JPH06201642A - Thin film critical current type overall air-fuel ratio sensor - Google Patents
Thin film critical current type overall air-fuel ratio sensorInfo
- Publication number
- JPH06201642A JPH06201642A JP4361142A JP36114292A JPH06201642A JP H06201642 A JPH06201642 A JP H06201642A JP 4361142 A JP4361142 A JP 4361142A JP 36114292 A JP36114292 A JP 36114292A JP H06201642 A JPH06201642 A JP H06201642A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- fuel ratio
- solid electrolyte
- air
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 110
- 239000010409 thin film Substances 0.000 title claims abstract description 18
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 44
- 230000002093 peripheral effect Effects 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 claims abstract description 12
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 8
- 230000035699 permeability Effects 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 47
- 239000001301 oxygen Substances 0.000 claims description 47
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 7
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 39
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 16
- 238000001514 detection method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- -1 oxygen ions Chemical class 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
(57)【要約】
【目的】 薄膜限界電流式全域空燃比センサを提供す
る。
【構成】 多孔質基板1上に第1電極2、第1固体電解
質3及び第2電極4が順次積層され、第1固体電解質3
は第1電極2の周囲を含めて第1電極2を覆い隠し、第
2電極4は第1固体電解質3の周囲を含めて第1固体電
解質3を覆い隠し、更に第2電極4の上に第2固体電解
質5及び第3電極6が順次積層され、第2固体電解質5
及び第3電極6は共に第2電極4の周辺部が露出するよ
うに配置され、第1電極2、第2電極4及び第3電極6
は多孔質でガス透過性を有する白金を用いて形成され、
第1固体電解質3及び第2固体電解質5は緻密でガス透
過性を有しない酸素イオン伝導性の固体電解質を用いて
形成されている。
【効果】 性能が良く且つ著しく小形化可能である。
(57) [Abstract] [Purpose] To provide a thin film limiting current type full range air-fuel ratio sensor. [Structure] A first electrode 2, a first solid electrolyte 3 and a second electrode 4 are sequentially stacked on a porous substrate 1 to form a first solid electrolyte 3
Covers the first electrode 2 including the periphery of the first electrode 2, the second electrode 4 covers the first solid electrolyte 3 including the periphery of the first solid electrolyte 3, and further covers the second electrode 4. The second solid electrolyte 5 and the third electrode 6 are sequentially stacked to form the second solid electrolyte 5
Both the third electrode 6 and the third electrode 6 are arranged so that the peripheral portion of the second electrode 4 is exposed, and the first electrode 2, the second electrode 4, and the third electrode 6 are arranged.
Is formed using platinum, which is porous and gas permeable,
The first solid electrolyte 3 and the second solid electrolyte 5 are formed by using a dense solid electrolyte having oxygen gas conductivity and having no gas permeability. [Effect] The performance is good and the size can be significantly reduced.
Description
【0001】[0001]
【産業上の利用分野】本発明は薄膜限界電流式全域空燃
比センサ、更に詳しくは著しく小形化可能で且つ性能の
優れた薄膜限界電流式全域空燃比センサに関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film limiting current type full range air-fuel ratio sensor, and more particularly to a thin film limiting current type full range air / fuel ratio sensor which can be remarkably miniaturized and has excellent performance.
【0002】[0002]
【従来の技術】空燃比センサとしては種々の形態のもの
が使用されている。例えば、酸素センサを用いた空燃比
センサが多数使用されている。然して、酸素センサの分
野においても、種々の形態や方式を有する極めて多くの
酸素センサが研究されている。それらの酸素センサの内
で、電気化学的ポンプ作用を利用して酸素イオンを伝導
する方式の酸素センサは、各々異なる基本構成を有する
3種類の酸素センサに分類される。2. Description of the Related Art Various types of air-fuel ratio sensors are used. For example, many air-fuel ratio sensors using oxygen sensors are used. However, also in the field of oxygen sensors, a great number of oxygen sensors having various forms and systems have been studied. Among these oxygen sensors, the oxygen sensor of the type that conducts oxygen ions by utilizing an electrochemical pump action is classified into three types of oxygen sensors each having a different basic configuration.
【0003】第1の基本構成を有する酸素センサは、電
気化学的ポンプセルがO2 モニターと共に用いられるも
のであり、第2の基本構成を有する酸素センサは、電気
化学的ポンプセルが漏洩用細孔と共に用いられるもので
あり、更に第3の基本構成を有する酸素センサは、電気
化学的ポンプセルがO2 モニター及び漏洩用細孔と共に
用いられるものである。In the oxygen sensor having the first basic structure, the electrochemical pump cell is used together with the O 2 monitor, and in the oxygen sensor having the second basic structure, the electrochemical pump cell is used together with the leakage pores. The oxygen sensor having the third basic structure is used in an electrochemical pump cell together with an O 2 monitor and a leakage pore.
【0004】なお、検出の方法としても3種類の方法が
知られている。第1の検出方法はポンピング時間により
酸素濃度を測定する方法、第2の検出方法は限界電流に
より酸素濃度を測定する方法、更に第3の検出方法は定
電流印加時の電圧により酸素濃度を測定する方法であ
る。Three types of detection methods are known. The first detection method is a method of measuring oxygen concentration by pumping time, the second detection method is a method of measuring oxygen concentration by limiting current, and the third detection method is a method of measuring oxygen concentration by voltage when a constant current is applied. Is the way to do it.
【0005】[0005]
【発明が解決しようとする課題】リーン領域空燃比セン
サとしては、従来ジルコニア限界電流式空燃比センサが
広く使用されている。ジルコニア限界電流式空燃比セン
サは限界電流の温度依存性が小さいという優れた性質を
有しており、非常に使い易いので、種々の空燃比センサ
の中で最も広く使用されている。As a lean region air-fuel ratio sensor, zirconia limiting current type air-fuel ratio sensor has been widely used. The zirconia limiting current type air-fuel ratio sensor has the excellent property that the temperature dependence of the limiting current is small, and it is very easy to use, so it is most widely used among various air-fuel ratio sensors.
【0006】ジルコニア限界電流式のリーン領域空燃比
センサは優れた特性を有するが、しかし下記に例示する
ような大きな課題を抱えている。 一つの空燃比センサでリーン領域とリッチ領域の両方
を合わせた全域を計測する必要がある。 エンジン始動直後の空燃比センサの急速作動性を向上
させる必要がある。 燃費改善のために空燃比センサの低消費電力化を計る
必要がある。The lean region air-fuel ratio sensor of the zirconia limiting current type has excellent characteristics, but has a large problem as exemplified below. It is necessary to measure the entire region including both the lean region and the rich region with one air-fuel ratio sensor. It is necessary to improve the rapid operability of the air-fuel ratio sensor immediately after starting the engine. To improve fuel efficiency, it is necessary to reduce the power consumption of the air-fuel ratio sensor.
【0007】又、米国での自動車の排気規制が厳しくな
るに従って、自動車のエンジン自体や触媒だけではな
く、車両に用いる空燃比センサにも厳しい要求が求めら
れるようになり、単なる従来技術の改良だけでは対応が
難しくなってきた。Further, as the exhaust gas regulations of automobiles in the United States have become stricter, not only the engine itself and the catalyst of the automobile but also the air-fuel ratio sensor used in the vehicle are required to have strict requirements. Then it became difficult to respond.
【0008】すなわち、 a)地球的規模で起こっている環境問題の改善のため、車
両用エンジンとしては低燃費で有害成分排出量が少な
く、必要な時には高出力が得られるエンジンが望まれて
いる。そのためには、エンジンの空燃比を理論空燃比だ
けでなくリーン領域からリッチ領域まで運転状態に応じ
て最適な空燃比に設定する必要がある。そして空燃比を
前記の如く設定された空燃比となるように忠実に制御し
ようとすれば、空燃比センサによる精密な空燃比の検出
とこの値に基づく空燃比のフィードバック制御が不可欠
である。そのため、リーン領域のみでなくリッチ領域も
含めた全域を計測可能な空燃比センサの開発が求められ
ている。That is, a) In order to improve environmental problems occurring on a global scale, as a vehicle engine, an engine that has low fuel consumption, a small amount of harmful components emitted, and a high output when necessary is desired. . For that purpose, it is necessary to set the air-fuel ratio of the engine not only to the stoichiometric air-fuel ratio but also to the optimum air-fuel ratio from the lean region to the rich region according to the operating state. If the air-fuel ratio is to be faithfully controlled so as to attain the air-fuel ratio set as described above, precise detection of the air-fuel ratio by the air-fuel ratio sensor and feedback control of the air-fuel ratio based on this value are indispensable. Therefore, it is required to develop an air-fuel ratio sensor that can measure not only the lean region but also the rich region.
【0009】b)車両のエンジンの冷間始動時の炭化水素
排出量は、空燃比センサが作動可能になる以前のエンジ
ン始動直後の炭化水素排出部分が大きな比率を占めてい
る。そして前記炭化水素排出量にはエンジン始動時の燃
料増量の適否が密接に関係している。それ故、前記炭化
水素排出量の低減のためにエンジン始動時の燃料増量を
最適化すべく、エンジン始動直後から空燃比センサを急
速に作動させることが求められている。B) The amount of hydrocarbons discharged during cold starting of the engine of the vehicle is dominated by the amount of hydrocarbons discharged immediately after the engine starts before the air-fuel ratio sensor becomes operable. The hydrocarbon emission amount is closely related to whether or not the fuel amount is increased when the engine is started. Therefore, in order to optimize the fuel amount increase at the time of engine start in order to reduce the amount of hydrocarbon emission, it is required to operate the air-fuel ratio sensor rapidly immediately after the engine start.
【0010】しかしながら、空燃比センサを作動させる
ためには空燃比センサ(特にセンサ素子)を作動に適す
る高温にすることが必要なので、急速に作動させるため
には急速に昇温させることが必要である。然して、一般
的に空燃比センサの急速昇温は、該センサ各部の熱歪み
の増大による破損や特性劣化につながり易い。それ故、
前記熱歪みの増大を抑制して、それらの悪影響を軽減す
るためには空燃比センサを小形化する必要がある。However, in order to operate the air-fuel ratio sensor, it is necessary to raise the temperature of the air-fuel ratio sensor (particularly the sensor element) suitable for operation, and therefore it is necessary to raise the temperature rapidly in order to operate rapidly. is there. However, in general, the rapid temperature rise of the air-fuel ratio sensor is likely to lead to damage or characteristic deterioration due to an increase in thermal strain of each part of the sensor. Therefore,
In order to suppress the increase of the thermal strain and reduce the adverse effects thereof, it is necessary to downsize the air-fuel ratio sensor.
【0011】しかし、ジルコニア限界電流式空燃比セン
サの場合には、リーン領域とリッチ領域の全域計測性を
持たせるためには、陰陽両電極を気密的に分離させ、排
気に暴露されない側の電極に高濃度の酸素(空気)を供
給する必要がある。それ故、そのための空気(外気)導
入用の通路をセンサの外部から空燃比検出部まで設けな
ければならず、このためセンサ素子として、通常は一端
が閉鎖された管状の形状(所謂コップ形状)を有するセ
ンサ素子が用いられている。しかしながら、前記の如き
制約の下では、いくら小形化しようとしても自ずから限
界がある。However, in the case of the zirconia limiting current type air-fuel ratio sensor, in order to have the measurable property in the lean region and the rich region, both the positive and negative electrodes are hermetically separated, and the electrode on the side not exposed to the exhaust gas is used. It is necessary to supply a high concentration of oxygen (air). Therefore, a passage for introducing air (outside air) for that purpose must be provided from the outside of the sensor to the air-fuel ratio detection section, and as a result, the sensor element usually has a tubular shape with one end closed (so-called cup shape). Is used. However, under the above constraints, there is a limit to how small the device can be made.
【0012】c)空燃比センサを加熱するための消費電力
が大きければ、発電機やバッテリーなどの加熱用電力の
供給系も従来以上に大きくせざるを得ず、これは車両重
量の増加を引起し、燃費の悪化をもたらすことになる。
従って、燃費改善のためには、空燃比センサの低消費電
力化が必要且つ有効である。C) If the power consumption for heating the air-fuel ratio sensor is large, the power supply system for heating such as the generator and the battery must be increased more than ever, which causes an increase in vehicle weight. However, this will lead to deterioration of fuel efficiency.
Therefore, in order to improve fuel economy, it is necessary and effective to reduce the power consumption of the air-fuel ratio sensor.
【0013】ところで、全域空燃比を検出するために
は、空燃比センサ内に空気の導入や酸素の発生機構が必
要である。そして、それらの手段を有しない空燃比セン
サではリーン領域のみの計測は可能であるが、リッチ領
域に於いてもリーン領域に近い電流が流れる二価関数特
性が現れるのでリーン領域なのかリッチ領域なのかを判
別することができなくなり、リッチ領域においては有効
な空燃比の計測ができない。By the way, in order to detect the overall air-fuel ratio, it is necessary to introduce air or generate oxygen in the air-fuel ratio sensor. And, it is possible to measure only in the lean region with an air-fuel ratio sensor that does not have such means, but even in the rich region, a bivalent function characteristic in which a current close to the lean region flows appears, so that it is in the lean region or the rich region. It becomes impossible to determine whether the air-fuel ratio is high or not, and the effective air-fuel ratio cannot be measured in the rich region.
【0014】然して前記問題を克服するためには、リー
ン領域空燃比センサに、リーン領域の空燃比を検出する
手段とは別途にリッチ領域であることを検出する手段
と、電気化学的セルにより構成された酸素ポンプの電流
の極性の切り替えを行う何等かの手段とを付加する必要
がある。In order to overcome the above problem, however, the lean region air-fuel ratio sensor is constituted by means for detecting the rich region separately from the means for detecting the air-fuel ratio in the lean region, and an electrochemical cell. It is necessary to add some means for switching the polarity of the oxygen pump current.
【0015】一方、空燃比センサ内に外気から空気を導
入する形式の空燃比センサでは、基本的に全域空燃比検
出性能を有する。しかしながら、空気導入通路の寸法が
大きいので、空燃比センサは全体として複雑で大きな構
造を有しており、その製造が非常に難しい。更に、寸法
が大きいことから、空燃比センサを加熱するための消費
電力が大きく、又、熱歪みが発生し易いことから急速加
熱が不可能であり、必然的に空燃比センサの始動時間が
長くなる。そのため、消費電力が大きくなり、車両の燃
費改善に対して悪影響を与えると共に、始動時間が長い
ことから車両のエンジンの冷間始動直後の炭化水素排出
量の低減にも寄与することができない。On the other hand, an air-fuel ratio sensor of the type in which air is introduced from the outside air into the air-fuel ratio sensor has basically a whole range air-fuel ratio detection performance. However, since the size of the air introduction passage is large, the air-fuel ratio sensor as a whole has a complicated and large structure, and its manufacture is very difficult. Furthermore, since the size is large, power consumption for heating the air-fuel ratio sensor is large, and rapid heating is not possible because thermal distortion is likely to occur, and the start-up time of the air-fuel ratio sensor is inevitably long. Become. Therefore, the power consumption increases, which adversely affects the fuel efficiency of the vehicle, and the start time is long, so that it is not possible to contribute to the reduction of hydrocarbon emission immediately after the cold start of the engine of the vehicle.
【0016】同様に、センサ内に酸素の生成機構を有す
る空燃比センサも基本的に全域空燃比検出性能を有す
る。しかしながら、前記空燃比センサは酸素生成機構を
付加するために複雑な構造を有しており、又、その寸法
も大きい。それ故、この様な空燃比センサは製造が非常
に難しく、又、消費電力が大きいため急速加熱が不可能
であり、空燃比センサの始動時間が長くなる。従って、
車両の燃費改善に対して悪影響を与えると共に、車両の
エンジンの冷間始動直後の炭化水素排出量の低減にも寄
与することができない。Similarly, an air-fuel ratio sensor having an oxygen generating mechanism in the sensor basically has the whole range air-fuel ratio detecting performance. However, the air-fuel ratio sensor has a complicated structure for adding an oxygen generation mechanism, and its size is also large. Therefore, such an air-fuel ratio sensor is very difficult to manufacture, and since it consumes a large amount of power, rapid heating is impossible and the starting time of the air-fuel ratio sensor becomes long. Therefore,
It has an adverse effect on the improvement of the fuel efficiency of the vehicle and cannot contribute to the reduction of hydrocarbon emission immediately after the cold start of the engine of the vehicle.
【0017】本発明は前述の従来の空燃比センサに於け
る課題を解決するためになされたものであり、その目的
とするところは、温度が変化しても限界電流が小さいな
どのジルコニア限界電流式空燃比センサの優れた性質を
全て承継すると共に、空気(外気)導入用の通路を必要
とせずにリーン領域からリッチ領域にわたる全域におい
て空燃比検出計測性能を有する原理的に著しく小形化可
能な、薄膜式の空燃比センサを提供することにある。The present invention has been made to solve the above-mentioned problems in the conventional air-fuel ratio sensor. The object of the present invention is to limit the zirconia limit current such that the limit current is small even if the temperature changes. Inherit all of the excellent properties of the air-fuel ratio sensor, and have the ability to detect and measure air-fuel ratio over the entire range from lean to rich without requiring a passage for introducing air (outside air). , To provide a thin film air-fuel ratio sensor.
【0018】[0018]
【課題を解決するための手段】すなわち、本発明の薄膜
限界電流式全域空燃比センサは、多孔質基板上に第1電
極、第1固体電解質及び第2電極が順次積層され、第1
固体電解質は第1電極の周囲を含めて第1電極を覆い隠
し、第2電極は第1固体電解質の周囲を含めて第1固体
電解質を覆い隠し、更に第2電極の上に第2固体電解質
及び第3電極が順次積層され、第2固体電解質及び第3
電極は共に第2電極の周辺部が露出するように配置さ
れ、第1電極、第2電極及び第3電極は多孔質でガス透
過性を有する白金を用いて形成され、第1固体電解質及
び第2固体電解質は緻密でガス透過性を有しない酸素イ
オン伝導性の固体電解質を用いて形成されたことを特徴
とする。That is, in a thin film limiting current type global air-fuel ratio sensor of the present invention, a first electrode, a first solid electrolyte and a second electrode are sequentially laminated on a porous substrate to form a first electrode.
The solid electrolyte covers the first electrode including the periphery of the first electrode, the second electrode covers the first solid electrolyte including the periphery of the first solid electrolyte, and the second solid electrolyte covers the second electrode. And a third electrode are sequentially stacked to form a second solid electrolyte and a third electrode.
The electrodes are arranged such that the peripheral portion of the second electrode is exposed, and the first electrode, the second electrode and the third electrode are formed by using platinum that is porous and has gas permeability, and the first solid electrolyte and the first electrode are formed. The two solid electrolytes are characterized by being formed by using a dense solid electrolyte having oxygen ion conductivity and having no gas permeability.
【0019】本発明において、第1電極の多孔質基板と
接している部分に微細で互いに連通する溝が高密度に設
けられた薄膜限界電流式全域空燃比センサが好ましい。
溝の大きさ、形状、数等は適宜選択する。In the present invention, a thin film limiting current type global air-fuel ratio sensor in which fine and communicating grooves are provided at a high density in a portion of the first electrode in contact with the porous substrate is preferable.
The size, shape, number, etc. of the grooves are appropriately selected.
【0020】又、本発明において、第2電極に微細で互
いに連通する通路が高密度に設けられ、更に第2電極
に、それらの通路網の外周部と外部とを第2電極の外周
端面を介して接続する通路が設けられた薄膜限界電流式
全域空燃比センサも好ましい。通路の大きさ、形状、数
等は適宜選択する。Further, in the present invention, fine and fine passages communicating with each other are provided in the second electrode at a high density, and the second electrode is provided with the outer peripheral portion of the passage network and the outer portion of the outer peripheral end face of the second electrode. A thin film limiting current type full range air-fuel ratio sensor provided with a passage connected through is also preferable. The size, shape, number, etc. of the passages are appropriately selected.
【0021】更に、本発明において、第1電極の多孔質
基板と接している部分に微細で互いに連通する溝が高密
度に設けられ、第2電極に微細で互いに連通する通路が
高密度に設けられ、且つ更に第2電極に、それらの通路
網の外周部と外部とを第2電極の外周端面を介して接続
する通路が設けられた薄膜限界電流式全域空燃比センサ
は特に好ましい。Further, in the present invention, fine and communicating grooves are provided in a high density in a portion of the first electrode in contact with the porous substrate, and fine and communicating passages are provided in a high density in the second electrode. Further, a thin film limiting current type full range air-fuel ratio sensor in which the second electrode is provided with a passage that connects the outer peripheral portion of the passage network and the outside through the outer peripheral end surface of the second electrode is particularly preferable.
【0022】多孔質基板は、この分野において慣用の材
料、例えばアルミナなどを用いて形成してもよい。その
大きさや形状は最適に選択する。又、所望により適する
位置に例えばヒータなどを設けてもよい。The porous substrate may be formed using a material commonly used in this field, such as alumina. The size and shape are optimally selected. Further, for example, a heater may be provided at a suitable position as desired.
【0023】固体電解質は、例えばジルコニアやイット
リアなどの慣用の材料を単独又は組み合わせて用いて適
する大きさ及び形状のものを形成することができる。The solid electrolyte can be formed of a suitable size and shape by using a conventional material such as zirconia or yttria alone or in combination.
【0024】電極は、例えば白金ペーストを用いて印刷
法によって形成してもよい。その形状や厚さは適宜選択
する。The electrodes may be formed by a printing method using, for example, platinum paste. Its shape and thickness are selected appropriately.
【0025】[0025]
【作用】本発明の薄膜限界電流式全域空燃比センサにお
いては、従来のジルコニア限界電流式空燃比センサの場
合のように、一方の電極に高濃度の酸素濃度を維持する
ための空気(外気)導入用の通路を設けて拡散により自
然に空気をセンサ素子に供給するのではなく、車両エン
ジンの燃焼排気中に多量に含まれる水蒸気及び二酸化炭
素から酸素を解離させて酸素ポンプ作用により強制的に
供給する。このため、本発明のセンサは、低消費電力で
急速加熱、急速昇温、急速作動の可能な限界電流式全域
空燃比センサであり、全域空燃比検出性、急速作動性、
低消費電力性である。In the thin film limiting current type air-fuel ratio sensor of the present invention, as in the case of the conventional zirconia limiting current type air-fuel ratio sensor, air (outside air) for maintaining a high concentration of oxygen in one electrode is used. Rather than naturally supplying air to the sensor element by diffusion by providing a passage for introduction, oxygen is dissociated from water vapor and carbon dioxide contained in a large amount in the combustion exhaust of the vehicle engine and forced by an oxygen pump action. Supply. For this reason, the sensor of the present invention is a limiting current type full range air-fuel ratio sensor capable of rapid heating, rapid temperature rise, and rapid operation with low power consumption, and has a full range air-fuel ratio detectability, rapid actuation,
Low power consumption.
【0026】[0026]
【実施例】以下の実施例により、本発明を更に詳細に説
明する。The present invention will be described in more detail with reference to the following examples.
【0027】実施例1 図1に本発明の実施例1のセンサを示す。本センサの構
成としては、例えばアルミナなどからなる多孔質基板1
上に第1電極2、第1固体電解質3及び第2電極4が順
次積層され、第1固体電解質3は第1電極2の周囲を含
めて第1電極2を覆い隠し、第2電極4は第1固体電解
質3の周囲を含めて第1固体電解質3を覆い隠し、更に
第2電極4の上に第2固体電解質5及び第3電極6が順
次積層され、第2固体電解質5及び第3電極6は共に第
2電極4の周辺部が露出するように配置され、第1電極
2、第2電極4及び第3電極6は多孔質でガス透過性を
有する白金を用いて形成され(白金ペーストを塗布する
印刷法によって形成した)、第1固体電解質3及び第2
固体電解質5は緻密でガス透過性を有しない酸素イオン
伝導性の固体電解質を用いて形成した(ジルコニアを用
いた)。 Example 1 FIG. 1 shows a sensor according to Example 1 of the present invention. The structure of this sensor is, for example, a porous substrate 1 made of alumina or the like.
A first electrode 2, a first solid electrolyte 3 and a second electrode 4 are sequentially stacked on top of each other, the first solid electrolyte 3 covers the first electrode 2 including the periphery of the first electrode 2, and the second electrode 4 is The first solid electrolyte 3 including the periphery of the first solid electrolyte 3 is covered and hidden, and the second solid electrolyte 5 and the third electrode 6 are sequentially laminated on the second electrode 4, and the second solid electrolyte 5 and the third solid electrolyte 5 are stacked. The electrodes 6 are arranged so that the peripheral portion of the second electrode 4 is exposed, and the first electrode 2, the second electrode 4, and the third electrode 6 are formed by using platinum that is porous and has gas permeability (platinum). Formed by a printing method of applying a paste), a first solid electrolyte 3 and a second solid electrolyte 3
The solid electrolyte 5 was formed by using a dense solid electrolyte having oxygen ion conductivity and having no gas permeability (using zirconia).
【0028】又、多孔質基板1の裏面にはヒータ7を設
けた。ヒータ7はヒータ加熱手段8に接続されている。
なお、ヒータ7の材質は白金やパラジウム又はそれらの
合金が適しており、本例では白金を用いた。A heater 7 is provided on the back surface of the porous substrate 1. The heater 7 is connected to the heater heating means 8.
The heater 7 is preferably made of platinum, palladium, or an alloy thereof, and platinum was used in this example.
【0029】更に、図1に示すように、第3電極6に対
して第2電極4に正の電圧を印加するための電圧印加手
段9を設けた。又、第1電極2に対して第2電極4に正
の電圧を印加するための電圧印加手段10を設けた。1
1は流れる電流を計測するための電流計測手段である。Further, as shown in FIG. 1, a voltage applying means 9 for applying a positive voltage to the second electrode 4 with respect to the third electrode 6 is provided. Further, the voltage applying means 10 for applying a positive voltage to the second electrode 4 with respect to the first electrode 2 is provided. 1
Reference numeral 1 is a current measuring means for measuring the flowing current.
【0030】第3電極6に対して第2電極4に正の電圧
を印加すると、第2固体電解質5を含めたこの部分で
は、酸素ポンプ作用により、第3電極6側から第2電極
4側へ酸素イオンが輸送される。この場合、リーン空燃
比雰囲気下では、雰囲気中に残留している酸素がガス拡
散により第3電極6に供給される。一方、リッチ空燃比
雰囲気下では、雰囲気中に酸素が充分に存在しないた
め、雰囲気中からガス拡散により第3電極6に供給され
た水蒸気及び二酸化炭素が第3電極6で解離されて酸素
イオンが生成され、前記の場合と同様に酸素イオンが輸
送される。輸送された酸素イオンは第2固体電解質5と
第2電極4との界面で酸素ガスに変換される。このよう
にして、多孔質の第2電極4の中においては、リーン空
燃比雰囲気下であるかリッチ空燃比雰囲気下であるかに
係わらず、常に酸素過剰状態が保たれる。When a positive voltage is applied to the second electrode 4 with respect to the third electrode 6, this portion including the second solid electrolyte 5 is oxygen pumped to move from the third electrode 6 side to the second electrode 4 side. Oxygen ions are transported to. In this case, under a lean air-fuel ratio atmosphere, oxygen remaining in the atmosphere is supplied to the third electrode 6 by gas diffusion. On the other hand, in a rich air-fuel ratio atmosphere, since oxygen is not sufficiently present in the atmosphere, water vapor and carbon dioxide supplied to the third electrode 6 from the atmosphere by gas diffusion are dissociated in the third electrode 6 to generate oxygen ions. Oxygen ions are produced and transported as in the previous case. The transported oxygen ions are converted into oxygen gas at the interface between the second solid electrolyte 5 and the second electrode 4. In this way, in the porous second electrode 4, the excess oxygen state is always maintained regardless of the lean air-fuel ratio atmosphere or the rich air-fuel ratio atmosphere.
【0031】第1電極2、第1固体電解質3及び第2電
極4からなる部分は、限界電流式空燃比検出部として作
用し、限界電流から空燃比を測定することができる。こ
の状態で、センサ周囲の燃焼排気中の空気過剰量率をパ
ラメータにして、前記限界電流式空燃比検出部の電流−
電圧特性を測定すると、図2が得られた。更に、図2中
の一点鎖線で示す印加電圧を与えて測定した電流を図3
に示す。The portion composed of the first electrode 2, the first solid electrolyte 3 and the second electrode 4 functions as a limiting current type air-fuel ratio detecting section, and the air-fuel ratio can be measured from the limiting current. In this state, using the excess air ratio in the combustion exhaust around the sensor as a parameter, the current of the limiting current type air-fuel ratio detection unit −
When the voltage characteristics were measured, FIG. 2 was obtained. Further, the current measured by applying an applied voltage shown by the one-dot chain line in FIG.
Shown in.
【0032】一方、従来技術による空燃比センサの特性
を図11及び図12に示す。図11は図2に対応する図
であり、図12は図3に対応する図である。図2と図1
1、及び図3と図12の比較から明らかなように、従来
技術の空燃比センサでは空気過剰率が1より小さい(す
なわち、燃料リッチ)雰囲気下に於いて、限界電流特性
が第3象限に現れていたのに対し、本発明では第4象限
に現れている。On the other hand, the characteristics of the conventional air-fuel ratio sensor are shown in FIGS. 11 is a diagram corresponding to FIG. 2, and FIG. 12 is a diagram corresponding to FIG. 2 and 1
As is clear from FIG. 1 and comparison between FIG. 3 and FIG. 12, in the air-fuel ratio sensor of the prior art, the limiting current characteristic is in the third quadrant in an atmosphere where the excess air ratio is smaller than 1 (that is, fuel rich). Whereas it appears, it appears in the fourth quadrant in the present invention.
【0033】その結果、従来品では空気過剰率が1より
大きい(すなわち、燃料リーン)雰囲気下では正の印加
電圧、空気過剰率が1より小さい(すなわち、燃料リッ
チ)雰囲気下では負の印加電圧と、印加電圧の極性を切
り替える必要が有ったのに対し、本実施例品では常に正
の印加電圧でよいことから、極性切り替えの必要が無く
なった。As a result, the conventional product has a positive applied voltage in an atmosphere where the excess air ratio is larger than 1 (that is, fuel lean), and a negative applied voltage in an atmosphere where the excess air ratio is smaller than 1 (that is, fuel rich). Then, it was necessary to switch the polarity of the applied voltage, whereas in the product of this example, the positive applied voltage was always required, and thus the polarity switching was eliminated.
【0033】従って、本実施例品においては検出雰囲気
が燃料リーンであるか燃料リッチであるかを検出するた
めの手段を別途設ける必要も無くなった。Therefore, in the product of this embodiment, it is no longer necessary to additionally provide means for detecting whether the detection atmosphere is fuel lean or fuel rich.
【0034】又、印加電圧の極性を切り替える必要が無
くなったことにより、本実施例品においては切り替えに
伴うノイズ的な出力信号成分の発生も無くなった。Further, since it is not necessary to switch the polarity of the applied voltage, the product of this embodiment also eliminates the generation of a noise-like output signal component due to the switching.
【0035】本センサでは、従来技術による全域空燃比
センサのように外気からの酸素導入部を有しないが、前
記の如く、第2電極4上に酸素ポンプとして作用する電
気化学セルを付加することにより酸素を供給せしめ、従
来技術による全域空燃比センサと等価な作用を行わせて
いる。The present sensor does not have an oxygen introduction portion from the outside air unlike the conventional air-fuel ratio sensor of the prior art, but as mentioned above, an electrochemical cell acting as an oxygen pump is added on the second electrode 4. Oxygen is supplied by the above-mentioned method, and an operation equivalent to that of the conventional air-fuel ratio sensor according to the related art is performed.
【0036】第2電極4は多孔質体であり、その外周部
がセンサの外部と連通しているので、第2電極4へ過剰
な酸素が供給された場合には、外周部から外部へ過剰な
酸素が排出されるので測定の障害にはならない。又、第
1電極2内の酸素ガスは多孔質基板1内に排出される。The second electrode 4 is a porous body, and its outer peripheral portion communicates with the outside of the sensor. Therefore, when excess oxygen is supplied to the second electrode 4, the second electrode 4 is excessive from the outer peripheral portion to the outside. Since no oxygen is discharged, it does not hinder the measurement. Further, the oxygen gas in the first electrode 2 is discharged into the porous substrate 1.
【0037】実施例2 図4に本発明の実施例2のセンサを示す。本センサは第
1電極2の多孔質基板1と接している部分に微細で互い
に連通する溝12が高密度に設けられたこと以外は実施
例1のセンサと同じである。限界電流式酸素センサでは
電極の単位面積当たりの電流(すなわち、電流密度)を
大きくすると、電極抵抗の影響が大きくなり初期特性が
悪くなり易いばかりでなく、長期安定性も得難くなる。
そこで、拡散抵抗の大きい多孔質基板1を用いて電流密
度を下げるのが有効な方法であるが、その反面、第1電
極2の面内に酸素ガスが供給されない部分(無効部分)
が多くなることにより電極抵抗の増加を招き易く、必ず
しも充分な効果を得難い。本実施例は、この問題に対し
て有効な解決策を与えるものである。 Embodiment 2 FIG. 4 shows a sensor according to Embodiment 2 of the present invention. The present sensor is the same as the sensor of the first embodiment except that fine and communicating grooves 12 are provided at a high density in a portion of the first electrode 2 in contact with the porous substrate 1. In the limiting current type oxygen sensor, when the current per unit area of the electrode (that is, the current density) is increased, not only the effect of the electrode resistance increases and the initial characteristics are easily deteriorated, but also the long-term stability is difficult to obtain.
Therefore, it is an effective method to reduce the current density by using the porous substrate 1 having a large diffusion resistance, but on the other hand, a portion (ineffective portion) where oxygen gas is not supplied in the surface of the first electrode 2
The increase in the amount tends to cause an increase in electrode resistance, and it is not always possible to obtain a sufficient effect. The present embodiment provides an effective solution to this problem.
【0038】溝12は、第1電極2の面内での酸素ガス
の拡散を容易にし、面内の酸素濃度分布を低く抑制する
作用が有る。これにより、拡散抵抗の大きな多孔質基板
1を用いた場合の第1電極2の面内の酸素ガスが供給さ
れない部分の増加を抑制でき、電極抵抗の増加を防止で
きる。従って、電流密度の低下と相まって、良好な初期
特性が得られると共に、長期安定性に対しても非常に良
い結果が得られるようになった。The groove 12 has the function of facilitating the diffusion of oxygen gas within the surface of the first electrode 2 and suppressing the oxygen concentration distribution within the surface to a low level. Thereby, when the porous substrate 1 having a large diffusion resistance is used, it is possible to suppress an increase in a portion of the surface of the first electrode 2 to which oxygen gas is not supplied, and prevent an increase in electrode resistance. Therefore, in combination with the decrease in current density, good initial characteristics are obtained, and very good results are obtained for long-term stability.
【0039】図5は図4のセンサの第1電極2の平面図
である。本例では溝12は所定間隔で格子状に設けた。FIG. 5 is a plan view of the first electrode 2 of the sensor of FIG. In this example, the grooves 12 are provided in a grid pattern at predetermined intervals.
【0040】実施例3 図6に本発明の実施例3のセンサを示す。本センサは第
2電極4に微細で互いに連通する通路13が高密度に設
けられ、更に第2電極4に、それらの通路網の外周部と
外部とを第2電極4の外周端面を介して接続する通路1
4が設けられたこと以外は実施例1のセンサと同じであ
る。 Embodiment 3 FIG. 6 shows a sensor according to Embodiment 3 of the present invention. In this sensor, fine and fine passages 13 communicating with each other are provided in the second electrode 4 at a high density, and further, the second electrode 4 is provided with the outer peripheral portion of the passage network and the outside through the outer peripheral end face of the second electrode 4. Passage 1 to connect
The sensor is the same as that of the first embodiment except that No. 4 is provided.
【0041】酸素ポンプの作用により第2電極4内の圧
力が外部の圧力より高まれば、上述の微細な通路13及
び通路14を通じて過剰な酸素ガスが外部に排出される
ことにより、第2電極4内の圧力の上昇は抑制される。When the pressure inside the second electrode 4 becomes higher than the pressure outside due to the action of the oxygen pump, excess oxygen gas is discharged to the outside through the fine passages 13 and 14 described above, and thus the second electrode 4 The rise in internal pressure is suppressed.
【0042】図7に図6のセンサの第2電極4のA−A
線に沿った平面図を示す。本例では通路13は所定間隔
で格子状に設け、又、通路14は通路13の外周部と外
部とを接続するように通路13の外周部に縦横方向に設
けた。FIG. 7 shows the AA of the second electrode 4 of the sensor of FIG.
Figure 3 shows a plan view along the line. In this example, the passages 13 are provided in a lattice pattern at predetermined intervals, and the passages 14 are provided in the outer peripheral portion of the passage 13 in the vertical and horizontal directions so as to connect the outer peripheral portion of the passage 13 to the outside.
【0043】実施例4 図8に本発明の実施例4のセンサを示す。本センサは実
施例2のセンサと同様に第1電極2の多孔質基板1と接
している部分に微細で互いに連通する溝12が高密度に
設けられ、又、実施例3のセンサと同様に第2電極4に
微細で互いに連通する通路13が高密度に設けられ、更
に第2電極4に、それらの通路網の外周部と外部とを第
2電極4の外周端面を介して接続する通路14が設けら
れたこと以外は実施例1のセンサと同じである。 Embodiment 4 FIG. 8 shows a sensor according to Embodiment 4 of the present invention. Similar to the sensor of the second embodiment, the present sensor is provided with fine and dense grooves 12 communicating with each other in the portion of the first electrode 2 which is in contact with the porous substrate 1, and like the sensor of the third embodiment. Passages 13 that are fine and communicate with each other are provided in the second electrode 4 at a high density, and a passage that connects the outer peripheral portion of the passage network and the outside to the second electrode 4 via the outer peripheral end face of the second electrode 4. The sensor is the same as that of the first embodiment except that 14 is provided.
【0044】それ故、本センサは実施例2のセンサの前
記長所と実施例3のセンサの前記長所とを併有してい
る。Therefore, this sensor has both the advantages of the sensor of the second embodiment and the advantages of the sensor of the third embodiment.
【0045】図9は図8のセンサの第1電極2の平面図
である。本例では溝12は所定間隔で格子状に設けた。
又、図10は図8のセンサの第2電極4のA−A線に沿
った平面図である。本例では通路13は所定間隔で格子
状に設け、通路14は通路13の外周部と外部とを接続
するように通路13の外周部に縦横方向に設けた。FIG. 9 is a plan view of the first electrode 2 of the sensor shown in FIG. In this example, the grooves 12 are provided in a grid pattern at predetermined intervals.
10 is a plan view of the second electrode 4 of the sensor of FIG. 8 taken along the line AA. In this example, the passages 13 are provided in a grid pattern at predetermined intervals, and the passages 14 are provided in the outer peripheral portion of the passage 13 in the vertical and horizontal directions so as to connect the outer peripheral portion of the passage 13 to the outside.
【0046】[0046]
【発明の効果】本発明の薄膜限界電流式全域空燃比セン
サは上述の如き構成を有するため、以下に例示するよう
な種々の効果を奏する。 1)本センサは、酸素ポンプ作用によってセンサ素子部
に酸素を供給するため、センサ素子部に酸素導入部を設
ける必要が無く、ハウジングの外部と連通する部分を必
要とせず、それ故、センサ全体を小型にすることができ
る。 2)本センサは、センサ素子部に酸素導入部を設ける必
要が無いので、センサ素子部を従来のセンサの如く管状
などの立体的な構造とする必要がなく平面的な構造とす
ることができるので、薄膜技術で調製するために好適で
ある。 3)本センサは、酸素導入部を必要としないので、ハウ
ジングの気密構造が簡単になる。 4)本センサは限界電流式なので、限界電流の温度依存
性が小さくため、使用方法が簡単である。 5)本センサは、リーン領域からリッチ領域にわたる空
燃比に対して、印加電圧の極性を切り替えることなく空
燃比を測定することができる。 6)本センサは、電解電流式空燃比検出部として作用さ
せる部分を始めとして酸素を解離させる部分及び酸素ポ
ンプとして作用させる部分も多孔質基板上に薄膜技術に
より調製するので、極めて小形にすることが可能であ
る。 7)本センサは小形なので加熱に要する電力が小さい。 8)本センサは小形なので急速昇温をしても発生する熱
歪みが小さく、急速昇温が可能である。 9)本センサは多孔質基板上に薄膜技術により調製する
ので、量産性がよく低コストで多量に供給でき、工業生
産上の利点が大きい。Since the thin-film limiting current type global air-fuel ratio sensor of the present invention has the above-mentioned structure, it has various effects as exemplified below. 1) Since this sensor supplies oxygen to the sensor element section by the oxygen pump action, there is no need to provide an oxygen introducing section in the sensor element section, and there is no need for a portion that communicates with the outside of the housing. Can be small. 2) Since this sensor does not need to be provided with an oxygen introduction part in the sensor element part, the sensor element part does not need to have a three-dimensional structure such as a tube like a conventional sensor, and can have a planar structure. Therefore, it is suitable for preparation by thin film technology. 3) Since this sensor does not require an oxygen introduction part, the airtight structure of the housing becomes simple. 4) Since this sensor is of the limiting current type, the temperature dependence of the limiting current is small, so the method of use is simple. 5) The present sensor can measure the air-fuel ratio for the air-fuel ratio from the lean region to the rich region without switching the polarity of the applied voltage. 6) Since this sensor prepares the part that acts as the electrolytic current type air-fuel ratio detection part, the part that dissociates oxygen and the part that acts as the oxygen pump by thin film technology on the porous substrate, it should be extremely small. Is possible. 7) Since this sensor is small, the power required for heating is small. 8) Since this sensor is small, the thermal strain generated is small even when the temperature is rapidly raised, and the temperature can be rapidly raised. 9) Since this sensor is prepared on the porous substrate by the thin film technique, it can be mass-produced well, can be supplied in large quantities at low cost, and has great advantages in industrial production.
【図1】本発明の実施例1の空燃比センサの説明図であ
る。FIG. 1 is an explanatory diagram of an air-fuel ratio sensor according to a first embodiment of the present invention.
【図2】実施例1の空燃比センサの限界電流式空燃比検
出部の電流−電圧特性を示す図である。FIG. 2 is a diagram showing current-voltage characteristics of a limiting current type air-fuel ratio detection unit of the air-fuel ratio sensor of the first embodiment.
【図3】実施例1の空燃比センサにおいて、図2中の一
点鎖線で示す印加電圧を与えて測定した電流を示す図で
ある。3 is a diagram showing a current measured by applying an applied voltage shown by a chain line in FIG. 2 in the air-fuel ratio sensor of Example 1. FIG.
【図4】本発明の実施例2の空燃比センサの説明図であ
る。FIG. 4 is an explanatory diagram of an air-fuel ratio sensor according to a second embodiment of the present invention.
【図5】図4の空燃比センサの第1電極の平面図であ
る。5 is a plan view of a first electrode of the air-fuel ratio sensor of FIG.
【図6】本発明の実施例3の空燃比センサの説明図であ
る。FIG. 6 is an explanatory diagram of an air-fuel ratio sensor according to a third embodiment of the present invention.
【図7】図6の空燃比センサの第2電極のA−A線に沿
った平面図である。7 is a plan view of the second electrode of the air-fuel ratio sensor of FIG. 6 taken along the line AA.
【図8】本発明の実施例4の空燃比センサの説明図であ
る。FIG. 8 is an explanatory diagram of an air-fuel ratio sensor according to a fourth embodiment of the present invention.
【図9】図8の空燃比センサの第1電極の平面図であ
る。9 is a plan view of a first electrode of the air-fuel ratio sensor of FIG.
【図10】図8の空燃比センサの第2電極のA−A線に
沿った平面図である。10 is a plan view of the second electrode of the air-fuel ratio sensor of FIG. 8 taken along the line AA.
【図11】従来の空燃比センサの限界電流式空燃比検出
部の電流−電圧特性を示す図である。FIG. 11 is a diagram showing current-voltage characteristics of a limiting current type air-fuel ratio detector of a conventional air-fuel ratio sensor.
【図12】従来の空燃比センサにおいて、所定印加電圧
を与えて測定した電流を示す図である。FIG. 12 is a diagram showing a current measured by applying a predetermined applied voltage in a conventional air-fuel ratio sensor.
1 多孔質基板 2 第1電極 3 第1固体電解質 4 第2電極 5 第2固体電解質 6 第3電極 7 ヒータ 8 ヒータ加熱手段 9,10 電圧印加手段 11 電流測定手段 12 溝 13,14 通路 1 Porous Substrate 2 First Electrode 3 First Solid Electrolyte 4 Second Electrode 5 Second Solid Electrolyte 6 Third Electrode 7 Heater 8 Heater Heating Means 9, 10 Voltage Applying Means 11 Current Measuring Means 12 Grooves 13, 14 Passages
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7363−2J 327 E (72)発明者 佐治 啓市 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 竹内 正治 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 颯田 耕三 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location 7363-2J 327 E (72) Inventor Saji Kei-shi 1-41, Nagakage-cho, Aichi-gun, Aichi-gun Toyota Central Research Institute, Inc. (72) Inventor, Shoji Takeuchi, Nagakute-cho, Aichi-gun, Aichi Prefecture, Nagaminato 1 41 of Yokomichi, Toyota Central Research Institute Co., Ltd. No. 41 Yokomichi Toyota Central Research Institute Co., Ltd.
Claims (4)
質及び第2電極が順次積層され、第1固体電解質は第1
電極の周囲を含めて第1電極を覆い隠し、第2電極は第
1固体電解質の周囲を含めて第1固体電解質を覆い隠
し、更に第2電極の上に第2固体電解質及び第3電極が
順次積層され、第2固体電解質及び第3電極は共に第2
電極の周辺部が露出するように配置され、第1電極、第
2電極及び第3電極は多孔質でガス透過性を有する白金
を用いて形成され、第1固体電解質及び第2固体電解質
は緻密でガス透過性を有しない酸素イオン伝導性の固体
電解質を用いて形成されたことを特徴とする薄膜限界電
流式全域空燃比センサ。1. A first electrode, a first solid electrolyte and a second electrode are sequentially stacked on a porous substrate, and the first solid electrolyte is the first
The first electrode including the periphery of the electrode is covered, the second electrode covers the first solid electrolyte including the periphery of the first solid electrolyte, and the second solid electrolyte and the third electrode are further provided on the second electrode. The second solid electrolyte and the third electrode are sequentially laminated,
The first electrode, the second electrode, and the third electrode are arranged so that the peripheral portions of the electrodes are exposed, and the first electrode, the second electrode, and the third electrode are formed of platinum having gas permeability, and the first solid electrolyte and the second solid electrolyte are dense. A thin-film limiting current type all-air-fuel ratio sensor characterized by being formed by using a solid electrolyte of oxygen ion conductivity having no gas permeability.
板と接している部分に微細で互いに連通する溝が高密度
に設けられたことを特徴とする薄膜限界電流式全域空燃
比センサ。2. The thin film limiting current type full range air-fuel ratio according to claim 1, wherein fine and communicating grooves are provided at a high density in a portion of the first electrode in contact with the porous substrate. Sensor.
いに連通する通路が高密度に設けられ、更に第2電極
に、それらの通路網の外周部と外部とを第2電極の外周
端面を介して接続する通路が設けられたことを特徴とす
る薄膜限界電流式全域空燃比センサ。3. The second electrode according to claim 1, wherein the second electrodes are provided with fine and fine passages communicating with each other at a high density, and the second electrode is provided with an outer peripheral portion of the passage network and the outside. A thin film limiting current type full range air-fuel ratio sensor, characterized in that a passage is provided to connect through the outer peripheral end face.
板と接している部分に微細で互いに連通する溝が高密度
に設けられ、第2電極に微細で互いに連通する通路が高
密度に設けられ、且つ更に第2電極に、それらの通路網
の外周部と外部とを第2電極の外周端面を介して接続す
る通路が設けられたことを特徴とする薄膜限界電流式全
域空燃比センサ。4. The groove according to claim 1, wherein fine grooves communicating with each other are provided at a high density in a portion of the first electrode in contact with the porous substrate, and fine passages communicating with each other are formed in the second electrode. A thin film limiting current type whole space, characterized in that it is provided at a high density, and further, the second electrode is provided with a passage that connects the outer peripheral portion of the passage network and the outside through the outer peripheral end face of the second electrode. Fuel ratio sensor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36114292A JP3289353B2 (en) | 1992-12-28 | 1992-12-28 | Thin film limit current type full range air-fuel ratio sensor |
US08/174,126 US5480535A (en) | 1992-12-28 | 1993-12-27 | Thin film multilayered air/fuel ratio sensor |
DE4344826A DE4344826C2 (en) | 1992-12-28 | 1993-12-28 | Multi-layer thin film air / fuel ratio sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36114292A JP3289353B2 (en) | 1992-12-28 | 1992-12-28 | Thin film limit current type full range air-fuel ratio sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06201642A true JPH06201642A (en) | 1994-07-22 |
JP3289353B2 JP3289353B2 (en) | 2002-06-04 |
Family
ID=18472371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36114292A Expired - Fee Related JP3289353B2 (en) | 1992-12-28 | 1992-12-28 | Thin film limit current type full range air-fuel ratio sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3289353B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0755765A (en) * | 1993-08-12 | 1995-03-03 | Toyota Central Res & Dev Lab Inc | Thin film laminated air-fuel ratio sensor |
JP2006023128A (en) * | 2004-07-06 | 2006-01-26 | Denso Corp | Zirconia structure and its manufacturing method |
-
1992
- 1992-12-28 JP JP36114292A patent/JP3289353B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0755765A (en) * | 1993-08-12 | 1995-03-03 | Toyota Central Res & Dev Lab Inc | Thin film laminated air-fuel ratio sensor |
JP2006023128A (en) * | 2004-07-06 | 2006-01-26 | Denso Corp | Zirconia structure and its manufacturing method |
JP4548020B2 (en) * | 2004-07-06 | 2010-09-22 | 株式会社デンソー | Zirconia structure and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3289353B2 (en) | 2002-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6527929B2 (en) | Gas sensor and nitrogen oxide sensor | |
US4487680A (en) | Planar ZrO2 oxygen pumping sensor | |
US6196053B1 (en) | Method of measuring a gas component and sensing device for measuring the gas component | |
US5288375A (en) | Method for determining relative amount of oxygen containing gas in a gas mixture | |
US5413683A (en) | Oxygen sensing apparatus and method using electrochemical oxygen pumping action to provide reference gas | |
US6638416B2 (en) | Hydrogen sensing process | |
CA1321618C (en) | Sensor for determining relative amount of oxygen containing gas in a gas mixture | |
US4909072A (en) | Measurement and control of exhaust gas recirculation with an oxygen pumping device | |
JPH0473551B2 (en) | ||
JP2000321238A (en) | Gas sensor | |
JPH0473101B2 (en) | ||
US6635162B2 (en) | Gas sensor | |
JP3234080B2 (en) | Sensor for measuring gas components and / or gas concentrations in gas mixtures | |
US5049254A (en) | Exhaust gas recirculation sensor | |
JP3619344B2 (en) | Nitrogen oxide measuring device | |
JPH07501152A (en) | Polarographic sensor | |
US4591421A (en) | Air/fuel ratio detector | |
JPH09507916A (en) | Electrochemical sensor for measuring nitrogen oxides in air-fuel mixtures | |
US6346178B1 (en) | Simplified wide range air fuel ratio sensor | |
JP3289353B2 (en) | Thin film limit current type full range air-fuel ratio sensor | |
JP3916945B2 (en) | Gas sensor element | |
JPH11166911A (en) | Air-fuel ratio sensor | |
JP3326899B2 (en) | Thin film air-fuel ratio sensor | |
KR102567567B1 (en) | Limiting current type oxygen sensor | |
JPH08184577A (en) | Stacked air-fuel ratio sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080322 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |