[go: up one dir, main page]

JPH06194533A - Waveguide element for optical amplification - Google Patents

Waveguide element for optical amplification

Info

Publication number
JPH06194533A
JPH06194533A JP4346685A JP34668592A JPH06194533A JP H06194533 A JPH06194533 A JP H06194533A JP 4346685 A JP4346685 A JP 4346685A JP 34668592 A JP34668592 A JP 34668592A JP H06194533 A JPH06194533 A JP H06194533A
Authority
JP
Japan
Prior art keywords
waveguide
refractive index
optical amplification
substrate
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4346685A
Other languages
Japanese (ja)
Inventor
Ichiro Tanaka
一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP4346685A priority Critical patent/JPH06194533A/en
Publication of JPH06194533A publication Critical patent/JPH06194533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the waveguide type optical amplification element without having dependency on polarized light and to eliminate the dependency of the optical amplification element on polarization directions by adopting the constitution that the characteristics of a waveguide part does not depend on the polarization directions. CONSTITUTION:A substrate 1 is a glass substrate doped with rare earth ions and the waveguide 2 of a single mode to signal light is embedded therein at about >=10mum depth. The refractive index distribution of the waveguide 2 is symmetrical and the linear field pattern of the signal light propagating the waveguide 2 is circular. The high-refractive index part formed by an exchange of sodium ions and silver ions is further embedded into the substrate by an electric field ion exchange, by which the mentioned above waveguide 2 is formed. The stress by a difference ion radius is small and the refractive index distribution is symmetrical and, therefore, the equiv. refractive index difference between the TE and TM mode is about >=10<-6>. Since the equiv. refractive index difference is small in such a manner, the waveguide element is regarded to have substantially no dependency on the polarized light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導放出を利用した光
増幅用システムに用いられる光導波路素子に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide device used in an optical amplification system utilizing stimulated emission.

【0002】[0002]

【従来の技術】従来、光導波路により光増幅用素子を作
製する方法としては、増幅作用を有する元素を含むガラ
ス基板中に、2段階熱イオン交換法により光導波路を形
成するものがある。
2. Description of the Related Art Conventionally, as a method of manufacturing an optical amplification element by an optical waveguide, there is a method of forming an optical waveguide by a two-step thermal ion exchange method in a glass substrate containing an element having an amplifying effect.

【0003】例えば、図3に示したようにネオジウムイ
オンをドープさせたBK−7ガラス基板31にマスクを
形成し、それをパターニングした後に、まず溶融硝酸カ
リウム塩中で、続いて溶融硝酸ナトリウム塩中でイオン
交換を行い導波路を作製した例がある。
For example, as shown in FIG. 3, after forming a mask on a BK-7 glass substrate 31 doped with neodymium ions and patterning it, first in a molten potassium nitrate salt, and subsequently in a molten sodium nitrate salt. There is an example in which a waveguide is produced by performing ion exchange in.

【0004】この場合、ガラス基板中のナトリウムイオ
ンと溶融塩中のカリウムイオンの交換により半円状の高
屈折率部分が形成され、さらに次のイオン交換により基
板最表面のカリウムイオンが溶融塩中のナトリウムイオ
ンと置き換えられて、断面が楕円形状の埋め込み導波路
32が形成される。この導波路に、励起光を入射させて
ネオジウムイオンを励起し、そこに信号光を入射させる
と誘導放出により信号光が増幅される。
In this case, a semi-circular high refractive index portion is formed by exchanging sodium ions in the glass substrate and potassium ions in the molten salt, and further ion exchange causes the potassium ions on the outermost surface of the substrate to be in the molten salt. By replacing the sodium ion with the above-mentioned sodium ion, the buried waveguide 32 having an elliptical cross section is formed. When excitation light is incident on this waveguide to excite neodymium ions and signal light is incident thereon, the signal light is amplified by stimulated emission.

【0005】[0005]

【発明が解決しようとする問題点】光増幅用素子を光通
信システムで使用する場合、その特性に偏光依存性がな
いことが要求される。これは、光ファイバ中を信号光が
伝搬するときに偏光方向が一般に保存されないため、様
々な偏光状態の信号光を増幅する必要があるからであ
る。
When an optical amplification element is used in an optical communication system, it is required that its characteristics have no polarization dependence. This is because the polarization direction is not generally preserved when the signal light propagates in the optical fiber, and therefore it is necessary to amplify the signal light in various polarization states.

【0006】ところが、従来技術のところで述べた導波
路は、高屈折部分の形成にカリウムイオンとナトリウム
イオンの交換を利用しているため、両者のイオン半径の
差から基板表面に平行な応力が発生していること、およ
び熱イオン交換法で作製しているため、導波路断面形状
が楕円で屈折率分布が非対称であることから、これらに
起因する偏光方向依存性が生じている。
However, since the waveguide described in the prior art utilizes exchange of potassium ions and sodium ions to form the high refraction portion, stress parallel to the substrate surface is generated due to the difference in ion radius between the two. The fact that the waveguide cross section is elliptical and the refractive index distribution is asymmetric because it is manufactured by the thermionic exchange method, the polarization direction dependence is caused by these.

【0007】たとえば、このような導波路におけるT
E,TMモードの等価屈折率には0.001程度の差が
あり、それが光増幅素子として使用した場合に両モード
に対する増幅度の違いとなって現れる。
For example, T in such a waveguide
There is a difference of about 0.001 in the equivalent refractive index between the E and TM modes, which appears as a difference in amplification degree for both modes when used as an optical amplification element.

【0008】そこで本発明は、偏光依存性のない光増幅
用導波路素子を提供することを目的とする。
Therefore, an object of the present invention is to provide an optical amplification waveguide element having no polarization dependence.

【0009】[0009]

【問題を解決するための手段】上記目的は、基板中に光
増幅作用を有する元素を含むか、または当該元素を含む
増幅部分を備え、かつその周囲より高い屈折率を有する
導波路部分を備えた光増幅用導波路素子において、導波
路部分の特性が偏光方向に依存しないことを特徴とする
光増幅用導波路素子にて達成される。
The above object is to provide an amplifying portion containing an element having a light amplifying effect in a substrate or having an amplifying portion containing the element, and to provide a waveguide portion having a higher refractive index than its surroundings. In the optical amplification waveguide element, the optical amplification waveguide element is characterized in that the characteristics of the waveguide portion do not depend on the polarization direction.

【0010】さらにその導波路として、ガラス基板中の
ナトリウムイオンを銀イオンに一部置き換えたもの、導
波光のニアフィールドパターンが円形であるものを使用
する光増幅用導波路素子にて達成される。
Further, the waveguide can be achieved by a waveguide element for optical amplification using a glass substrate in which sodium ions are partially replaced by silver ions and a near field pattern of guided light is circular. .

【0011】[0011]

【作用】本発明において使用される導波路のTE,TM
モード間の等価屈折率差は、10-6程度以下と小さいた
め、事実上偏光依存性はないものとみなせる。したがっ
て、偏光依存性のない導波路型光増幅素子を得ることが
できる。
The TE, TM of the waveguide used in the present invention
Since the equivalent refractive index difference between modes is as small as about 10 −6 or less, it can be considered that there is virtually no polarization dependence. Therefore, it is possible to obtain a waveguide type optical amplification element having no polarization dependence.

【0012】[0012]

【実施例】以下本発明を、実施例に基づいてさらに詳し
く説明する。図1は、本発明による光増幅用素子の断面
図を示す。基板1は、希土類イオンがドープされたガラ
ス基板で、表面から約10μm以上の深さに信号光に対
して単一モードな導波路2が埋め込まれている。この導
波路の屈折率分布は対称であり、ここを伝搬する信号光
のニアフィールドパターンは、円形であることを特徴と
する。この導波路は、ナトリウムイオンと銀イオンの交
換によって形成された高屈折率部分を、さらに電界イオ
ン交換で埋め込んだもので、イオン半径の差による応力
が小さく、屈折率分布が対称なために、TE,TMモー
ド間の等価屈折率差は10-6程度以下である。
The present invention will be described in more detail based on the following examples. FIG. 1 shows a sectional view of an optical amplification element according to the present invention. The substrate 1 is a glass substrate doped with rare earth ions, and a single mode waveguide 2 for signal light is embedded at a depth of about 10 μm or more from the surface. The refractive index distribution of this waveguide is symmetric, and the near-field pattern of the signal light propagating therethrough is circular. This waveguide is a high-refractive-index portion formed by the exchange of sodium ions and silver ions, which is further embedded by field ion exchange. Since the stress due to the difference in ionic radius is small and the refractive index distribution is symmetric, The equivalent refractive index difference between the TE and TM modes is about 10 −6 or less.

【0013】図2には、この素子の作製プロセスを示
す。まず、原料に酸化エルビウムを1重量%含むソーダ
ガラス基板1の表面に、真空蒸着法あるいはスパッタ法
で厚さ300nmのチタン膜マスク3を形成し、これに
フォトリソグラフィー法によって、幅3μmの導波路パ
ターン開口部4を開ける。次にこの基板1を溶融硝酸銀
塩5中に入れ、マスク開口部4から銀イオンを基板内部
にイオン交換により拡散させて、断面が半円形の高屈折
率部分6を形成する。さらにマスク3を除去したのち、
溶融硝酸ナトリウム塩7中で、電源8により150V/
mmの電界を印加しながら、イオン交換により高屈折率
部分6を基板1内に埋め込み、導波路2とする。
FIG. 2 shows a manufacturing process of this element. First, a titanium film mask 3 having a thickness of 300 nm is formed on the surface of a soda glass substrate 1 containing 1% by weight of erbium oxide as a raw material by a vacuum deposition method or a sputtering method, and a waveguide having a width of 3 μm is formed on the titanium film mask 3 by a photolithography method. The pattern opening 4 is opened. Next, the substrate 1 is put into a molten silver nitrate 5 and silver ions are diffused from the mask opening 4 into the substrate by ion exchange to form a high refractive index portion 6 having a semicircular cross section. After removing the mask 3,
150 V / in a molten sodium nitrate 7 by a power supply 8
While applying an electric field of mm, the high refractive index portion 6 is embedded in the substrate 1 by ion exchange to form the waveguide 2.

【0014】このようにして形成した光増幅用導波路素
子に、300mWの励起光(波長0.98μm)を入射
させると同時に信号光(波長1.55μm)を入射させ
たところ、信号光に対して約0.5dB/cmの増幅作
用が得られた。また、このときのTE,TMモードに対
する増幅度の差は、0.001dB/cm以下であっ
た。
When 300 mW of pumping light (wavelength 0.98 μm) was made to enter the optical amplification waveguide element thus formed and signal light (wavelength 1.55 μm) was made to enter at the same time, As a result, an amplification effect of about 0.5 dB / cm was obtained. The difference in amplification degree between the TE and TM modes at this time was 0.001 dB / cm or less.

【0015】本実施例では、イオン交換により基板に応
力が生じるのを防ぐため、ナトリウムイオンと銀イオン
のイオン交換により高屈折率部分を形成したが、イオン
半径の近いこれ以外の組合せを使っても、同様の効果が
得られることは明白である。
In this embodiment, in order to prevent stress from being generated in the substrate due to ion exchange, the high refractive index portion is formed by ion exchange of sodium ion and silver ion. However, other combinations having close ion radii are used. However, it is clear that the same effect can be obtained.

【0016】例えば、カリウムイオンとタリウムイオン
のイオン交換でも良い。また、導波路の作製方法として
もイオン交換法に限られたものではなく、応力が発生し
なければCVD法などで作製してもよい。
For example, ion exchange between potassium ion and thallium ion may be used. Further, the method for producing the waveguide is not limited to the ion exchange method, and may be produced by the CVD method or the like as long as no stress is generated.

【0017】[0017]

【発明の効果】本発明によれば、偏光依存性のない導波
路型光増幅素子を得ることができ、これを使った光増幅
素子の偏光方向依存性を除去することが可能である。
According to the present invention, it is possible to obtain a waveguide type optical amplification element having no polarization dependency, and it is possible to eliminate the polarization direction dependency of an optical amplification element using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による偏光依存性のない導波路
型光増幅素子の断面図である。
FIG. 1 is a cross-sectional view of a waveguide type optical amplification element having no polarization dependence according to an embodiment of the present invention.

【図2】本発明の作製プロセスを示す図である。FIG. 2 is a diagram showing a manufacturing process of the present invention.

【図3】従来の導波路型光増幅素子の断面図である。FIG. 3 is a sectional view of a conventional waveguide type optical amplification element.

【符号の説明】[Explanation of symbols]

1 エルビウムドープガラス基板 2 埋め込み単一モード導波路 3 マスク 4 パターン開口部 5 溶融硝酸銀塩 6 高屈折率部分 7 溶融硝酸ナトリウム塩 8 電源 31 BK−7ガラス基板 32 楕円形埋め込み導波路 1 Erbium Doped Glass Substrate 2 Embedded Single Mode Waveguide 3 Mask 4 Pattern Opening 5 Molten Silver Nitrate 6 High Refractive Index Part 7 Molten Sodium Nitrate 8 Power Supply 31 BK-7 Glass Substrate 32 Elliptical Embedded Waveguide

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板中に光増幅作用を有する元素を含む
か、または当該元素を含む増幅部分を備え、かつその周
囲より高い屈折率を有する導波路部分を備えた光増幅用
導波路素子において、導波路部分の特性が偏光方向に依
存しないことを特徴とする光増幅用導波路素子。
1. A waveguide element for optical amplification, comprising: a substrate containing an element having an optical amplification effect, or an amplification portion containing the element, and a waveguide portion having a refractive index higher than that of the surrounding area. A waveguide element for optical amplification, wherein the characteristics of the waveguide portion do not depend on the polarization direction.
【請求項2】 特許請求範囲第1項の導波路として、ガ
ラス基板中のナトリウムイオンを銀イオンに一部置き換
えたものを使用する光増幅用導波路素子。
2. A waveguide element for optical amplification, wherein the waveguide according to claim 1 uses a glass substrate in which sodium ions are partially replaced with silver ions.
【請求項3】 特許請求範囲第1項の導波路として、導
波光のニアフィールドパターンが円形であるものを使用
する光増幅用導波路素子。
3. A waveguide element for optical amplification, wherein a waveguide having a circular near-field pattern is used as the waveguide of claim 1.
JP4346685A 1992-12-25 1992-12-25 Waveguide element for optical amplification Pending JPH06194533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346685A JPH06194533A (en) 1992-12-25 1992-12-25 Waveguide element for optical amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346685A JPH06194533A (en) 1992-12-25 1992-12-25 Waveguide element for optical amplification

Publications (1)

Publication Number Publication Date
JPH06194533A true JPH06194533A (en) 1994-07-15

Family

ID=18385126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346685A Pending JPH06194533A (en) 1992-12-25 1992-12-25 Waveguide element for optical amplification

Country Status (1)

Country Link
JP (1) JPH06194533A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077383A1 (en) * 2002-03-13 2003-09-18 Nikon Corporation Light amplifying device and method of manufacturing the device, light source device using the light amplifying device, light treatment device using the light source device, and exposure device using the light source device
US7024093B2 (en) 2002-12-02 2006-04-04 Shipley Company, Llc Methods of forming waveguides and waveguides formed therefrom
US7524781B2 (en) 2003-06-20 2009-04-28 Asahi Glass Company, Limited Non-lead optical glass and optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077383A1 (en) * 2002-03-13 2003-09-18 Nikon Corporation Light amplifying device and method of manufacturing the device, light source device using the light amplifying device, light treatment device using the light source device, and exposure device using the light source device
US7024093B2 (en) 2002-12-02 2006-04-04 Shipley Company, Llc Methods of forming waveguides and waveguides formed therefrom
US7524781B2 (en) 2003-06-20 2009-04-28 Asahi Glass Company, Limited Non-lead optical glass and optical fiber

Similar Documents

Publication Publication Date Title
JP2679904B2 (en) Manufacturing method of product comprising optical gain device
US6731837B2 (en) Optical fiber amplifiers and lasers and optical pumping devices therefor and methods of fabricating same
JP2755471B2 (en) Rare earth element doped optical waveguide and method of manufacturing the same
US5473722A (en) Rare-earth-doped lithium niobate waveguide structures
JP2786725B2 (en) Optical fiber and fiber optical active device
JPH10284777A (en) Optical fiber laser
Subramanian et al. Spectroscopy, Modeling, and Performance of Erbium-Doped Ta $ _ {2} $ O $ _ {5} $ Waveguide Amplifiers
JP3425734B2 (en) Manufacturing method of optical waveguide
US20030002771A1 (en) Integrated optical amplifier
JP2656972B2 (en) Multi-wavelength glass waveguide laser array
JPH06194533A (en) Waveguide element for optical amplification
JPH06186451A (en) Optical waveguide device
JP2721537B2 (en) Glass waveguide
EP1306947B1 (en) Planar lightwave circuit type optical amplifier
US20040091225A1 (en) Optically active waveguide device comprising a channel on an optical substrate
WO2001022135A1 (en) Method for fabricating optical loss filter and optical loss filter
JP2859763B2 (en) Functional glass waveguide for single mode transmission
JP3067231B2 (en) Method for manufacturing optical waveguide for optical amplifier
JPH04359230A (en) Rare earth element-doped optical waveguide and its manufacturing method
JP2006503420A (en) Optical amplifier for pumping multiple wavelengths
JP2003149481A (en) Optical amplifier-integrated waveguide
Patel Solid-state rare-earth doped media for applications in waveguide lasers
JP3029303B2 (en) Multi-fiber optical amplifier and connection structure of multi-core optical fiber using the same
WO2022180730A1 (en) Optical waveguide
JP2005260005A (en) Optical amplifier and optical amplification device