[go: up one dir, main page]

JPH06193464A - Gas turbine highly efficient exhaust heat recovery type power plant - Google Patents

Gas turbine highly efficient exhaust heat recovery type power plant

Info

Publication number
JPH06193464A
JPH06193464A JP34388892A JP34388892A JPH06193464A JP H06193464 A JPH06193464 A JP H06193464A JP 34388892 A JP34388892 A JP 34388892A JP 34388892 A JP34388892 A JP 34388892A JP H06193464 A JPH06193464 A JP H06193464A
Authority
JP
Japan
Prior art keywords
gas turbine
room
building
exhaust
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34388892A
Other languages
Japanese (ja)
Inventor
Akira Hirano
昭 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Industry and Control Solutions Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP34388892A priority Critical patent/JPH06193464A/en
Publication of JPH06193464A publication Critical patent/JPH06193464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wind Motors (AREA)

Abstract

(57)【要約】 【構成】ガスタービン発電設備の補機室21,ガスター
ビン室31,ロードギヤ室41,発電機室51に接続す
る換気空気を排出する排気ダクト23,33,43,5
4に純水用熱交換器24,34,44,55を設け、こ
れに純水を通過させて、熱回収ボイラ61に供給し、排
気ダクトの先端を建屋壁1を貫通する途中までとし、壁
穴あけを排気ダクト先端形状より大きく開放し、換気空
気99を噴出させて建屋内空気98を屋外へ引出す。 【効果】排熱回収ボイラへ供給される純水の温度が高め
られるので、蒸気発生量が増大し、建屋換気ファンが省
略出来るので補機消費動力が無くなり、プラント効率が
向上する。
(57) [Summary] [Structure] Exhaust ducts 23, 33, 43, 5 for exhausting ventilation air connected to the auxiliary equipment room 21, the gas turbine room 31, the load gear room 41, and the generator room 51 of the gas turbine power generation facility.
4, pure water heat exchangers 24, 34, 44, 55 are provided, and pure water is passed through the pure water heat exchanger to supply heat to the heat recovery boiler 61, so that the tip of the exhaust duct is halfway through the building wall 1. The wall hole is opened to a size larger than the shape of the exhaust duct tip, and ventilation air 99 is ejected to draw the building air 98 to the outside. [Effect] Since the temperature of the pure water supplied to the exhaust heat recovery boiler is raised, the amount of steam generated is increased and the building ventilation fan can be omitted, so that the power consumption of auxiliary machinery is eliminated and the plant efficiency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービン高効率排熱
回収発電設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine high efficiency exhaust heat recovery power generation facility.

【0002】[0002]

【従来の技術】従来の技術を図1,図2を用いて説明す
る。図1は、従来の排熱回収形発電設備の全体構成を示
したものである。通常、保守点検性を考慮して本体を構
成するガスタービン補機室21,ガスタービン室31,
ロードギア室41,発電機室51は建屋10の中に設置
し、ガスタービン燃焼用空気は建屋外に設けた燃焼空気
取入室11から取入ダクト12でガスタービン室に導か
れる。燃焼後、仕事をした高温の排気ガスは、ガスター
ビン室に接続した排熱回収ボイラ61を通り、煙突71
で大気中に放出される。各室の中は、機器が運転すると
熱を発生し室内が高温になるので、これを防ぐため、ガ
スタービン補機室,ガスタービン室,ロードギヤ室は、
建屋10内の空気を吸込む換気ブロワ22,32,42
を各室に取り付け、発電機室は発電機ロータに取り付け
られたブロワで、建屋外に設置された空気吸込室52か
ら吸込ダクト53で発電機室に導かれる。各ブロワで吸
込まれた空気は、各室内を冷却して各排気ダクト23,
33,43,54で建屋外に放出される。
2. Description of the Related Art A conventional technique will be described with reference to FIGS. FIG. 1 shows the overall configuration of a conventional heat recovery power generation facility. Normally, the gas turbine auxiliary equipment room 21, the gas turbine room 31, which constitute the main body in consideration of maintenance and inspection,
The load gear chamber 41 and the generator chamber 51 are installed in the building 10, and the gas turbine combustion air is guided from the combustion air intake chamber 11 provided outside the building to the gas turbine chamber by the intake duct 12. After combustion, the hot exhaust gas, which has worked, passes through the exhaust heat recovery boiler 61 connected to the gas turbine chamber and passes through the chimney 71.
Released into the atmosphere. In each room, when equipment operates, heat is generated and the temperature inside becomes high. To prevent this, the gas turbine auxiliary machine room, gas turbine room and load gear room are
Ventilation blowers 22, 32, 42 that suck the air in the building 10.
Is attached to each room, and the generator room is a blower attached to the generator rotor, and is guided to the generator room from the air suction chamber 52 installed outside the building by the suction duct 53. The air sucked by each blower cools each room, and each exhaust duct 23,
It is released outside the building at 33, 43, and 54.

【0003】図2は、ガスタービン室と建屋の断面図で
ある。ガスタービン室の換気は、室の低部に取り付けら
れた換気ブロワ32で建屋内の空気98を吸込み、室内
を冷却し熱を奪って排気ダクト33で建屋外に放出す
る。また建屋内も各室内の温空気が漏れ出たり、太陽熱
が建屋壁1、窓を伝って侵入してくるので高温となり、
天井クレーン4の故障の原因となる。このため、建屋の
壁の下部にルーバ2を設け、屋根の数箇所に建屋換気フ
ァン3を設けて、強制的に建屋外の空気98を取り入れ
最高でも65℃以下に押さえる設計とする。ガスタービ
ン室の換気ブロワは建屋の下方部に取り付けられている
ので、建屋内の空気を吸込んでも、比較的低温の状態で
ある。
FIG. 2 is a sectional view of a gas turbine room and a building. For ventilation of the gas turbine room, the ventilation blower 32 attached to the lower part of the room sucks in the air 98 in the building, cools the room to remove heat, and discharges it to the outside of the building in the exhaust duct 33. Also, inside the building, hot air leaks out from each room, and solar heat enters through the building wall 1 and windows, causing it to reach a high temperature.
This will cause a failure of the overhead crane 4. For this reason, the louver 2 is provided in the lower part of the wall of the building, and the building ventilation fan 3 is provided at several places on the roof so that the air 98 outside the building is forcibly taken in and the temperature is kept at 65 ° C or less at the maximum. Since the ventilation blower of the gas turbine room is attached to the lower part of the building, it is in a relatively low temperature state even if it takes in air inside the building.

【0004】本建屋の換気方法に関連したものに特開昭
59−128922号公報が有るが、空調機を設けた非常に高価
で不経済な設備となっている。
Japanese Patent Laid-Open Publication No. Sho
Although there is a 59-128922 publication, it is a very expensive and uneconomical facility equipped with an air conditioner.

【0005】[0005]

【発明が解決しようとする課題】ガスタービン排熱回収
発電設備の熱効率は、供給される燃料の単位時間当たり
の熱量を分母とし、送電端の電力と排熱回収ボイラで発
生する蒸気量を熱量に換算した分子で、割算をした値で
ある。通常この熱効率は約60%で、残り40%は充分
利用しないで排熱したり、無駄な換気の動力として電力
を消費しているからである。
The thermal efficiency of the gas turbine exhaust heat recovery power generation facility is such that the heat quantity per unit time of the supplied fuel is the denominator, and the power at the power transmission end and the steam quantity generated in the exhaust heat recovery boiler are calorific values. It is the value obtained by dividing by the numerator converted to. This is because the thermal efficiency is usually about 60%, and the remaining 40% is exhausted without sufficient use or consumes electric power as power for useless ventilation.

【0006】本発明の目的は、ガスタービンや発電機を
冷却する換気空気の排熱を有効に利用し、換気空気の放
出エネルギで建屋内の空気を強制的に屋外へ排出させ、
建屋換気ファンを廃止する事にある。
An object of the present invention is to effectively use the exhaust heat of ventilation air for cooling a gas turbine or a generator, and to forcibly discharge the air inside the building to the outside with the energy released from the ventilation air.
It is to abolish the building ventilation fan.

【0007】[0007]

【課題を解決するための手段】ガスタービン発電設備の
本体を構成するガスタービン補機室,ガスタービン室,
ロードギヤ室,発電機室は、それぞれ換気の為の排気ダ
クトを備え、建屋の外へ排気している。各排気ダクトに
熱交換器を設け、ボイラ給水ポンプで純水を排熱回収ボ
イラに送る配管を4系統に分けて本熱交換器に接続し、
純水を加熱させる。
[Means for Solving the Problems] A gas turbine auxiliary equipment room, a gas turbine room, which constitutes a main body of a gas turbine power generation facility,
The load gear room and the generator room are equipped with exhaust ducts for ventilation, and exhaust to the outside of the building. Each exhaust duct is equipped with a heat exchanger, and the boiler feed pump is connected to this heat exchanger by dividing the piping for sending pure water to the exhaust heat recovery boiler into four systems.
Heat pure water.

【0008】熱交換器の出口側排気ダクトの先端は、建
屋上部の壁を貫通した途中までとし、壁穴あけを排気ダ
クト先端形状より大きく開放し、排気ダクト内の空気を
噴出させ、エジェクタの役目をさせる。
The tip of the outlet side exhaust duct of the heat exchanger should be halfway through the wall of the upper part of the building, the wall drilling should be opened larger than the shape of the tip of the exhaust duct, and the air in the exhaust duct should be ejected to serve as an ejector. Let

【0009】[0009]

【作用】本体を構成している各室の温度は、機器の耐熱
や運転員の作業性から決まるが、通常60〜80℃前後
である。一方、熱交換器を通る純水の入口温度は、約1
0〜20℃で、室の排気により加熱して排熱回収ボイラ
に供給すれば、蒸発量が増えプラント熱効率が改善され
る。
The temperature of each room constituting the main body is determined by the heat resistance of the equipment and the workability of the operator, but is usually around 60 to 80 ° C. On the other hand, the inlet temperature of pure water passing through the heat exchanger is about 1
If it is heated to 0 to 20 ° C. by the exhaust gas of the chamber and supplied to the exhaust heat recovery boiler, the evaporation amount is increased and the plant thermal efficiency is improved.

【0010】また各室からの排気ダクトは、建屋の長手
方向に4ヶ所間隔をあけて配列されるので、屋根を片勾
配にして排気ダクトがのびる方向に高くすれば、最も加
熱された建屋内空気が、排熱ダクト先端部のエジェクタ
効果により、建屋外に引っ張りだされる。これにより従
来、屋根に取り付けていた建屋換気ファン数個を不要と
する事が出来るので、むだな消費電力が少なくなり、プ
ラント効率がよくなる。
Further, since the exhaust ducts from each room are arranged at intervals of four places in the longitudinal direction of the building, if the roof is made a sloping slope and the exhaust duct is raised in the direction in which the exhaust duct extends, the most heated interior of the building. Air is pulled outside the building due to the ejector effect at the tip of the exhaust heat duct. This eliminates the need for several building ventilation fans that were conventionally installed on the roof, thus reducing wasteful power consumption and improving plant efficiency.

【0011】[0011]

【実施例】以下、本発明の実施例を図3ないし図5を用
いて、詳細に説明する。図3は、本発明による全体構成
を示したものである。通常、排熱回収形発電設備の本体
を構成するガスタービン補機室21,ガスタービン室3
1,ロードギヤ室41,発電機室51は、保守点検性を
考慮して建屋10の中に設置するが、ガスタービンの燃
焼用空気は屋外に設けた燃焼空気取入室11から、取入
ダクト12でガスタービン室に導かれる。燃焼用空気
は、ガスタービン34で燃焼後、仕事をして排気ガスと
なり、ガスタービン室に接続した排熱回収ボイラ61を
通り煙突71で大気中に放出される。各室の中は、機器
が運転すると熱を発生し室内が高温になるので、これを
防ぐ為、ガスタービン補機室,ガスタービン室,ロード
ギヤ室は、建屋10内の空気98を吸込む換気ブロワ2
2,32,42を各室に取り付け、発電機は発電機ロー
タに取り付けられたブロワで、建屋外に設置された空気
吸込室52から吸込ダクト53で発電機室に外気が導か
れる。各ブロワで吸込まれた空気99は、各室内を冷却
し各排気ダクト23,33,43,54で屋外に導かれ
るが、各排気ダクトの途中に純水用熱交換器24,3
4,44,55を設け、ボイラ給水ポンプ82で純水タ
ンク81の純水83を配管84で純水用熱交換器を通
し、排熱回収ボイラに供給する。各室から排気ダクトに
流れ出す空気の温度は、換気する空気の流量により異な
るが、経済的な設計として60℃〜80℃位である。一
方、純水の温度は、ボイラ給水ポンプ出口で約10〜2
0℃なので、配管を4本に分岐して各熱交換器の交換熱
量に応じた純水量を分配すれば、5〜10℃純水を加熱
してボイラに入るので、熱効率の向上となる。
Embodiments of the present invention will be described in detail below with reference to FIGS. FIG. 3 shows the overall configuration according to the present invention. Normally, the gas turbine auxiliary equipment room 21 and the gas turbine room 3 which constitute the main body of the exhaust heat recovery type power generation equipment
1, the load gear chamber 41 and the generator chamber 51 are installed in the building 10 in consideration of maintainability, but the combustion air of the gas turbine is taken from the combustion air intake chamber 11 provided outside the intake duct 12 Led to the gas turbine room. The combustion air, after being burned in the gas turbine 34, works and becomes exhaust gas, which passes through the exhaust heat recovery boiler 61 connected to the gas turbine chamber and is discharged into the atmosphere at the chimney 71. In each room, when equipment is operated, heat is generated and the temperature of the room becomes high. Therefore, in order to prevent this, the gas turbine auxiliary machine room, the gas turbine room, and the load gear room have a ventilation blower that sucks the air 98 in the building 10. Two
2, 32 and 42 are attached to each room, and the generator is a blower attached to the generator rotor, and the outside air is guided to the generator room from the air suction chamber 52 installed outside the building through the suction duct 53. The air 99 sucked by each blower cools each room and is guided to the outside by each exhaust duct 23, 33, 43, 54, and the pure water heat exchangers 24, 3 are provided in the middle of each exhaust duct.
4, 44 and 55 are provided, and the pure water 83 in the pure water tank 81 is supplied by the boiler feed pump 82 through the heat exchanger for pure water through the pipe 84 and supplied to the exhaust heat recovery boiler. The temperature of the air flowing out from each chamber to the exhaust duct varies depending on the flow rate of the air to be ventilated, but it is about 60 ° C to 80 ° C as an economical design. On the other hand, the temperature of pure water is about 10 to 2 at the boiler feed pump outlet.
Since the temperature is 0 ° C., if the pipe is branched into four and the amount of pure water according to the heat exchange amount of each heat exchanger is distributed, the pure water is heated to 5 to 10 ° C. and enters the boiler, so that the thermal efficiency is improved.

【0012】図4は、ガスタービン室と建屋の断面図で
ある。ガスタービン室31の換気は、室の低部に取り付
けられた換気ブロワ32で建屋内の空気98を吸込み、
ガスタービン38と室内を冷却し熱を奪って純水用熱交
換器34に入り、純水に熱を与えた後、建屋の天井近く
までのぼり壁を貫通する為、直角に曲がりここから排気
ダクトの断面積を絞って建屋壁1の中で先端を終らす。
FIG. 4 is a sectional view of the gas turbine room and the building. Ventilation of the gas turbine room 31 takes in the air 98 in the building with a ventilation blower 32 attached to the lower part of the room,
After cooling the gas turbine 38 and the room to remove heat to enter the pure water heat exchanger 34, heat the pure water, and then bend at a right angle to pass through the climbing wall up to the ceiling of the building, and from there the exhaust duct Squeeze the cross-section area to finish the tip in the building wall 1.

【0013】壁側の穴は、排気ダクトの外形寸法より少
し大きくあけて、ダクト先端より穴の縁を建屋外側に多
く出し、排気ダクト空気99の噴出により、建屋内空気
98をエジェクタ効果により屋外へ引き出す。屋外の空
気98は、換気ブロワと排気のエジェクタ効果により、
建屋下部に取り付けられたルーバ2より流入し、各室の
表面や天井のクレーン4、建屋内部を冷却し、加温され
る事により上昇し、天井の傾斜でエジェクタ部へ集めら
れる。エジェクタは排気ダクトの出口部なので建屋の長
手方向に4ヶ所設ける事が出来るので建屋全体を充分換
気する事は可能である。ルーバは建屋の長手方向の両側
の壁下に、柱と柱の間に設ける。
The hole on the wall side is made slightly larger than the outer dimension of the exhaust duct, and the edge of the hole is exposed to the outdoor side of the building more than the tip of the duct. Pull out to. The outdoor air 98 is generated by the ventilation blower and the ejector effect of exhaust.
It flows in from the louver 2 attached to the lower part of the building, cools the surface of each room, the crane 4 on the ceiling, and the inside of the building, rises by being heated, and is collected to the ejector section at the inclination of the ceiling. Since the ejector is the outlet of the exhaust duct, four ejectors can be provided in the longitudinal direction of the building, so it is possible to sufficiently ventilate the entire building. Louvers will be installed between columns under the walls on both sides of the building in the longitudinal direction.

【0014】図5は、純水用熱交換器の詳細図で、構造
は4個共同一なので、代表としてガスタービン室の純水
用熱交換器を示す。ボイラ給水ポンプで加圧された純水
83は、母管から分岐した配管84で熱交換器下水室3
5に導びかれ、排気ダクト33の下面と上面を接続する
チューブ37の中を純水が通り、熱交換器上水室36に
入る。一方、室を換気した空気99は、排気ダクトによ
り熱交換器を構成するチューブに流れ、無数のチューブ
の表面で熱交換をして排気ダクトにより、大気に放出さ
れる。また、熱交換器の上水室の純水は配管により他の
純水ラインと共に1本に集合して、排熱回収ボイラに送
り込まれる。
FIG. 5 is a detailed view of the pure water heat exchanger. Since the structure of the pure water heat exchanger is the same, the pure water heat exchanger in the gas turbine chamber is shown as a representative. The pure water 83 pressurized by the boiler water supply pump is supplied to the heat exchanger sewage chamber 3 through the pipe 84 branched from the mother pipe.
5, the pure water passes through the tube 37 connecting the lower surface and the upper surface of the exhaust duct 33, and enters the heat exchanger water supply chamber 36. On the other hand, the air 99 that has ventilated the chamber flows into the tubes constituting the heat exchanger through the exhaust duct, exchanges heat with the surfaces of the innumerable tubes, and is released into the atmosphere through the exhaust duct. Further, the pure water in the upper water chamber of the heat exchanger is collected together with other pure water lines by a pipe and sent to the exhaust heat recovery boiler.

【0015】[0015]

【発明の効果】本発明によれば、 (1)ガスタービン発電設備の本体を囲む室の換気空気
は、従来利用されず大気に放出していたが、換気空気の
熱エネルギを排熱回収ボイラの供給する純水を加熱する
事により、蒸気量が増えて熱効率が向上する。
EFFECTS OF THE INVENTION According to the present invention, (1) The ventilation air in the room surrounding the main body of the gas turbine power generation facility has not been conventionally used and is released to the atmosphere. However, the heat energy of the ventilation air is discharged to the exhaust heat recovery boiler. By heating the pure water supplied by, the amount of steam is increased and the thermal efficiency is improved.

【0016】(2)従来建屋の中を換気するため、建屋換
気ファンを数ヶ所設けていたが、本体を換気した排気ダ
クトの先端部でエジェクタをきかせ、建屋内の温暖化し
た空気を排出する事により、建屋換気ファンを省略する
事ができ、消費電力が無くなる。
(2) In order to ventilate the interior of the building, several building ventilation fans have been provided, but the ejector is activated by the tip of the exhaust duct that ventilates the main body to discharge the warmed air inside the building. As a result, the building ventilation fan can be omitted and the power consumption will be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術の排熱回収形発電設備の全体説明図。FIG. 1 is an overall explanatory view of a conventional exhaust heat recovery power generation facility.

【図2】従来技術のガスタービン室と建屋の断面図。FIG. 2 is a sectional view of a conventional gas turbine room and a building.

【図3】本発明による全体系統図。FIG. 3 is an overall system diagram according to the present invention.

【図4】本発明によるガスタービン室と建屋の断面図。FIG. 4 is a sectional view of a gas turbine room and a building according to the present invention.

【図5】本発明による純水用熱交換器の説明図。FIG. 5 is an explanatory view of a pure water heat exchanger according to the present invention.

【符号の説明】[Explanation of symbols]

1…建屋壁、2…ルーバ、11…燃焼空気取入室、12
…取りダクト、21…ガスタービン補機室、22…換気
ブロワ、23…排気ダクト、24…純水用熱交換器、3
1…ガスタービン室、32…換気ブロワ、33…排気ダ
クト、34…純水用熱交換器、41…ロードギヤ室、4
2…換気ブロワ、51…発電機室、55…純水用熱交換
器、81…純水タンク、82…ボイラ給水ポンプ、84
…配管。
1 ... Building wall, 2 ... Louver, 11 ... Combustion air intake room, 12
... Taking duct, 21 ... Gas turbine auxiliary equipment room, 22 ... Ventilation blower, 23 ... Exhaust duct, 24 ... Pure water heat exchanger, 3
1 ... Gas turbine room, 32 ... Ventilation blower, 33 ... Exhaust duct, 34 ... Pure water heat exchanger, 41 ... Road gear room, 4
2 ... Ventilation blower, 51 ... Generator room, 55 ... Pure water heat exchanger, 81 ... Pure water tank, 82 ... Boiler feed pump, 84
…Piping.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】建屋内にガスタービン発電設備を構成する
ガスタービン補機室,ガスタービン室,ロードギヤ室,
発電機室を設置し、それぞれの室に換気ブロワ及び排気
ダクトを備えたガスタービン発電機換気設備において、
前記各排気ダクトにガスタービン排熱回収ボイラに給水
する純水用熱交換器を設けた事を特徴とするガスタービ
ン高効率排熱回収発電設備。
1. A gas turbine auxiliary equipment room, a gas turbine room, a load gear room, which constitute a gas turbine power generation facility, in a building.
In a gas turbine generator ventilation facility, where a generator room is installed and each room is equipped with a ventilation blower and an exhaust duct,
A gas turbine high-efficiency exhaust heat recovery power generation facility, wherein a heat exchanger for pure water for supplying water to a gas turbine exhaust heat recovery boiler is provided in each of the exhaust ducts.
【請求項2】請求項1において、前記各排気ダクトの先
端を建屋の壁を貫通する途中までとし、壁穴あけを前記
排気ダクトの先端形状より大きく開放し、前記排気ダク
ト内の空気を噴出させるガスタービン高効率排熱回収発
電設備。
2. The exhaust duct according to claim 1, wherein a tip of each of the exhaust ducts is partway through a wall of a building, a wall hole is opened larger than a tip shape of the exhaust duct, and air in the exhaust duct is ejected. Gas turbine high efficiency exhaust heat recovery power generation equipment.
JP34388892A 1992-12-24 1992-12-24 Gas turbine highly efficient exhaust heat recovery type power plant Pending JPH06193464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34388892A JPH06193464A (en) 1992-12-24 1992-12-24 Gas turbine highly efficient exhaust heat recovery type power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34388892A JPH06193464A (en) 1992-12-24 1992-12-24 Gas turbine highly efficient exhaust heat recovery type power plant

Publications (1)

Publication Number Publication Date
JPH06193464A true JPH06193464A (en) 1994-07-12

Family

ID=18365018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34388892A Pending JPH06193464A (en) 1992-12-24 1992-12-24 Gas turbine highly efficient exhaust heat recovery type power plant

Country Status (1)

Country Link
JP (1) JPH06193464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133408A (en) * 2008-12-03 2010-06-17 General Electric Co <Ge> Cooling system for turbomachine
JP2011190796A (en) * 2010-03-16 2011-09-29 Samsung Techwin Co Ltd Turbine system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133408A (en) * 2008-12-03 2010-06-17 General Electric Co <Ge> Cooling system for turbomachine
JP2011190796A (en) * 2010-03-16 2011-09-29 Samsung Techwin Co Ltd Turbine system

Similar Documents

Publication Publication Date Title
US20080216461A1 (en) Micro Gas Turbine System
US6460360B2 (en) Power-generating and energy-saving system
US4184856A (en) Method for the utilization of the heat energy of sewage
CN203893341U (en) Multi-fan evaporative cooling air conditioner
GB2374661A (en) Ventilation system for a building
EP0196298B1 (en) Method and device for operation of a heating plant
CN204853527U (en) Plenum heating waste heat recovery system is united to low low -level (stack -gas) economizer of coal -fired unit
CN205373043U (en) Grain drying tower heating system&#39;s surplus heat energy -saving processing system
JPH06193464A (en) Gas turbine highly efficient exhaust heat recovery type power plant
CN211819631U (en) Container structure of container type gas generator set
CN211925818U (en) Heater system for heat exchange of flue gas at boiler tail
CN114658616A (en) Wind Turbine
US4256081A (en) Air circulation and humidification system for stoves
CN213747960U (en) Water mist discharging device of aluminum online quenching equipment
CN212409433U (en) Ultralow-noise countercurrent open cooling tower
JPH05502932A (en) Method and apparatus in closed heating plants
JPH11142067A (en) Air-cooled steam condensing apparatus and operating method thereof
CN210801429U (en) Bean product workshop defogging dehumidification system
JPH062569A (en) Multi-purpose cooling method for gas turbine power generation equipment
CN219299623U (en) Rapid air source supplying device of induced draft fan
CN200985907Y (en) Self heat sinking type fire-fighting smoke discharging blower fan
CN219177848U (en) Central air conditioner heat abstractor
CN218717125U (en) Prevent wind husky generating set
JP7580165B1 (en) Compressor housing
CN209893976U (en) Evaporative condensing device for condensing power generation system