示をする電圧VW )と(液晶表示装置の黒
表示をする電圧VBLK )との電圧差を超えるか等しい電
位差を有する電圧パルスを印加するとともに、隣接画素
に印加する電界方向が互いに逆方向となる所定の電圧を
信号配線に印加することを特徴とする液晶表示装置とし
たものである。As a ninth device including the seventh or eighth device, a plurality of the pixels selected by the scanning wiring I have the first scanning wiring II adjacent to the scanning wiring I or the scanning wiring II. An active element B connected to another scan wiring III adjacent to I, an active element A connected to the signal wiring, a pixel electrode connected to the active element A, and an active element B connected to the active element B. In a liquid crystal display device having a counter electrode and having a predetermined structure in which the electric field between the pixel electrode and the counter electrode is mainly an electric field parallel to the substrate surface, the scan line I is selected during the selection period of the scan line I. A voltage having a potential difference which is greater than or equal to the voltage difference between (the voltage V W for displaying white on the liquid crystal display device) and (the voltage V BLK for displaying black on the liquid crystal display device) on the scanning line II or the scanning line III before and after pulse With applied, in which a liquid crystal display device characterized by applying a predetermined voltage to the electric field direction to be applied to adjacent pixels are opposite directions to each other to the signal line.
【0015】第1の装置を含む第10の装置として、少
なくとも一方が透明な一対の基板と、前記基板間に挟持
された液晶組成物層と、前記基板の一方に配設されたm
本の走査配線及びn本の信号配線と、m×n個のマトリ
クス状の画素と、前記画素内に配設されたアクティブ素
子及び第1の容量素子と、所定電圧波形を前記走査配線
及び前記信号配線に印加する駆動手段とを備えた液晶表
示装置において、前記画素が、前記信号配線に接続され
たアクティブ素子Aと、該走査配線Iに隣接する走査配
線IIに第2の容量素子を介して接続されたアクティブ素
子Bと、前記アクティブ素子Aに接続された画素電極
と、前記アクティブ素子Bに接続された対向電極を有
し、前記画素電極と前記対向電極の間の電界が主に前記
基板面に平行な電界である所定構造を有する液晶表示装
置としたものである。As a tenth device including the first device, a pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates, and m provided on one of the substrates.
Scanning lines and n signal lines, m × n pixels in a matrix, active elements and first capacitive elements arranged in the pixels, and a predetermined voltage waveform with the scanning lines and the In a liquid crystal display device including a driving unit that applies a signal to a signal line, the pixel includes an active element A connected to the signal line and a scan line II adjacent to the scan line I via a second capacitive element. Connected to the active element B, a pixel electrode connected to the active element A, and a counter electrode connected to the active element B. The electric field between the pixel electrode and the counter electrode is mainly The liquid crystal display device has a predetermined structure that is an electric field parallel to the substrate surface.
【0016】[0016]
【作用】次に本発明の作用を図17を用いて説明する。Next, the operation of the present invention will be described with reference to FIG.
【0017】図17(a),(b)は本発明の液晶パネル
内での液晶の動作を示す側断面を、図17(c),(d)
はその正面図を表す。図17ではアクティブ素子を省略
してある。また、本発明ではストライプ状の電極を構成
して複数の画素を形成するが、ここでは一画素の部分を
示した。電圧無印加時のセル側断面を図17(a)に、
その時の正面図を図17(c)に示す。透明な一対の基
板203の内側に線状の電極201,202が形成さ
れ、その上に配向制御膜204が塗布及び配向処理され
ている。これらの透明な一対の基板203の間には液晶
組成物が挟持されている。棒状の液晶分子205は、電
界無印加時にはストライプ状の電極の長手方向に対して
若干の角度、即ち45度≦|電界方向に対する界面近傍
での液晶分子長軸(光学軸)方向のなす角|<90度、
をもつように配向されている。上下界面上での液晶分子
配向方向はここでは平行を例に説明する。また、液晶組
成物の誘電異方性は正を想定している。次に、電界20
7を印加すると図17(b),(d)に示したように電
界方向に液晶分子がその向きを変える。偏光板206の
偏光透過軸を所定角度209に配置することで電界印加
によって光透過率を変えることが可能となる。このよう
に、本発明によれば透明電極がなくとも透過光のコント
ラスト比を与える表示が可能となる。17 (a) and 17 (b) are side sectional views showing the operation of the liquid crystal in the liquid crystal panel of the present invention.
Represents the front view. In FIG. 17, the active element is omitted. Further, in the present invention, a plurality of pixels are formed by forming a striped electrode, but only one pixel portion is shown here. FIG. 17 (a) shows a cross section of the cell when no voltage is applied.
A front view at that time is shown in FIG. Linear electrodes 201 and 202 are formed on the inner side of a pair of transparent substrates 203, and an alignment control film 204 is applied and aligned on the linear electrodes 201 and 202. A liquid crystal composition is sandwiched between the pair of transparent substrates 203. The rod-shaped liquid crystal molecules 205 have a slight angle with respect to the longitudinal direction of the striped electrode when no electric field is applied, that is, 45 ° ≦ | an angle formed by the liquid crystal molecule major axis (optical axis) direction near the interface with respect to the electric field direction. <90 degrees,
Are oriented so that The alignment direction of liquid crystal molecules on the upper and lower interfaces will be described here by taking parallel as an example. The dielectric anisotropy of the liquid crystal composition is assumed to be positive. Next, the electric field 20
When 7 is applied, the liquid crystal molecules change their directions in the direction of the electric field as shown in FIGS. 17 (b) and 17 (d). By arranging the polarization transmission axis of the polarizing plate 206 at a predetermined angle 209, the light transmittance can be changed by applying an electric field. Thus, according to the present invention, it is possible to provide a display that gives a contrast ratio of transmitted light without a transparent electrode.
【0018】コントラスト比を付与する具体的構成とし
ては、上下基板上の液晶分子配向がほぼ平行な状態を利
用したモード(複屈折位相差による干渉色を利用するの
で、ここでは複屈折モードと呼ぶ)と、上下基板上の液
晶分子配向方向が交差しセル内での分子配列がねじれた
状態を利用したモード(液晶組成物層内で偏光面が回転
する旋光性を利用するので、ここでは旋光性モードと呼
ぶ)とがある。複屈折モードでは、電圧印加により分子
長軸(光軸)方向が基板界面にほぼ平行なまま面内でそ
の方位を変え、所定角度に設定された偏光板の軸とのな
す角を変えて光透過率を変える。旋光性モードでも同様
に電圧印加により分子長軸方向の方位のみを変えるが、
こちらの場合はら線がほどけることによる旋光性の変化
を利用する。また、本発明の表示モードでは液晶分子の
長軸は基板と常にほぼ平行であり、立ち上がることがな
く、従って視角方向を変えた時の明るさの変化が小さい
ので、視角依存性がなく、視角特性が大幅に向上する。
本表示モードは従来のように電圧印加で複屈折位相差を
ほぼ0にすることで暗状態を得るものではなく、液晶分
子長軸と偏光板の軸(吸収あるいは透過軸)とのなす角
を変えるもので、根本的に異なる。従来のTN型のよう
に液晶分子長軸を基板界面に垂直に立ち上がらせる場合
だと、複屈折位相差が0となる視角方向は正面即ち基板
界面に垂直な方向のみであり、僅かでも傾斜すると複屈
折位相差が現れる。ノーマリオープン型では光が漏れ、
コントラスト比の低下や階調レベルの反転を引き起こ
す。As a concrete structure for imparting a contrast ratio, a mode utilizing a state in which the liquid crystal molecule orientations on the upper and lower substrates are substantially parallel (an interference color due to a birefringence phase difference is utilized, it is called a birefringence mode here). ) And a liquid crystal molecule alignment direction on the upper and lower substrates intersect and the molecular arrangement in the cell is twisted (the rotation of the polarization plane in the liquid crystal composition layer is used. There is a sex mode). In the birefringence mode, the direction of the molecular long axis (optical axis) is changed in the plane while the direction of the molecular long axis (optical axis) is almost parallel to the substrate interface by applying a voltage, and the angle formed by the axis of the polarizing plate set to a predetermined angle is changed. Change the transmittance. Even in the optical rotation mode, similarly, only the orientation in the long axis direction of the molecule is changed by applying a voltage,
In this case, the change in optical activity due to the unravel of the streak is used. Further, in the display mode of the present invention, the long axis of the liquid crystal molecule is always substantially parallel to the substrate and does not stand up, and therefore the change in brightness when the viewing angle direction is changed is small, so there is no viewing angle dependency and the viewing angle The characteristics are greatly improved.
In this display mode, the dark state is not obtained by making the birefringence phase difference almost zero by applying a voltage as in the conventional case, but the angle formed by the long axis of the liquid crystal molecule and the axis of the polarizing plate (absorption or transmission axis) is It changes and is fundamentally different. In the case of raising the liquid crystal molecule long axis perpendicularly to the substrate interface as in the conventional TN type, the viewing angle direction in which the birefringence phase difference becomes 0 is only the front direction, that is, the direction perpendicular to the substrate interface, and even if slightly inclined. Birefringence phase difference appears. Light leaks in the normally open type,
It causes a decrease in contrast ratio and inversion of gradation level.
【0019】更に、本発明の表示モードでは、主に基板
面に平行な電界207により透過率が変化し、電界20
7の強度Eは、電極201と電極202の間の距離dに
よって変わる。よって、電極201と電極202の間の
距離dのバラツキが明るさのバラツキを生み、問題とな
る。したがって、電極201と電極202の高いアライ
メント精度が要求される。2枚の基板をはり合わせるア
ライメント精度は、ホトマスクのアライメント精度より
2から3倍悪いので、電極201と電極202は、同一
基板内に形成しなければならない。しかし、電極201
または電極202のどちらかを共通電極として、薄膜トラ
ンジスタ素子を形成する基板と同一基板に形成すると、
配線や配線間の交差面積が増加し、走査配線、信号配線
との短絡不良の増加を招き、歩留まりの低下が懸念され
る。本発明の液晶表示装置の構成は、走査配線から共通
電極電位を与えることにより、共通電極を列毎にパネル
から引き出す必要がないので、配線数を増やすことがな
く、歩留まりが向上し、透明電極を用いないことと合わ
せて、さらに低コストの液晶表示装置を提供することが
可能になる。Further, in the display mode of the present invention, the transmittance changes mainly due to the electric field 207 parallel to the substrate surface, and the electric field 20
The intensity E of 7 depends on the distance d between the electrodes 201 and 202. Therefore, the variation in the distance d between the electrode 201 and the electrode 202 causes variation in brightness, which is a problem. Therefore, high alignment accuracy of the electrodes 201 and 202 is required. Since the alignment accuracy for laminating two substrates is two to three times worse than the alignment accuracy of the photomask, the electrodes 201 and 202 must be formed on the same substrate. However, the electrode 201
Alternatively, when one of the electrodes 202 is formed as a common electrode on the same substrate as the substrate on which the thin film transistor element is formed,
There is a concern that the wiring and the crossing area between the wirings increase, the short-circuit defects with the scanning wirings and the signal wirings increase, and the yield decreases. In the structure of the liquid crystal display device of the present invention, since the common electrode does not need to be drawn out from the panel for each column by applying the common electrode potential from the scanning wiring, the number of wiring is not increased, the yield is improved, and the transparent electrode is used. In addition to not using, it becomes possible to provide a liquid crystal display device at a lower cost.
【0020】更に、本発明の駆動法では、2つの薄膜ト
ランジスタ素子を用いて駆動するので、お互いの特性を
キャンセルでき、輝度傾斜,フリッカ,残像等の画質不
良を解消でき、表示特性が良好である。また、走査配線
には共通電位を与えるための電圧を重畳するものの、信
号配線については従来の映像信号をサンプルホールドし
て電圧を印加する方式や、デジタル画像データを電圧変
換して印加する方式を踏襲ですることができる。Furthermore, in the driving method of the present invention, since the two thin film transistor elements are used for driving, mutual characteristics can be canceled, image quality defects such as luminance gradient, flicker, and afterimage can be eliminated, and display characteristics are good. . Further, although a voltage for applying a common potential is superimposed on the scanning wiring, a conventional method for applying a voltage by sample-holding a video signal or a method for converting a digital image data into a voltage and applying the same to the signal wiring. You can follow it.
【0021】[0021]
【実施例】本発明を実施例により具体的に説明する。EXAMPLES The present invention will be specifically described with reference to examples.
【0022】〔実施例1〕基板としては厚みが1.1mm
で表面を研磨したガラス基板を2枚用いる。これらの基
板間に誘電率異方性Δεが正でその値が4.5であり、
複屈折Δnが0.072(589nm,20℃)のネマチッ
ク液晶組成物を挟む。ここでは、誘電率異方性Δεが正
の液晶を用いたが、負の液晶を用いてもよい。基板表面
に塗布したポリイミド系配向制御膜をラビング処理し
て、3.5 度のプレチルト角とする。上下界面上のラビ
ング方向は互いにほぼ平行で、かつ印加電界方向とのな
す角度を85度とした。上下基板のギャップは球形のポ
リマビーズを基板間に分散して挾持し、液晶封入状態で
4.5μmとした。よってΔn・dは0.324μmであ
る。2枚の偏光板でパネルを挾み、一方の偏光板の偏光
透過軸をラビング方向にほぼ平行(85°)とし、他方
をそれに直交(−5°)とした。これにより、ノーマリ
クローズ特性を得た。[Example 1] The substrate has a thickness of 1.1 mm.
Two glass substrates whose surfaces have been polished by are used. Dielectric anisotropy Δε is positive between these substrates and its value is 4.5,
A nematic liquid crystal composition having a birefringence Δn of 0.072 (589 nm, 20 ° C.) is sandwiched. Although a liquid crystal having a positive dielectric anisotropy Δε is used here, a negative liquid crystal may be used. The polyimide orientation control film applied on the substrate surface is rubbed to obtain a pretilt angle of 3.5 degrees. The rubbing directions on the upper and lower interfaces were substantially parallel to each other, and the angle formed with the direction of the applied electric field was 85 degrees. The gap between the upper and lower substrates was 4.5 μm when the spherical polymer beads were dispersed and sandwiched between the substrates and the liquid crystal was sealed. Therefore, Δn · d is 0.324 μm. The panel was sandwiched between two polarizing plates, and the polarization transmission axis of one polarizing plate was made substantially parallel (85 °) to the rubbing direction, and the other was orthogonal (−5 °) to it. As a result, normally closed characteristics were obtained.
【0023】一方の絶縁基板上に、図1のような画素を
構成した。画素の等価回路は図2のようになる。また、
図1のA−A断面図を図3に、B−B断面図を図4に、
C−C断面図を図5に示す。表示装置は、画素ピッチが
横方向80μm,縦方向240μmの画素を40(×3)
×30(即ち、m=120,n=30である。)配置し
たが、2000×2000画素程度の高精細表示装置ま
で適用可能である。水平方向に走査配線3,4を形成
し、走査配線と直交させ、垂直方向に信号配線1,2を
形成した。さらに、画素には、図3のA−A断面図に示
すような逆スタガ構造のアモルファスシリコン8aと図
示していない8bを用いた薄膜トランジスタ素子5aと
図示していない5bを形成した。本実施例では、アモル
ファスシリコン薄膜トランジスタ素子を形成し用いる
が、他にポリシリコン薄膜トランジスタ素子、シリコン
ウエハ上のMOS型トランジスタ、有機TFTまたはM
IM(Metal−Insulator−Metal)ダイオ−ド等の2端
子素子(厳密にはアクティブ素子ではないが、本発明で
はアクティブ素子とする)を用いてもよい。図1に示す
ように、画像に応じた信号電圧を薄膜トランジスタ素子
5aのドレイン電極9a(実際の駆動状態では、ソース
として働くこともあるが、本実施例では、信号配線およ
び次段のゲート配線に接続している電極をドレイン電極
と定義し、画素電極に接続しているまたは画素電極にな
っている電極をソース電極と定義する)に印加し、その
ソース電極7aとスルーホール21を介して信号電極2
3に接続した。信号電極23との電位差を与える対向電
極24の電圧を、次段の走査電極4からスルーホール2
2及び薄膜トランジスタ素子5bのドレイン電極9b,
ソース電極7bを介して与えた。また、図5のように、
信号電極23と対向電極24とゲート絶縁膜11を用い
て容量素子6を形成した。ここで、容量素子6は、信号
によるノイズを吸収することにより、ソース電極の電位
を定電位に保持するために設けている。この様に、1つ
の画素内に、2つの薄膜トランジスタ素子が設けられて
おり、図4に示すように、信号電極23と対向電極24
の間の電界方向Eが、主に基板面に平行または水平方向
成分を持つようにした。ここでは、2つの薄膜トランジ
スタ素子を用いたが、3つ以上の薄膜トランジスタ素子
を用いて冗長構成をとってもよい。同様に容量素子も2
つ以上用いても構わない。ここでは、2つの電極、すな
わち、信号電極23と対向電極24間の電位差で液晶層
の液晶分子の配向を制御するようにした。光は、信号電
極23と対向電極24の間を透過し、液晶層17に入
射,変調されるので、透光性のある画素電極(例えばI
TO等の透明電極)は特に設ける必要はなく、従来のア
クティブマトリックス型液晶表示装置の断面構造から、
2層の透明電極層をなくすことができ、更に信号配線と
同一層で形成することにより、大幅に工程を短縮するこ
とができる。また、一般にフォトマスクのアライメント
精度は対向する2枚のガラス基板間のアライメント精度
に比べて著しく高い。したがって、これらの構成要素は
両側の基板に分けて配置することもできるが、一方の基
板上に形成した方が望ましい。ここでは、信号電極23
と対向電極24間のアライメントがフォトマスクのみで
行われるため、液晶層に印加される電界Eのバラツキが
小さく抑制される。さらに、同一層で両ソース電極を形
成するので、信号電極23と対向電極24間の距離dの
バラツキは、5%以下に押さえることができた。また、
走査配線3,4はゲート電極も兼ねるようにし、タンタ
ル薄膜で形成した。信号配線1,2はドレイン電極も兼
ねるようにし、ソース電極7a,7bと同時に、チタン
薄膜で形成した。走査配線3,4及び信号配線1,2
は、特に材料の制約はなく、クロム,アルミニウム等で
もよいが、駆動LSIとの接続端子部での腐食を考慮す
ると、対腐食性の強い金属が望ましい。また走査配線
3,4には、電気抵抗の低い金属が望ましいので、走査
配線は2層以上の金属層で構成してもよい。信号配線と
走査配線の数は画素数をm×nとすると従来構成と同数
の信号配線がm本、走査配線については次段の走査配線
が薄膜トランジスタ素子5bのソース電極7bに電圧を
印加するため1本余分に必要なことからn+1本とな
る。さらに、薄膜トランジスタ素子5a,5b上には、
薄膜トランジスタ素子を保護するように窒化シリコンで
保護膜12を形成した。また、薄膜トランジスタ素子を
有する基板に相対向する基板(以下、対向基板と称す
る。)にストライプ状のR,G,B3色のカラーフィル
タ13を備えたが、モノクローム表示装置を構成すると
きには、このカラーフィルタ13不要である。カラーフ
ィルタ13の上には表面を平坦化する透明樹脂14を積
層した。透明樹脂14の材料としてはエポキシ樹脂を用
いた。更に、この透明樹脂14上と薄膜トランジスタ素
子を有する基板上にポリイミド系の配向制御膜16を塗
布した。平坦化膜14の上に配向制御膜として、別の膜
を形成せずに表面を直接ラビングしてもよい。この場
合、このエポキシ樹脂は平坦化と液晶分子の配向制御の
両方の機能を兼ね備えている。これにより、配向膜を塗
布する工程がなくなり、製造がより容易かつ短くなる。
一般に従来方式であるTN型では、配向制御膜に要求さ
れる特性が多岐にわたり、それら全てを満足する必要が
あり、そのためポリイミド等の一部の材料に限られてい
た。特に重要な特性は、傾き角である。しかし、本発明
の表示モードでは大きな傾き角を必要とせず、従って、
材料の選択幅が著しく改善される。同様に、薄膜トラン
ジスタを保護する保護膜12をエポキシ樹脂にし、ラビ
ング処理をすることもできる。また、配向不良領域の影
響によるコントラストの低下を解消するため、クロムを
用いて遮光膜15をガラス基板上に形成した。また遮光
膜15は、有機ポリマで形成すると更によい。なぜなら
ば、これにより、対抗基板上には一切導電性の物質は存
在しなくなるからである。本実施例の構成においては仮
に製造工程中に導電性の異物が混入したとしても、対向
基板を介しての電極間接触の可能性がなく、それによる
不良率がゼロに抑制される。したがって、配向膜の形
成,ラビング,液晶封入工程などのクリーン度の裕度が
広がり、製造工程の簡略化ができる。さらに遮光膜15
を黒色色素を含んだ有機ポリマで形成すると外光の反射
によるギラギラや、コントラスの低下が防止できる。さ
らに遮光膜15を、ストライプ状にレイアウトすること
によって、印刷プロセスを用いることができる。これに
より、更に製造工程を簡略化でき低コスト化が図れる。A pixel as shown in FIG. 1 was formed on one insulating substrate. The equivalent circuit of the pixel is as shown in FIG. Also,
A sectional view taken along the line AA of FIG. 1 is shown in FIG. 3, a sectional view taken along the line BB is shown in FIG.
A sectional view taken along the line CC is shown in FIG. The display device has 40 (× 3) pixels with a pixel pitch of 80 μm in the horizontal direction and 240 μm in the vertical direction.
The arrangement is x30 (that is, m = 120 and n = 30), but a high-definition display device of about 2000 × 2000 pixels can be applied. The scanning wirings 3 and 4 were formed in the horizontal direction, were made orthogonal to the scanning wiring, and the signal wirings 1 and 2 were formed in the vertical direction. Further, in the pixel, a thin film transistor element 5a using amorphous silicon 8a having an inverted stagger structure as shown in the AA cross-sectional view of FIG. 3 and 8b not shown and 5b not shown are formed. In the present embodiment, an amorphous silicon thin film transistor element is formed and used, but in addition, a polysilicon thin film transistor element, a MOS type transistor on a silicon wafer, an organic TFT or M
A two-terminal element such as an IM (Metal-Insulator-Metal) diode (strictly not an active element, but an active element in the present invention) may be used. As shown in FIG. 1, a signal voltage corresponding to an image is applied to the drain electrode 9a of the thin film transistor element 5a (in the actual driving state, it may act as a source, but in the present embodiment, it is applied to the signal wiring and the gate wiring of the next stage. The connected electrode is defined as the drain electrode, and the electrode connected to the pixel electrode or serving as the pixel electrode is defined as the source electrode), and a signal is applied via the source electrode 7a and the through hole 21. Electrode 2
Connected to 3. The voltage of the counter electrode 24, which gives a potential difference from the signal electrode 23, is applied from the scanning electrode 4 at the next stage to the through hole 2
2 and the drain electrode 9b of the thin film transistor element 5b,
It was given through the source electrode 7b. Also, as shown in FIG.
The capacitive element 6 was formed using the signal electrode 23, the counter electrode 24, and the gate insulating film 11. Here, the capacitive element 6 is provided to hold the potential of the source electrode at a constant potential by absorbing noise due to the signal. In this way, two thin film transistor elements are provided in one pixel, and as shown in FIG. 4, the signal electrode 23 and the counter electrode 24 are provided.
The electric field direction E between them has a component mainly parallel or horizontal to the substrate surface. Here, two thin film transistor elements are used, but a redundant configuration may be adopted by using three or more thin film transistor elements. Similarly, the capacitive element is 2
One or more may be used. Here, the orientation of the liquid crystal molecules in the liquid crystal layer is controlled by the potential difference between the two electrodes, that is, the signal electrode 23 and the counter electrode 24. Light is transmitted between the signal electrode 23 and the counter electrode 24, is incident on the liquid crystal layer 17, and is modulated, so that the pixel electrode (for example, I
It is not necessary to provide a transparent electrode such as TO) in particular, because of the sectional structure of the conventional active matrix type liquid crystal display device,
It is possible to eliminate the two transparent electrode layers, and by forming the transparent electrode layer in the same layer as the signal wiring, it is possible to significantly shorten the process. Further, generally, the alignment accuracy of the photomask is significantly higher than the alignment accuracy between two glass substrates facing each other. Therefore, although these constituent elements can be arranged separately on both substrates, it is preferable to form them on one substrate. Here, the signal electrode 23
Since the alignment between the counter electrode 24 and the counter electrode 24 is performed only by the photomask, the variation in the electric field E applied to the liquid crystal layer is suppressed to a small level. Furthermore, since both source electrodes are formed in the same layer, the variation in the distance d between the signal electrode 23 and the counter electrode 24 can be suppressed to 5% or less. Also,
The scanning wirings 3 and 4 also functioned as gate electrodes and were formed of a tantalum thin film. The signal wirings 1 and 2 also serve as drain electrodes, and were formed of a titanium thin film at the same time as the source electrodes 7a and 7b. Scan wiring 3, 4 and signal wiring 1, 2.
There is no particular restriction on the material, and chromium, aluminum, or the like may be used, but considering corrosion at the connection terminal portion with the drive LSI, a metal that is highly resistant to corrosion is desirable. Further, since it is desirable for the scanning wirings 3 and 4 to be a metal having a low electric resistance, the scanning wirings may be composed of two or more metal layers. As for the number of signal wirings and scanning wirings, assuming that the number of pixels is m × n, the same number of signal wirings as in the conventional configuration are m, and the scanning wiring of the next stage applies a voltage to the source electrode 7b of the thin film transistor element 5b. Since one extra piece is required, the number is n + 1. Furthermore, on the thin film transistor elements 5a and 5b,
A protective film 12 was formed of silicon nitride so as to protect the thin film transistor element. In addition, a striped R, G, B three-color filter 13 is provided on a substrate (hereinafter, referred to as a counter substrate) opposite to a substrate having a thin film transistor element. The filter 13 is unnecessary. A transparent resin 14 for flattening the surface is laminated on the color filter 13. An epoxy resin was used as the material of the transparent resin 14. Further, a polyimide-based orientation control film 16 was applied on the transparent resin 14 and the substrate having the thin film transistor element. As the orientation control film on the flattening film 14, the surface may be directly rubbed without forming another film. In this case, this epoxy resin has both functions of flattening and controlling the alignment of liquid crystal molecules. This eliminates the step of applying the alignment film, and makes the manufacturing easier and shorter.
Generally, in the TN type which is the conventional method, the characteristics required for the orientation control film are diverse, and it is necessary to satisfy all of them, so that it is limited to some materials such as polyimide. A particularly important characteristic is the tilt angle. However, the display mode of the present invention does not require a large tilt angle, and therefore,
The choice of materials is significantly improved. Similarly, the protective film 12 for protecting the thin film transistor may be made of epoxy resin and subjected to rubbing treatment. Further, in order to eliminate the decrease in contrast due to the influence of the defective alignment region, the light shielding film 15 was formed on the glass substrate using chromium. Further, it is more preferable that the light shielding film 15 is formed of an organic polymer. This is because, as a result, no electrically conductive substance is present on the counter substrate. In the configuration of the present embodiment, even if a conductive foreign substance is mixed in during the manufacturing process, there is no possibility of contact between electrodes via the counter substrate, and the defective rate due to this is suppressed to zero. Therefore, the margin of cleanliness such as alignment film formation, rubbing, and liquid crystal encapsulation process is widened, and the manufacturing process can be simplified. Furthermore, the light shielding film 15
When is formed of an organic polymer containing a black pigment, it is possible to prevent glare due to reflection of external light and a decrease in contrast. Further, by laying out the light shielding film 15 in a stripe shape, a printing process can be used. As a result, the manufacturing process can be further simplified and the cost can be reduced.
【0024】図6に示すように、以上のような液晶表示
パネルに駆動LSI163,164を含むTCP(Tape
Carrier Package)を接続し、駆動した。なお、信号側
駆動LSI64は、奇数列と偶数列に分割し、表示パネ
ルの上下に接続した方が、接続のピッチが広くなり、接
続が容易になるので、望ましい。As shown in FIG. 6, a TCP (Tape) including drive LSIs 163 and 164 in the above liquid crystal display panel.
Carrier Package) was connected and driven. It is desirable that the signal-side drive LSI 64 be divided into an odd-numbered column and an even-numbered column and be connected to the upper and lower sides of the display panel because the connection pitch becomes wider and the connection becomes easier.
【0025】次に駆動方式を述べる。図7に各電極に印
加される電圧の波形を示す。1行毎に、信号が書き込ま
れる線順次駆動を行っている。ゲート電圧31:Vgi は
1行分のTFTを選択してオン状態にする選択パルス4
1:Vgoni と1行前の対向電極に電位Vcを与える対向
電圧パルス51:Vgciにより構成される。i+1行目の
対向電圧パルス52:Vgci+1はi行目のゲート線の選
択パルス41:Vgoniにほぼ同期して印加する。このた
め、i行目のゲート線のゲート電圧31に選択パルス4
1が印加されると、薄膜トランジスタ素子5a,5bが
オンし、信号電圧61:Vds とi+1行目の対向電圧パ
ルス52:Vgci+1がそれぞれの薄膜トランジスタ素子
5a,5bを介して信号配線1及びゲート配線4に接続
されている蓄積容量17及び液晶素子6に書き込まれ
る。その行の書き込み期間(1H)が終わると、ゲート
電圧31:Vgi がオフレベルまで立ち下がり、薄膜トラ
ンジスタ素子5a,5bはオフ状態になり、書き込まれ
た電圧を保持するが、実際には、ゲート電圧31がオフ
レベルまで立ち下がる時に、薄膜トランジスタ素子5
a,5bの寄生容量によるカップリングノイズによる電
圧シフト76,77が起き、その電圧で保持される。こ
こで、液晶に印加される電圧は、薄膜トランジスタ素子
5a,5bの各々のソース電圧71,61の間の電圧7
8が、印加され、この電圧78によって、その画素の明
るさ(透過率)が決まる。Next, the driving method will be described. FIG. 7 shows the waveform of the voltage applied to each electrode. Line-sequential driving in which signals are written is performed for each row. Gate voltage 31: Vgi is a selection pulse 4 that selects one row of TFTs to turn them on
1: Vgoni and a counter voltage pulse 51: Vgci for applying the potential Vc to the counter electrode one row before. The counter voltage pulse 52: Vgci + 1 of the i + 1th row is applied almost in synchronization with the selection pulse 41: Vgoni of the gate line of the ith row. Therefore, the selection pulse 4 is applied to the gate voltage 31 of the i-th gate line.
When 1 is applied, the thin film transistor elements 5a and 5b are turned on, and the signal voltage 61: Vds and the counter voltage pulse 52: Vgci + 1 on the i + 1th row are applied to the signal wiring 1 and the gate wiring 4 through the respective thin film transistor elements 5a and 5b. The data is written in the storage capacitor 17 and the liquid crystal element 6 connected to. When the writing period (1H) of the row ends, the gate voltage 31: Vgi falls to the off level, the thin film transistor elements 5a and 5b are turned off, and the written voltage is held. When 31 falls to the off level, the thin film transistor element 5
The voltage shifts 76 and 77 due to the coupling noise due to the parasitic capacitances a and 5b occur, and are held at that voltage. Here, the voltage applied to the liquid crystal is the voltage between the source voltages 71 and 61 of the thin film transistor elements 5a and 5b.
8 is applied, and the voltage 78 determines the brightness (transmittance) of the pixel.
【0026】本実施例では透明電極が無いため、製造プ
ロセスが簡略化できかつ歩留まりも向上し、著しくコス
トが低減できる。特に、透明電極を形成するための設
備,工程が不要になり、製造設備投資額の大幅低減と工
程数の削減から、それによる低コスト化が可能となる。
また、次段走査配線から対向電極に電位を与えることに
より、対向電極に電圧を印加する特別の共通電極を必要
としないため、共通電極を形成する工程が削減でき、対
向基板には一切の電極を必要としなくなった。それによ
る共通電極との接触不良がゼロになり、歩留まりが向上
でき低コスト化が可能になる。In this embodiment, since there is no transparent electrode, the manufacturing process can be simplified, the yield can be improved, and the cost can be remarkably reduced. In particular, the equipment and process for forming the transparent electrode are not required, and the cost for manufacturing can be reduced because the investment cost for manufacturing equipment is greatly reduced and the number of processes is reduced.
In addition, since a special common electrode for applying a voltage to the counter electrode is not required by applying a potential to the counter electrode from the next-stage scanning wiring, the step of forming the common electrode can be reduced, and no electrodes are provided on the counter substrate. No longer needed. As a result, the contact failure with the common electrode becomes zero, the yield can be improved, and the cost can be reduced.
【0027】また、本実施例における液晶への印加電圧
と明るさの関係を示す電気光学特性を図8に示す。コン
トラスト比は7V駆動時に150以上となり、視角を左
右,上下に変えた場合のカーブの差は従来方式(比較例
1に示す)に比べて極めて小さく、視角を変化させても
表示特性はほとんど変化しなかった。また、液晶配向性
も良好で、配向不良ドメインは発生しなかった。FIG. 8 shows the electro-optical characteristics showing the relationship between the voltage applied to the liquid crystal and the brightness in this embodiment. The contrast ratio is 150 or more when driven by 7V, and the difference in the curves when the viewing angle is changed to the left and right and up and down is extremely small compared to the conventional method (shown in Comparative Example 1), and the display characteristics change almost even when the viewing angle is changed. I didn't. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.
【0028】さらに、従来の駆動方法で、薄膜トランジ
スタ素子をオン状態からオフ状態に切り換える際に、薄
膜トランジスタ素子の寄生容量を通して受ける電圧シフ
ト76,77によって発生する液晶印加電圧の直流成分
は、本実施例では、2つの薄膜トランジスタ素子で互い
にキャンセルするので発生しない。したがって、従来共
通電極で補正していた直流成分の補正をすることなく、
液晶の交流駆動をすることができることから、フリッカ
が発生しなかった。同様に、直流成分による残像も確認
できず、輝度傾斜も目立たなかった。更に、MIMダイ
オード等の2端子素子を用いる場合は、素子のしきい値
のバラツキによる輝度むらなどの画質不良も同様に2つ
の素子でキャンセルするので、輝度むらが解消される。Further, in the conventional driving method, when the thin film transistor element is switched from the on state to the off state, the DC component of the liquid crystal applied voltage generated by the voltage shifts 76 and 77 received through the parasitic capacitance of the thin film transistor element is the present embodiment. Does not occur because the two thin film transistor elements cancel each other. Therefore, without correcting the DC component that was conventionally corrected by the common electrode,
Since the liquid crystal can be driven by alternating current, flicker did not occur. Similarly, an afterimage due to a DC component could not be confirmed, and the brightness gradient was not noticeable. Furthermore, when a two-terminal element such as an MIM diode is used, image quality defects such as uneven brightness due to variations in the threshold value of the element are similarly canceled by the two elements, so uneven brightness is eliminated.
【0029】〔比較例〕従来方式であるツイステッドネ
マチック(TN)型を比較例とする。実施例1に比べ透
明電極があるため、構造が複雑かつ製造工程が長い。ネ
マチック液晶組成物としては、実施例1と同一の誘電異
方性Δεが正でその値が4.5 で、屈折率異方性Δnが
0.072 (589nm,20℃)のものを用い、ギャ
ップは7.3μm、ツイスト角は90度とした。よって
Δn・dは0.526μmである。Comparative Example A conventional twisted nematic (TN) type is used as a comparative example. Since the transparent electrode is provided as compared with the first embodiment, the structure is complicated and the manufacturing process is long. As the nematic liquid crystal composition, one having the same dielectric anisotropy Δε as in Example 1 and a positive value of 4.5 and a refractive index anisotropy Δn of 0.072 (589 nm, 20 ° C.) was used. The gap was 7.3 μm and the twist angle was 90 degrees. Therefore, Δn · d is 0.526 μm.
【0030】電気光学特性を図9に示す。視角方向で激
しくカーブが変化した。また、薄膜トランジスタの隣接
部の断差構造のある付近で、周辺部とは液晶分子の配向
方向が異なる配向不良ドメインが生じた。更に共通電極
では、直流成分をキャンセルすることができず、フリッ
カ,残像,輝度傾斜が発生した。The electro-optical characteristics are shown in FIG. The curve changed drastically in the viewing direction. In addition, an alignment defect domain in which the alignment direction of liquid crystal molecules was different from that in the peripheral portion was generated in the vicinity of the gap structure in the adjacent portion of the thin film transistor. Furthermore, in the common electrode, the DC component cannot be canceled, and flicker, an afterimage, and a brightness gradient occur.
【0031】〔実施例2〕一方の絶縁基板上に、図10
のような画素を構成した。本実施例は画素の等価回路、
画素の縦構造および駆動方法が、実施例1の図2から図
5及び図7と同様であるので省略する。[Embodiment 2] FIG.
Pixels such as This embodiment is a pixel equivalent circuit,
Since the vertical structure of the pixel and the driving method are the same as those in FIGS. 2 to 5 and 7 of the first embodiment, description thereof will be omitted.
【0032】図10に示すように、本実施例は画素電極
23及び対向電極24を櫛型構成とした点が異なる。電
界Eを印加する両電極間の距離が長いと有効に液晶に電
界が印加されないため、液晶のしきい値電圧が上がる。
両電極23及び24を櫛型構造とし、互いに噛み合うよ
うな配置にすることにより、電極間距離を第1実施例の
約1/3に縮小することができた。これにより、液晶に
かかる電界が約3倍になり、その結果実施例1に比べて
しきい値電圧及び応答時間のいずれもが短縮された。
尚、明るさが総変化量の10%変化する電圧(V10と定
義する)をしきい値電圧と定義すると、実施例1に於い
て9.5ボルトであったものが5.8ボルトになった。ま
た、応答時間は、0ボルトの電圧と明るさが総変化量の
90%変化する電圧(V90と定義する)の間でオン−オ
フのスイッチングをしその時の応答時間(tON+
tOFF )を測定したところ、実施例1で650msであ
ったものが140msに短縮された。尚、ここでtON,
tOFF はいずれも動的な輝度変化の総量に対して90%
変化するまでの時間を表す。As shown in FIG. 10, this embodiment is different in that the pixel electrode 23 and the counter electrode 24 have a comb structure. If the distance between both electrodes to which the electric field E is applied is long, the electric field is not effectively applied to the liquid crystal, and the threshold voltage of the liquid crystal rises.
By forming both electrodes 23 and 24 in a comb structure and arranging them so that they mesh with each other, the inter-electrode distance could be reduced to about 1/3 of that in the first embodiment. As a result, the electric field applied to the liquid crystal was tripled, and as a result, both the threshold voltage and the response time were shortened as compared with the first embodiment.
When the voltage at which the brightness changes by 10% of the total change amount (defined as V 10 ) is defined as the threshold voltage, what is 9.5 V in the first embodiment is 5.8 V. became. Further, the response time is such that the on-off switching is performed between a voltage of 0 V and a voltage (defined as V 90 ) at which the brightness changes by 90% of the total change amount, and the response time (t ON +
When t OFF ) was measured, what was 650 ms in Example 1 was shortened to 140 ms. Here, t ON ,
90% of the total amount of dynamic brightness change for t OFF
It represents the time until it changes.
【0033】以上のように本実施例では、実施例1およ
び実施例2の効果に加え、実施例1に比べてしきい値電
圧及び応答時間のいずれもが短縮された。As described above, in this embodiment, in addition to the effects of the first and second embodiments, both the threshold voltage and the response time are shortened as compared with the first embodiment.
【0034】〔実施例3〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。[Third Embodiment] The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.
【0035】図11に本実施例の画素平面図を、図12
にその等価回路図を示す。対向電極24に電位を与える
薄膜トランジスタ素子5aのドレイン電極と次段の走査
配線4を容量素子101を介して接続した。また、信号
によるノイズを除去する目的で信号電極23と対向電極
24の間に接続した容量素子6を二つの容量素子6aと
6bの直列接続により構成することにより、実施例1及
び実施例2に必要であったスルーホールをすべて取り除
くことができた。これにより微細加工の必要な画素内に
おいて、層間絶縁膜におけるパターニングや穴あけとい
った加工処理が不要となり、絶縁膜加工の不良による異
層間のショートや接続不良がなく、しかも表示に無関係
なスルーホール領域を低減できることによる開口率の向
上による高品質の液晶表示装置を実現できる。FIG. 11 is a plan view of a pixel of this embodiment, and FIG.
Shows the equivalent circuit diagram. The drain electrode of the thin film transistor element 5 a that applies a potential to the counter electrode 24 was connected to the scanning wiring 4 in the next stage via the capacitive element 101. In addition, by configuring the capacitive element 6 connected between the signal electrode 23 and the counter electrode 24 for the purpose of removing noise due to a signal by connecting two capacitive elements 6a and 6b in series, the first and second exemplary embodiments can be obtained. We were able to remove all the required through holes. This eliminates the need for processing such as patterning and drilling in the interlayer insulating film in pixels that require fine processing, eliminating short-circuiting or connection failure between different layers due to defective insulating film processing, and creating a through-hole area unrelated to display. It is possible to realize a high quality liquid crystal display device by improving the aperture ratio due to the reduction.
【0036】容量結合により対向電極24に電位を与え
た場合、図12に示すごとく、その電位は容量素子10
1と液晶容量17と容量素子6a,6bの合成容量の比
により対向電極24の電位が決定される。信号電極23
の電圧をVds 、一方、次段の走査配線の電圧をVgc ,対
向電極24の電圧をVc,液晶容量17と容量素子6
a,6bの容量値をそれぞれC17,C6a及びC6
b、これらの合成容量値をC102,容量素子101の
容量値をC101とすると信号電極23と対向電極24
間の液晶容量は非常に小さいので、When a potential is applied to the counter electrode 24 by capacitive coupling, as shown in FIG.
The potential of the counter electrode 24 is determined by the ratio of 1 to the liquid crystal capacitance 17 and the combined capacitance of the capacitance elements 6a and 6b. Signal electrode 23
, Vds, the voltage of the scanning wiring of the next stage is Vgc, the voltage of the counter electrode 24 is Vc, the liquid crystal capacitance 17 and the capacitive element 6
The capacitance values of a and 6b are C17, C6a and C6, respectively.
b, where the combined capacitance value of these is C102 and the capacitance value of the capacitive element 101 is C101, the signal electrode 23 and the counter electrode 24
Since the liquid crystal capacity between is very small,
【0037】[0037]
【数1】 [Equation 1]
【0038】液晶に印加される電圧はThe voltage applied to the liquid crystal is
【0039】[0039]
【数2】 [Equation 2]
【0040】となる。It becomes
【0041】従って、容量素子101の容量値C101
が合成容量C102よりも十分大きければ、液晶を駆動
するに十分な電圧を印加することができるし、2〜3倍
であっても、次段の走査配線の電圧振幅が25〜33%
大きくなるだけで表示特性には何ら影響を与えることが
ない。Therefore, the capacitance value C101 of the capacitive element 101
Is sufficiently larger than the composite capacitance C102, a sufficient voltage can be applied to drive the liquid crystal, and even if the voltage is 2 to 3 times, the voltage amplitude of the scanning wiring in the next stage is 25 to 33%.
The display characteristics are not affected at all by only increasing the size.
【0042】本実施例によれば、容量結合により対向電
極の電圧を与えるので、層間絶縁膜におけるパターニン
グや穴あけといった加工処理が不要となり、表示に無関
係な領域を低減できることによる開口率の向上と、絶縁
膜加工の不良による欠陥の少ない高品質の液晶表示装置
を実現できる。According to the present embodiment, since the voltage of the counter electrode is applied by capacitive coupling, processing such as patterning and drilling in the interlayer insulating film becomes unnecessary, and the area unrelated to the display can be reduced, and the aperture ratio can be improved. It is possible to realize a high-quality liquid crystal display device with few defects due to defective insulation film processing.
【0043】〔実施例4〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。[Embodiment 4] The configuration of this embodiment is the same as that of the embodiment 1 except for the following requirements.
【0044】駆動波形を図13に示す。画素構成及び等
価回路は図1及び図2と同一であるが、ゲート電圧3
2:Vgi +1の内、対向電圧パルス52:Vgci+1を1
行毎にVccを中心として極性反転をした点が特徴であ
る。液晶電圧62は信号電圧61と対向電圧52:Vgci
+1の差電圧であるから、選択行の次段のゲートの対向
電圧パルス52を行毎に極性反転することにより、対向
電圧パルスを基準として液晶の書き込み極性が決まるの
で、液晶の行毎反転駆動による低電圧駆動を実現でき
る。対向電圧52の電圧振幅を適当に選ぶとともに、信
号電圧と対向電圧の中心値をほぼ等しくすることによ
り、信号電圧の振幅を最小化することができる。本実施
例では、このように駆動条件を選択することにより、信
号側駆動素子の低電圧化と行毎極性反転によるフリッカ
低減が実現できることから、高画質表示に加えて、低電
圧化による液晶表示装置全体の低電力化及び駆動素子の
低価格化が図られ、可搬性の高い普及型のパーソナルコ
ンピュータや多機能端末装置を実現できる。The drive waveform is shown in FIG. The pixel configuration and the equivalent circuit are the same as those in FIGS. 1 and 2, but the gate voltage is 3
2: Counter voltage pulse 52: Vgci + 1 of 1 out of Vgi + 1
The feature is that the polarity is inverted centering on Vcc for each row. The liquid crystal voltage 62 is the signal voltage 61 and the counter voltage 52: Vgci.
Since the differential voltage is +1, the polarity of the counter voltage pulse 52 of the gate at the next stage of the selected row is inverted for each row, and the write polarity of the liquid crystal is determined with the counter voltage pulse as a reference. Thus, low voltage driving can be realized. The amplitude of the signal voltage can be minimized by appropriately selecting the voltage amplitude of the counter voltage 52 and making the center values of the signal voltage and the counter voltage substantially equal. In this embodiment, by selecting the driving conditions in this way, it is possible to reduce the voltage of the signal side driving element and reduce the flicker by reversing the polarity every row. Therefore, in addition to the high image quality display, the liquid crystal display by the low voltage is displayed. The power consumption of the entire device and the cost of the driving element are reduced, and a highly portable personal computer or multifunctional terminal device can be realized.
【0045】〔実施例5〕本実施例の構成は下記の要件
を除けば、実施例4と同一である。[Embodiment 5] The construction of this embodiment is the same as that of Embodiment 4 except for the following requirements.
【0046】図14に本実施例の2行2列分の画素平面
図を、図15に等価回路図を、図16にその駆動波形を
示す。表示装置全体はこの画素配置を繰り返すことによ
り構成する。画素の基本構成は図1の第1実施例と同様
であるが、対向電極24の電位を与える走査配線との接
続を、1列毎に上下の走査配線4aおよび4bに接続す
るとともに、駆動方式としては、実施例4の低電圧駆動
を基本に、走査配線3選択時に上下の走査配線4aおよ
び4bに実施例4において1行毎に極性反転して加えて
いた2種類の対向電圧を1列毎に印加する点が特徴であ
る。FIG. 14 shows a pixel plan view of 2 rows by 2 columns of this embodiment, FIG. 15 shows an equivalent circuit diagram, and FIG. 16 shows its drive waveform. The entire display device is constructed by repeating this pixel arrangement. The basic structure of the pixel is the same as that of the first embodiment shown in FIG. 1, but the connection with the scanning wiring for applying the potential of the counter electrode 24 is connected to the upper and lower scanning wirings 4a and 4b for each column, and the driving method is used. Based on the low voltage driving of the fourth embodiment, two types of counter voltages, which are applied to the upper and lower scanning wirings 4a and 4b by reversing the polarity for each row in the fourth embodiment, are applied to one column. The feature is that it is applied every time.
【0047】本実施例によれば、液晶への書き込み極性
を列毎に反転させることが可能で、ウィンドー等のパタ
ーンを表示したときに発生しやすい横方向の線状のノイ
ズ(横スミア)をゲート配線上でクロストーク電流を逆
極性の信号電圧を書き込むことによりキャンセルするこ
とで防止すると同時に、信号電圧の低電圧化を実現でき
る。さらに、1行毎に極性反転することにより、縦方向
のスミアも同時に防止することが可能で、高画質低電圧
駆動を実現できる。According to the present embodiment, it is possible to invert the writing polarity to the liquid crystal for each column, so that the horizontal linear noise (horizontal smear) which is likely to occur when a pattern such as a window is displayed. It is possible to prevent the crosstalk current by canceling the crosstalk current by writing a signal voltage of opposite polarity on the gate wiring, and at the same time, it is possible to reduce the signal voltage. Further, by reversing the polarity for each row, smear in the vertical direction can be prevented at the same time, and high image quality and low voltage driving can be realized.
【0048】本実施例によれば、ゲート配線上の負荷が
多少増大しても、ゲート配線上でクロストーク電流を逆
極性の信号電圧を書き込むことによりキャンセルするこ
とができるので、高負荷駆動や高精細の表示装置におい
ても、スミアの発生の無い高品位の表示装置を低電力で
実現することができる。According to the present embodiment, even if the load on the gate wiring is increased to some extent, the crosstalk current can be canceled by writing a signal voltage of reverse polarity on the gate wiring. Even in a high-definition display device, a high-quality display device without smear can be realized with low power consumption.
【0049】[0049]
【発明の効果】以上詳述したように、本発明によれば、
画素電極は透明である必要がなく、導電性の高い不透明
な金属電極を用いることができ、低価格の設備で高い歩
留まりで量産可能な低価格のアクティブマトリクス型液
晶表示装置が得られる。また、対向基板側にコモン電極
を形成する必要がなく、コモン電極の形成にまつわる工
程を削減またはコモン電極の形成にまつわる歩留まり低
下を解消でき、低価格の設備で高い歩留まりで量産可能
な低価格のアクティブマトリクス型液晶表示装置が得ら
れる。更に、視角特性が良好で多階調表示が容易である
アクティブマトリクス型液晶表示装置も得られる。更
に、信号電圧と対向電圧の差を利用することによって、
2つの薄膜トランジスタ素子を1画素に利用することに
よって、薄膜トランジスタ素子の特性に関する電圧変動
をキャンセルでき、輝度傾斜,残像,フリッカ等の画質
不良のない高画質のアクティブマトリクス型液晶表示装
置が得られる。更に、低電圧かつ低消費電力のアクティ
ブマトリクス型液晶表示装置も同時に得られる。As described in detail above, according to the present invention,
The pixel electrode does not need to be transparent, an opaque metal electrode having high conductivity can be used, and a low-priced active matrix liquid crystal display device that can be mass-produced with a low yield by a high yield can be obtained. In addition, since it is not necessary to form a common electrode on the counter substrate side, it is possible to reduce the steps involved in forming the common electrode or eliminate the yield loss associated with the formation of the common electrode. A matrix type liquid crystal display device can be obtained. Further, it is possible to obtain an active matrix type liquid crystal display device having good viewing angle characteristics and easy multi-gradation display. Furthermore, by utilizing the difference between the signal voltage and the counter voltage,
By using two thin film transistor elements for one pixel, it is possible to cancel the voltage fluctuation relating to the characteristics of the thin film transistor element, and obtain a high image quality active matrix type liquid crystal display device without image quality defects such as luminance gradient, afterimage and flicker. Further, an active matrix type liquid crystal display device of low voltage and low power consumption can be obtained at the same time.
【図1】本発明の実施例1の画素部の構成を示す図。FIG. 1 is a diagram showing a configuration of a pixel portion according to a first embodiment of the present invention.
【図2】実施例1の画素構成の等価回路を示す図。FIG. 2 is a diagram showing an equivalent circuit of the pixel configuration of the first embodiment.
【図3】実施例1の画素構成のA線における断面図を示
す図。FIG. 3 is a diagram showing a cross-sectional view taken along line A of the pixel configuration of the first embodiment.
【図4】実施例1の画素構成のB線における断面図を示
す図。FIG. 4 is a diagram showing a cross-sectional view taken along line B of the pixel configuration according to the first exemplary embodiment.
【図5】実施例1の画素構成のC線における断面図を示
す図。FIG. 5 is a diagram showing a cross-sectional view taken along the line C of the pixel configuration of the first embodiment.
【図6】本発明の液晶表示装置の概略図。FIG. 6 is a schematic view of a liquid crystal display device of the present invention.
【図7】実施例1の各電極に印加される電圧波形を示す
図。FIG. 7 is a diagram showing a voltage waveform applied to each electrode of the first embodiment.
【図8】本発明の液晶表示装置の視角依存性を示す図FIG. 8 is a diagram showing the viewing angle dependence of the liquid crystal display device of the present invention.
【図9】従来の液晶表示装置の視角依存性を示す図。FIG. 9 is a diagram showing the viewing angle dependence of a conventional liquid crystal display device.
【図10】本発明の実施例2の画素部の構成を示す図。FIG. 10 is a diagram showing a configuration of a pixel portion according to a second embodiment of the present invention.
【図11】本発明の実施例3の画素部の構成を示す図。FIG. 11 is a diagram showing a configuration of a pixel portion according to a third embodiment of the present invention.
【図12】本発明の実施例3の等価回路を示す図。FIG. 12 is a diagram showing an equivalent circuit according to a third embodiment of the present invention.
【図13】本発明の実施例4の駆動波形を示す図。FIG. 13 is a diagram showing drive waveforms according to the fourth embodiment of the present invention.
【図14】本発明の実施例5の画素部の構成を示す図。FIG. 14 is a diagram showing a configuration of a pixel portion according to a fifth embodiment of the present invention.
【図15】本発明の実施例5の等価回路を示す図。FIG. 15 is a diagram showing an equivalent circuit of a fifth embodiment of the present invention.
【図16】本発明の実施例5の駆動波形を示す図。FIG. 16 is a diagram showing drive waveforms according to the fifth embodiment of the present invention.
【図17】本発明の液晶表示装置における液晶動作を示
す図。FIG. 17 is a diagram showing a liquid crystal operation in the liquid crystal display device of the present invention.
1…j列目の信号配線、2…(j+1)列目の信号配
線、3…i行目の走査配線、4…(i−1)行目の走査
配線、5a…一方の薄膜トランジスタ素子、5b…他方
の薄膜トランジスタ素子、6a…一方の容量素子、6b
…一方の容量素子、7a…一方の薄膜トランジスタ素子
のソース電極、7a…他方の薄膜トランジスタ素子のソ
ース電極、8a,8b…アモルファスシリコン、9…液
晶層、11…ゲート絶縁膜、12…保護膜、13…カラ
ーフィルタ、14…平坦化膜、15…遮光層、16…配
向膜、61…他方の薄膜トランジスタ素子のソース電圧
波形、71…一方の薄膜トランジスタ素子のソース電圧
波形、76,77…電圧シフト、78…液晶印加電圧、
161…薄膜トランジスタ素子を有する基板、162…
対向基板、163…走査側駆動LSI、164…信号側
駆動LSI、165…コントロール回路。1 ... jth column signal wiring, 2 ... (j + 1) th column signal wiring, 3 ... i row scanning wiring, 4 ... (i-1) row scanning wiring, 5a ... one thin film transistor element, 5b ... the other thin film transistor element, 6a ... the one capacitor element, 6b
One capacitance element, 7a ... Source electrode of one thin film transistor element, 7a ... Source electrode of the other thin film transistor element, 8a, 8b ... Amorphous silicon, 9 ... Liquid crystal layer, 11 ... Gate insulating film, 12 ... Protective film, 13 ... color filter, 14 ... flattening film, 15 ... light shielding layer, 16 ... alignment film, 61 ... source voltage waveform of the other thin film transistor element, 71 ... source voltage waveform of one thin film transistor element, 76, 77 ... voltage shift, 78 … Liquid crystal applied voltage,
161 ... Substrate having thin film transistor element, 162 ...
Counter substrate, 163 ... Scan side drive LSI, 164 ... Signal side drive LSI, 165 ... Control circuit.
Claims (9)
記基板間に挟持された液晶組成物層と、前記基板の一方
に配設されたm本の走査配線及びn本の信号配線と、m
×n個のマトリクス状の画素と、前記画素内に配設され
たアクティブ素子及び容量素子と、所定電圧波形を前記
走査配線及び前記信号配線に印加する駆動手段とを備え
た液晶表示装置において、 前記画素には、前記液晶組成物層に対して主に前記基板
面に平行な電界を印加し、かつ、走査時の前記信号配線
の電位V1と該走査配線Iに隣接するいずれか一方の走
査配線IIの電位V2の電位差|V1−V2|を画素内に
設けた略並行な電極間に印加することにより、液晶分子
の配向状態を制御し光を変調し得る所定構造を有するこ
とを特徴とする液晶表示装置。1. A pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates, m scanning wirings and n signal wirings disposed on one of the substrates, m
A liquid crystal display device comprising: × n matrix-shaped pixels, active elements and capacitive elements arranged in the pixels, and driving means for applying a predetermined voltage waveform to the scanning wiring and the signal wiring, An electric field mainly applied to the liquid crystal composition layer in parallel to the substrate surface is applied to the pixel, and either one of the potential V1 of the signal line at the time of scanning and the scan line I adjacent to the scan line I is scanned. A predetermined structure capable of controlling the alignment state of liquid crystal molecules and modulating light by applying a potential difference | V1-V2 | of the potential V2 of the wiring II between substantially parallel electrodes provided in the pixel. Liquid crystal display device.
クティブ素子Aと、前記走査配線IIに接続されたアクテ
ィブ素子Bと、前記アクティブ素子Aに接続された画素
電極と、前記アクティブ素子Bに接続された対向電極を
有し、前記画素電極と前記対向電極の間の電界が主に前
記基板面に平行な電界である所定構造を有することを特
徴とする請求項1記載の液晶表示装置。2. The pixel includes an active element A connected to the signal wiring, an active element B connected to the scanning wiring II, a pixel electrode connected to the active element A, and the active element B. 2. The liquid crystal display device according to claim 1, further comprising a counter electrode connected to the pixel electrode, and a predetermined structure in which an electric field between the pixel electrode and the counter electrode is mainly an electric field parallel to the substrate surface. .
クティブ素子Aと、前記アクティブ素子Aと接続された
画素電極と、前記走査配線IIに接続されたアクティブ素
子Bと、前記アクティブ素子Bと接続された対向電極
と、前記画素電極と前記対向電極との間に容量素子を有
し、前記画素電極と前記対向電極の間の電界が主に前記
基板面に平行な電界である所定構造を有することを特徴
とする請求項1記載の液晶表示装置。3. The pixel includes an active element A connected to the signal line, a pixel electrode connected to the active element A, an active element B connected to the scan line II, and the active element B. A predetermined structure in which a counter electrode connected to the counter electrode and a capacitor element between the pixel electrode and the counter electrode are provided, and an electric field between the pixel electrode and the counter electrode is mainly an electric field parallel to the substrate surface. The liquid crystal display device according to claim 1, further comprising:
記基板間に挟持された液晶組成物層と、前記基板の一方
に配設されたm本の走査配線及びn本の信号配線と、m
×n個のマトリクス状の画素と、前記画素に配設された
アクティブ素子および容量素子と、所定電圧波形を前記
走査配線及び前記信号配線に印加する駆動手段とを備
え、前記液晶組成物層に対して主に前記基板面に平行な
電界を印加する所定構造を有することを特徴とする液晶
表示装置において、前記所定構造が、1本以上の細長い
突起を持った櫛型の形状を持つ電極からなることを特徴
とする液晶表示装置。4. A pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates, m scanning wirings and n signal wirings disposed on one of the substrates, m
The liquid crystal composition layer includes: × n pixels in a matrix, active elements and capacitive elements arranged in the pixels, and driving means for applying a predetermined voltage waveform to the scanning wiring and the signal wiring. On the other hand, in a liquid crystal display device characterized by having a predetermined structure for mainly applying an electric field parallel to the substrate surface, the predetermined structure is composed of an electrode having a comb shape having one or more elongated protrusions. And a liquid crystal display device.
クティブ素子Aと、前記走査配線IIに接続されたアクテ
ィブ素子Bと、前記アクティブ素子Aに接続された画素
電極と、前記アクティブ素子Bに接続された対向電極を
有し、前記画素電極と前記対向電極の間の電界が主に前
記基板面に平行な電界である所定構造を有する液晶表示
装置において、 前記該走査配線Iの選択供電圧パルスIにほぼ同期し
て、前記信号配線を通じて、画素電極に電位1を与える
ための駆動手段と、前記走査配線IIを通して対向電極に
電位2を与える駆動手段を備えたこと特徴とする請求項
2記載の液晶表示装置。5. The pixel has an active element A connected to the signal line, an active element B connected to the scan line II, a pixel electrode connected to the active element A, and the active element B. A liquid crystal display device having a predetermined structure in which an electric field between the pixel electrode and the counter electrode is mainly an electric field parallel to the substrate surface. 7. A driving means for applying a potential 1 to the pixel electrode through the signal wiring and a driving means for applying a potential 2 to the counter electrode through the scanning wiring II substantially in synchronism with the voltage pulse I. 2. The liquid crystal display device according to item 2.
の電位差が、液晶組成物層に電界を印加した時に、(液
晶表示装置の白表示をする電圧VW)と(液晶表示装置
の黒表示をする電圧VBLK )との電位差よりも大きいか
或いは等しいことを特徴とする請求項5記載の液晶表示
装置。6. The positive and negative electric potentials 2 given to the counter electrode.
Is, when an electric field is applied to the liquid crystal composition layer is greater than or equal to the potential difference between the (voltage VW to white display of the liquid crystal display device) (voltage V BLK to the black display of the liquid crystal display device) of the potential difference The liquid crystal display device according to claim 5, wherein
記画素が、前記走査配線Iに隣接する第1の前記走査配
線IIまたは、走査配線Iに隣接する他の走査配線III に
接続されたアクティブ素子Bと、前記信号配線に接続さ
れたアクティブ素子Aと、前記アクティブ素子Aに接続
された画素電極と、前記アクティブ素子Bに接続された
対向電2を有し、前記画素電極と前記対向電極の間の電
界が主に前記基板面に平行な電界である所定構造を有す
ることを特徴とする請求項1記載の液晶表示装置。7. A plurality of the pixels selected by the scan line I are connected to the first scan line II adjacent to the scan line I or another scan line III adjacent to the scan line I. An active element B, an active element A connected to the signal line, a pixel electrode connected to the active element A, and a counter electrode 2 connected to the active element B are provided, and the pixel electrode and the counter electrode 2 are connected to each other. The liquid crystal display device according to claim 1, wherein the liquid crystal display device has a predetermined structure in which an electric field between the electrodes is mainly an electric field parallel to the surface of the substrate.
画素が、前記走査配線Iに隣接する第1の前記走査配線
IIまたは、走査配線Iに隣接する他の走査配線III に接
続されたアクティブ素子Bと、前記信号配線に接続され
たアクティブ素子Aと、前記アクティブ素子Aに接続さ
れた画素電極と、前記アクティブ素子Bに接続された対
向電極を有し、前記画素電極と前記対向電極のあいだの
電界が主に前記基板面に平行な電界である所定構造を有
する液晶表示装置において、 該走査配線Iの選択期間に該走査配線Iの前後の走査配
線IIまたは走査配線III を通じて所定の電位差を有する
2種類の電圧パルスを複数の対向電極に選択的に印加す
ることにより、逆方向の2種類の電界を液晶組成物に選
択的に印加することを特徴とする請求項7記載の液晶表
示装置。8. A plurality of the pixels selected by the scan wiring I, wherein the plurality of pixels are adjacent to the scan wiring I.
II or an active element B connected to another scan wiring III adjacent to the scan wiring I, an active element A connected to the signal wiring, a pixel electrode connected to the active element A, and the active element In a liquid crystal display device having a predetermined structure in which an electric field between the pixel electrode and the counter electrode is an electric field mainly parallel to the substrate surface, the liquid crystal display device has a counter electrode connected to B, By selectively applying two types of voltage pulses having a predetermined potential difference to a plurality of opposing electrodes through the scanning line II or the scanning line III before and after the scanning line I, two kinds of electric fields in opposite directions are generated in the liquid crystal composition. The liquid crystal display device according to claim 7, wherein the liquid crystal display device is selectively applied to an object.
記基板間に挟持された液晶組成物層と、前記基板の一方
に配設されたm本の走査配線及びn本の信号配線と、m
×n個のマトリクス状の画素と、前記画素内に配設され
たアクティブ素子及び第1の容量素子と、所定電圧波形
を前記走査配線及び前記信号配線に印加する駆動手段と
を備えた液晶表示装置において、 前記画素が、前記信号配線に接続されたアクティブ素子
Aと、該走査配線Iに隣接する走査配線IIに第2の容量
素子を介して接続されたアクティブ素子Bと、前記アク
ティブ素子Aに接続された画素電極と、前記アクティブ
素子Bに接続された対向電極を有し、前記画素電極と前
記対向電極の間の電界が主に前記基板面に平行な電界で
ある所定構造を有することを特徴とする請求項1記載の
液晶表示装置。9. A pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates, m scanning wirings and n signal wirings disposed on one of the substrates. m
A liquid crystal display including × n pixels in a matrix, active elements and first capacitive elements arranged in the pixels, and driving means for applying a predetermined voltage waveform to the scanning wiring and the signal wiring. In the device, the pixel includes an active element A connected to the signal wiring, an active element B connected to a scanning wiring II adjacent to the scanning wiring I via a second capacitive element, and an active element A. A predetermined structure in which the electric field between the pixel electrode and the counter electrode is mainly an electric field parallel to the substrate surface. The liquid crystal display device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34793492A JP3127640B2 (en) | 1992-12-28 | 1992-12-28 | Active matrix type liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34793492A JP3127640B2 (en) | 1992-12-28 | 1992-12-28 | Active matrix type liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06202073A true JPH06202073A (en) | 1994-07-22 |
JP3127640B2 JP3127640B2 (en) | 2001-01-29 |
Family
ID=18393599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34793492A Expired - Fee Related JP3127640B2 (en) | 1992-12-28 | 1992-12-28 | Active matrix type liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3127640B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0921430A1 (en) * | 1997-11-20 | 1999-06-09 | Nec Corporation | Active matrix liquid-crystal display |
US5977562A (en) * | 1995-11-14 | 1999-11-02 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device |
US6097465A (en) * | 1996-03-01 | 2000-08-01 | Semiconductor Energy Laboratory Co., Ltd. | In plane switching LCD with 3 electrode on bottom substrate and 1 on top substrate |
US6120359A (en) * | 1997-11-12 | 2000-09-19 | Nec Corporation | Apparatus and method for forming spherical end surface of coaxial composite member |
US6160600A (en) * | 1995-11-17 | 2000-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Interlayer insulation of TFT LCD device having of silicon oxide and silicon nitride |
US6243064B1 (en) | 1995-11-07 | 2001-06-05 | Semiconductor Energy Laboratory Co., Ltd. | Active matrix type liquid-crystal display unit and method of driving the same |
JP2002055662A (en) * | 2000-08-11 | 2002-02-20 | Nec Corp | Liquid crystal display device and its drive method |
KR100314345B1 (en) * | 1997-11-25 | 2002-12-28 | 가부시끼가이샤 도시바 | Manufacturing method of electrode wiring board, display device and active matrix liquid crystal display device using the same |
JP2003015155A (en) * | 2001-06-28 | 2003-01-15 | Hitachi Ltd | Liquid crystal display |
KR20030037331A (en) * | 2001-11-01 | 2003-05-14 | 비오이 하이디스 테크놀로지 주식회사 | Method of driving for reduced image sticking in in plane switching mode panel |
US6704066B2 (en) | 2001-10-30 | 2004-03-09 | Hitachi, Ltd. | Liquid crystal display apparatus |
US6911962B1 (en) | 1996-03-26 | 2005-06-28 | Semiconductor Energy Laboratory Co., Ltd. | Driving method of active matrix display device |
JP2007058235A (en) * | 1996-03-26 | 2007-03-08 | Semiconductor Energy Lab Co Ltd | Method for driving active matrix liquid crystal display device |
JP2008158239A (en) * | 2006-12-22 | 2008-07-10 | Lg Display Co Ltd | Active matrix display device |
KR100939603B1 (en) * | 2002-12-28 | 2010-02-01 | 엘지디스플레이 주식회사 | LCD to remove afterimages |
US7868984B2 (en) | 1996-11-22 | 2011-01-11 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method of manufacturing the same |
CN101551561B (en) | 2008-04-04 | 2011-09-14 | 乐金显示有限公司 | Liquid crystal display device |
JP2011257746A (en) * | 2010-05-14 | 2011-12-22 | Semiconductor Energy Lab Co Ltd | Liquid crystal display device and electronic equipment |
JP2012022342A (en) * | 2011-10-18 | 2012-02-02 | Semiconductor Energy Lab Co Ltd | Liquid crystal display device |
-
1992
- 1992-12-28 JP JP34793492A patent/JP3127640B2/en not_active Expired - Fee Related
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6621102B2 (en) | 1995-11-04 | 2003-09-16 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device |
KR100402519B1 (en) * | 1995-11-07 | 2004-04-13 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Active matrix liquid crystal display and its driving method |
US6456269B2 (en) | 1995-11-07 | 2002-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Active matrix type liquid-crystal display unit and method of driving the same |
US6243064B1 (en) | 1995-11-07 | 2001-06-05 | Semiconductor Energy Laboratory Co., Ltd. | Active matrix type liquid-crystal display unit and method of driving the same |
US6268617B1 (en) | 1995-11-14 | 2001-07-31 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device |
US5977562A (en) * | 1995-11-14 | 1999-11-02 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device |
US6963382B1 (en) | 1995-11-17 | 2005-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display and method of driving same |
US6160600A (en) * | 1995-11-17 | 2000-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Interlayer insulation of TFT LCD device having of silicon oxide and silicon nitride |
US7616282B2 (en) | 1995-11-17 | 2009-11-10 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display and method of driving same |
US9213193B2 (en) | 1995-11-17 | 2015-12-15 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display and method of driving |
US6097465A (en) * | 1996-03-01 | 2000-08-01 | Semiconductor Energy Laboratory Co., Ltd. | In plane switching LCD with 3 electrode on bottom substrate and 1 on top substrate |
JP2007058235A (en) * | 1996-03-26 | 2007-03-08 | Semiconductor Energy Lab Co Ltd | Method for driving active matrix liquid crystal display device |
US6911962B1 (en) | 1996-03-26 | 2005-06-28 | Semiconductor Energy Laboratory Co., Ltd. | Driving method of active matrix display device |
US7336249B2 (en) | 1996-03-26 | 2008-02-26 | Semiconductor Energy Laboratory Co., Ltd. | Driving method of active matrix display device |
US7868984B2 (en) | 1996-11-22 | 2011-01-11 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method of manufacturing the same |
US6120359A (en) * | 1997-11-12 | 2000-09-19 | Nec Corporation | Apparatus and method for forming spherical end surface of coaxial composite member |
EP0921430A1 (en) * | 1997-11-20 | 1999-06-09 | Nec Corporation | Active matrix liquid-crystal display |
KR100314697B1 (en) * | 1997-11-20 | 2002-10-25 | 닛본 덴기 가부시끼가이샤 | Active matrix liquid-crystal display |
KR100314345B1 (en) * | 1997-11-25 | 2002-12-28 | 가부시끼가이샤 도시바 | Manufacturing method of electrode wiring board, display device and active matrix liquid crystal display device using the same |
JP2002055662A (en) * | 2000-08-11 | 2002-02-20 | Nec Corp | Liquid crystal display device and its drive method |
JP2003015155A (en) * | 2001-06-28 | 2003-01-15 | Hitachi Ltd | Liquid crystal display |
US6704066B2 (en) | 2001-10-30 | 2004-03-09 | Hitachi, Ltd. | Liquid crystal display apparatus |
US6704067B2 (en) | 2001-10-30 | 2004-03-09 | Hitachi, Ltd. | Liquid crystal display apparatus |
KR20030037331A (en) * | 2001-11-01 | 2003-05-14 | 비오이 하이디스 테크놀로지 주식회사 | Method of driving for reduced image sticking in in plane switching mode panel |
KR100939603B1 (en) * | 2002-12-28 | 2010-02-01 | 엘지디스플레이 주식회사 | LCD to remove afterimages |
JP2008158239A (en) * | 2006-12-22 | 2008-07-10 | Lg Display Co Ltd | Active matrix display device |
CN101551561B (en) | 2008-04-04 | 2011-09-14 | 乐金显示有限公司 | Liquid crystal display device |
JP2011257746A (en) * | 2010-05-14 | 2011-12-22 | Semiconductor Energy Lab Co Ltd | Liquid crystal display device and electronic equipment |
TWI624824B (en) * | 2010-05-14 | 2018-05-21 | 半導體能源研究所股份有限公司 | Liquid crystal display device and electronic appliance |
JP2012022342A (en) * | 2011-10-18 | 2012-02-02 | Semiconductor Energy Lab Co Ltd | Liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
JP3127640B2 (en) | 2001-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3564704B2 (en) | Active matrix type liquid crystal display device and driving method thereof | |
JP3127640B2 (en) | Active matrix type liquid crystal display | |
JP5391435B2 (en) | Liquid crystal display | |
KR101188601B1 (en) | Liquid crystal display | |
KR101240642B1 (en) | Liquid crystal display | |
JP3140358B2 (en) | LCD drive system | |
KR20090062112A (en) | Display panel and liquid crystal display including the same | |
JPH06148596A (en) | Active matrix type liquid crytal diplay device | |
US8339533B2 (en) | Vertical alignment mode liquid crystal display and method of manufacturing the same | |
KR20040043964A (en) | Apparatus of driving liquid crystal display and method thereof | |
JPH10123482A (en) | Active matrix type liquid crystal display device and driving method thereof | |
KR20090036920A (en) | Display substrate, display device having same and driving method thereof | |
JPH07301814A (en) | Matrix type liquid crystal display device | |
KR100531478B1 (en) | Liquid crystal display panel and method of dirving the same | |
JP3164987B2 (en) | Active matrix type liquid crystal display | |
JP3243185B2 (en) | Active matrix type liquid crystal display device and driving method thereof | |
JP2000162627A (en) | Liquid crystal display | |
JPH0980383A (en) | Liquid crystal display | |
JPH08248387A (en) | Liquid crystal display | |
JP3569846B2 (en) | Active matrix type liquid crystal display | |
JPH10186405A (en) | Active matrix type liquid crystal display | |
JPH07230074A (en) | Liquid crystal display | |
JP2000147462A (en) | Active matrix type liquid crystal display | |
JPH11142881A (en) | Active matrix type liquid crystal display device, and its manufacturing method and driving method | |
JPH0720829A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081110 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091110 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101110 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101110 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101110 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111110 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111110 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121110 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |