[go: up one dir, main page]

JPH061848B2 - antenna - Google Patents

antenna

Info

Publication number
JPH061848B2
JPH061848B2 JP59194225A JP19422584A JPH061848B2 JP H061848 B2 JPH061848 B2 JP H061848B2 JP 59194225 A JP59194225 A JP 59194225A JP 19422584 A JP19422584 A JP 19422584A JP H061848 B2 JPH061848 B2 JP H061848B2
Authority
JP
Japan
Prior art keywords
antenna
dielectric substrate
short
circuited
feeding point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59194225A
Other languages
Japanese (ja)
Other versions
JPS6171701A (en
Inventor
晃一 小川
伴希 上野
裕昭 小杉
純子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59194225A priority Critical patent/JPH061848B2/en
Priority to US06/776,960 priority patent/US4700194A/en
Priority to EP85306606A priority patent/EP0176311B1/en
Priority to DE8585306606T priority patent/DE3584658D1/en
Publication of JPS6171701A publication Critical patent/JPS6171701A/en
Publication of JPH061848B2 publication Critical patent/JPH061848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、パーソナル無線、ポセットベル等の小形携帯
無線機用のアンテナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna for a small portable wireless device such as a personal wireless device or a poset bell.

従来例の構成とその問題点 近年、小形携帯無線機の分野はパーソナル無線やポケッ
トベルのようにVHF帯からUHF帯以上の周波数帯に
移行しつつあり、それに伴なって上記周波数帯で使用す
るのに適した小形携帯無線機用のアンテナに対する要求
が高まっている。携帯無線機用のアンテナに要求される
性能には様々なものがあるが、次の3点が特に重要であ
る。()アンテナを電子回路および人体に接近させるこ
とによる利得の低下が少ないこと。()電子回路とアン
テナが高周波的に分離されており、電子回路のアース部
および無線機筐体に高周波電流が流れないこと。()小
形、軽量であること。()の条件はポケットベル等の内
蔵アンテナに関しては特に重要である。
Configuration of Conventional Example and Problems Thereof In recent years, the field of small portable radios is shifting from the VHF band to the UHF band or higher frequency bands such as personal radios and pagers. There is an increasing demand for an antenna for a small portable wireless device that is suitable for the mobile phone. Although there are various performances required for an antenna for a portable wireless device, the following three points are particularly important. () The decrease in gain due to bringing the antenna close to the electronic circuit and the human body is small. () The electronic circuit and the antenna are separated from each other in terms of high frequency, and high frequency current does not flow to the ground section of the electronic circuit and the radio housing. () Small and lightweight. The condition in () is especially important for built-in antennas such as pagers.

従来、携帯無線機用のアンテナとしては第1図に示すス
リーブアンテナがよく用いられている。スリーブアンテ
ナは、図に示すように1/4波長モノポールアンテナ10
1の給電部にシュペルトップ102を付けることによっ
て同軸線路103の外部導体の表面に流れる定在波電流
を阻止することを特徴としており、無線機筐体に高周波
電流が流れないので携帯無線機用の外付アンテナとして
極めて良好に動作する。しかし、スリーブアンテナはそ
の構造から1/2波長以上の長さが必要となり、1/2波長以
下のアンテナを実現することができない。またスリーブ
アンテナは電子回路および人体の接近によるインピーダ
ンスの変化および利得の低下が著るしく、無線機本体に
内蔵するアンテナとしては不適当である。
Conventionally, a sleeve antenna shown in FIG. 1 is often used as an antenna for a portable radio device. The sleeve antenna is a 1/4 wavelength monopole antenna 10 as shown in the figure.
It is characterized by blocking the standing wave current flowing on the surface of the outer conductor of the coaxial line 103 by attaching the spell top 102 to the power feeding portion of No. 1, and since a high-frequency current does not flow in the radio housing, the portable radio device Works very well as an external antenna for a car. However, the sleeve antenna requires a length of 1/2 wavelength or more due to its structure, and an antenna of 1/2 wavelength or less cannot be realized. Further, the sleeve antenna is not suitable as an antenna incorporated in the radio main body because the impedance change and the gain decrease due to the approach of the electronic circuit and the human body are remarkable.

発明の目的 本発明の目的は、誘電体基板を使用した極めて小形,軽
量であるかつ高利得な携帯無線機用のアンテナを提供す
ることにある。
OBJECT OF THE INVENTION It is an object of the present invention to provide an antenna for a portable radio device which uses a dielectric substrate and which is extremely small and lightweight and has a high gain.

発明の構成 本発明のアンテナは、両面に金属導体が存在する波長に
比べて十分薄い多角形の誘電体基板を有し、前記誘電体
基板の一端面を電気的に接続して短絡辺を形成し、前記
誘電体基板の第1の面の金属導体の前記短絡辺と前記短
絡辺と対向する開放辺の間の長さを電気的に前記誘電体
基板上の波長のほぼ4分の1の奇数倍に選び、前記誘電
体基板の第1の面の金属導体上の一点を給電点高周波側
端子,第2の面の金属導体の一点を給電点アース側端子
とし、前記給電点アース側端子の位置を前記誘電体基板
の第2の面の金属導体上に形成される定在波電圧が節に
なる位置に設定するように構成したものである。
The antenna of the present invention has a polygonal dielectric substrate that is sufficiently thin as compared with the wavelength at which metal conductors are present on both surfaces, and one end surface of the dielectric substrate is electrically connected to form a short-circuit side. Then, the length between the short-circuited side and the open side opposite to the short-circuited side of the metal conductor on the first surface of the dielectric substrate is electrically set to about ¼ of the wavelength on the dielectric substrate. An odd multiple is selected, one point on the metal conductor of the first surface of the dielectric substrate is a high frequency side terminal of the feeding point, and one point of the metal conductor of the second surface is a grounding side terminal of the feeding point, and the grounding side terminal of the feeding point. Is set to a position where the standing wave voltage formed on the metal conductor on the second surface of the dielectric substrate becomes a node.

実施例の説明 以下本発明の一実施例について図面を参照しながら説明
する。第2図は本発明によるアンテナの第一の実施例の
構成図である。aは平面図、bは正面図である。201
は波長λに比べて十分薄い厚さtの長方形の誘電体基板
(比誘電率Σ)であって、基板下面には薄い金属箔20
2が、上面には金属箔203が密着している。誘電体基
板201の一辺204は辺全体に渡って金属導体が設け
られ、金属箔202,203が互いに電気的に接続され
ている。205は同軸コネクターであって、図示するよ
うに誘電体基板下面に取付けられており、その位置は辺
204からFであってほぼ誘電体基板の中央(即ちH≒
E/2)である。206は同軸コネクターの内部導体を
示しており、誘電体基板上面と電気的に接続されてい
る。アンテナの共振周波数fは誘電体基板上面の金属箔
203の長さDによってほぼ決定され、f=(2N−
1)C/(4D√ε)により計算できる(C:光速,
N:自然数)。しかし、共振周波数fは概略の値であっ
てかつ誘電体基板201の厚さtおよび給電点の位置に
よって変化するから、共振周波数fの正確な値は実験的
に求める。この場合、Dを大きくすれば共振周波数は下
がり、Dを小さくすれば共振周波数は上がる。次に給電
点の位置(Fの値)は次のようにして決定する。第3図
は第2図のアンテナの入力インピーダンスの軌跡を表わ
す。円内は反射係数面を表わしているが、図が複雑にな
るのを避けるためインピーダンス線図(スミスチャー
ト)は描いていない。図に示すようにFを大きくすると
インピーダンス軌跡の円弧は大きくなり、共振周波数に
おける入力インピーダンスの抵抗分(303)は大きく
なる。これに対してFを小さくするとインピーダンス軌
跡の円弧は小さくなり、共振周波数における入力インピ
ーダンスの抵抗分(301)も小さくなる。従ってFの
値を適当に選ぶことによって共振周波数における入力イ
ンピーダンスの抵抗分をほぼ任意の値に設定することが
でき、図の302に示すように入力インピーダンスを正
規化インピーダンス(通常50Ω)と等しくすることが
できる。給電点の位置Fが決定されれば次に誘電体基板
201の開放端207と給電点との距離Gを次のように
して決定する。同軸コネクター205より高周波電力を
アンテナに供給すると誘電体基板の上面および下面の金
属箔203,202には定在波電圧が生じる。このアン
テナ上の定在波電圧の分布は長さGを変えることによっ
て変化させることができ、Gを適当な長さに選ぶことに
よって、誘電体基板下面の定在波電圧の分布を同軸コネ
クター205の取り付け部でちょうど節になるようにす
ることができる。
Description of Embodiments One embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram of the first embodiment of the antenna according to the present invention. a is a plan view and b is a front view. 201
Is a rectangular dielectric substrate (relative permittivity Σ) having a thickness t sufficiently smaller than the wavelength λ, and a thin metal foil 20 is formed on the lower surface of the substrate.
2, the metal foil 203 is in close contact with the upper surface. A metal conductor is provided over one side 204 of the dielectric substrate 201, and the metal foils 202 and 203 are electrically connected to each other. Reference numeral 205 denotes a coaxial connector, which is attached to the lower surface of the dielectric substrate as shown in the drawing, and the position thereof is from the side 204 to F, approximately at the center of the dielectric substrate (that is, H≈).
E / 2). Reference numeral 206 denotes an inner conductor of the coaxial connector, which is electrically connected to the upper surface of the dielectric substrate. The resonance frequency f of the antenna is substantially determined by the length D of the metal foil 203 on the upper surface of the dielectric substrate, and f = (2N−
1) It can be calculated by C / (4D√ε) (C: speed of light,
N: natural number). However, since the resonance frequency f is a rough value and changes depending on the thickness t of the dielectric substrate 201 and the position of the feeding point, the accurate value of the resonance frequency f is experimentally obtained. In this case, if D is increased, the resonance frequency is lowered, and if D is decreased, the resonance frequency is increased. Next, the position (value of F) of the feeding point is determined as follows. FIG. 3 shows the locus of the input impedance of the antenna of FIG. The circle represents the reflection coefficient surface, but the impedance diagram (Smith chart) is not drawn to avoid complicating the figure. As shown in the figure, when F is increased, the arc of the impedance locus is increased, and the resistance component (303) of the input impedance at the resonance frequency is increased. On the other hand, if F is made smaller, the arc of the impedance locus becomes smaller and the resistance component (301) of the input impedance at the resonance frequency also becomes smaller. Therefore, by appropriately selecting the value of F, the resistance component of the input impedance at the resonance frequency can be set to an almost arbitrary value, and the input impedance is made equal to the normalized impedance (usually 50Ω) as shown by 302 in the figure. be able to. If the position F of the feeding point is determined, then the distance G between the open end 207 of the dielectric substrate 201 and the feeding point is determined as follows. When high frequency power is supplied to the antenna from the coaxial connector 205, a standing wave voltage is generated in the metal foils 203 and 202 on the upper and lower surfaces of the dielectric substrate. The distribution of the standing wave voltage on this antenna can be changed by changing the length G, and by selecting G to be an appropriate length, the distribution of the standing wave voltage on the lower surface of the dielectric substrate can be changed to the coaxial connector 205. You can make it just like a knot at the mounting part of.

例えば、第2図において、Gは電気的に4分の1波長の
奇数倍に選ぶ。その時の金属箔203、202上の定在
波分布の一例を第2図(c)に示す。
For example, in FIG. 2, G is electrically selected to be an odd multiple of a quarter wavelength. An example of the standing wave distribution on the metal foils 203 and 202 at that time is shown in FIG. 2 (c).

アンテナのグランドプレーンを本発明のように従来例に
比べて小さくした場合、一般にグランドプレーン上にも
定在波が生じる。その場合、アンテナエレメントの金属
箔203上の定在波と同様グランドプレーン上の定在波
も開放端207において最大となるので、Gを4分の1
波長の奇数倍に選べば、給電点のアース側端子205で
定在波の節にすることができ、同軸給電線の外導体をア
ース電位にすることができるので、アンテナから外導体
への漏れ電流を阻止できる。
When the ground plane of the antenna is made smaller than in the conventional example as in the present invention, a standing wave is also generally generated on the ground plane. In that case, the standing wave on the ground plane becomes the maximum at the open end 207 as well as the standing wave on the metal foil 203 of the antenna element.
If an odd multiple of the wavelength is selected, a standing wave node can be formed at the ground side terminal 205 at the feeding point, and the outer conductor of the coaxial feeding line can be set to the ground potential, so that leakage from the antenna to the outer conductor can occur. Can block current.

Gはこのように給電部のアース側端子が定在波電圧の節
になるように選び、こうすることによって、同軸コネク
ター205に同軸線路を接続して給電した場合、同軸線
路の外部導体の表面に流れる定在波電流を阻止すること
ができる。このようにして外導体の漏れ電流を防ぐと、
無線機筐体に高周波電流が流れないため無線機によるア
ンテナのインピーダンスや指向性の変化が小さくなる。
また、人体によるアンテナ特性の劣化も小さくなる。ア
ンテナの巾Eおよび厚さtはほぼ任意に設定することが
できる。ただし実験によればEあるいはtを大きくする
とアンテナの利得を大きくすることができる。以上述べ
た方法によってアンテナ各部の寸法は決定されるが、一
例として、誘電体基板としてテフロン(Σ=2.6)を
用い、N=1とした場合の設計例を次に示す。f=93
0MHz,D=4.8cm,E=5cm,F=1.1cm,G=
5.5cm,t=1.6mmとする。これらの数値は次のよ
うにして求めることができる。
G is thus selected so that the ground side terminal of the power feeding section becomes a node of the standing wave voltage, and when the coaxial line is connected to the coaxial connector 205 to feed power, the surface of the outer conductor of the coaxial line is selected. It is possible to block the standing wave current that flows through. In this way, preventing leakage current of the outer conductor,
Since no high-frequency current flows through the radio housing, changes in the impedance and directivity of the antenna due to the radio become small.
In addition, the deterioration of the antenna characteristics due to the human body is reduced. The width E and the thickness t of the antenna can be set almost arbitrarily. However, according to experiments, the gain of the antenna can be increased by increasing E or t. The dimensions of each part of the antenna are determined by the method described above. As an example, a design example in which Teflon (Σ = 2.6) is used as the dielectric substrate and N = 1 is shown below. f = 93
0MHz, D = 4.8cm, E = 5cm, F = 1.1cm, G =
5.5 cm and t = 1.6 mm. These numerical values can be obtained as follows.

求めるべき数値はD,F,G,の3つである。There are three numerical values to be obtained: D, F, G.

Dは において、f=930MHzとすることにより5cmとな
る。Dの正確な値は実験により求め、4.8cmであっ
た。
D is At, f = 930 MHz results in 5 cm. The exact value of D was determined experimentally and was 4.8 cm.

Fは第3図で示したようにアンテナのインピーダンスが
50Ωになるように選び、この場合、実験により、1.
1cmであった。
F is selected so that the impedance of the antenna is 50Ω as shown in FIG. 3, and in this case, 1.
It was 1 cm.

Gは第2図(b)のようにG1とG2にわけて考える。
G1はD−Fで3.7cmである。G1部分は金属箔20
2と203によってテフロンを介在して平行平板線路を
形成しているから、金属箔202上の定在波も金属箔2
03上の定在波と同様、波長が短縮されている。
G is divided into G1 and G2 as shown in FIG. 2 (b).
G1 is DF and is 3.7 cm. G1 part is metal foil 20
Since the parallel plate line is formed by Teflon with 2 and 203, the standing wave on the metal foil 202 is also generated by the metal foil 2.
Like the standing wave on 03, the wavelength is shortened.

従って、G1部分の電気的長さは である。Gの長さは電気的に4分の1波長とするとよい
から、930MHzの自由空間波長λの4分の1の8cmに
設定する。
Therefore, the electrical length of the G1 part is Is. Since the length of G should be electrically a quarter wavelength, it is set to 8 cm, which is a quarter of the free space wavelength λ of 930 MHz.

従ってG2は となる(G2部分は平行平板線路でないから、電気長と
物理長が一致する)。以上の計算より G=G1+G2=5.7cm となる。そして、実験では同軸給電線への漏れ電流が最
小になるような最適な長さを求め G=5.5cmとした。
Therefore G2 (The electrical length and the physical length match because the G2 part is not a parallel plate line). From the above calculation, G = G1 + G2 = 5.7 cm. Then, in the experiment, the optimum length that minimizes the leakage current to the coaxial power supply line was obtained and G was set to 5.5 cm.

第4図は上記の寸法で製作したアンテナの指向性を示し
ており、最大放射方向401における利得の実測値は均
−2dBdcである。上記の設計例ではアンテナをできる
だけ小形化する為、Gの長さは電気的にほぼ4分の1波
長としているが、Gの長さは電気的にほぼ4分の1波長
の奇数倍として給電部のアース側端子が定在波電圧の節
になるようにすればアンテナは良好に動作する。即ち、
上記の実験ではG=5.5cmとしたが、Gをあと2分の
1波長(16cm)延長して21.5cmとすればよい。
FIG. 4 shows the directivity of the antenna manufactured with the above dimensions, and the measured value of the gain in the maximum radiation direction 401 is equal to −2 dBdc. In the above design example, in order to make the antenna as small as possible, the length of G is electrically set to approximately a quarter wavelength, but the length of G is electrically set to an odd multiple of a quarter wavelength to feed the power. The antenna works well if the ground side terminal of the section is set to the node of the standing wave voltage. That is,
In the above experiment, G = 5.5 cm, but G may be extended by another half wavelength (16 cm) to 21.5 cm.

第5図は本発明の第2の実施例の構成図である。アンテ
ナの短絡辺204上に給電部のアース側部端子がある点
が第2のアンテナと異なるが、電気的特性はほぼ同じで
ある。ただし第5図のアンテナは第2図のアンテナより
も長さを短くすることができる。
FIG. 5 is a block diagram of the second embodiment of the present invention. The second antenna differs from the second antenna in that the ground side terminal of the power feeding unit is located on the short-circuited side 204 of the antenna, but the electrical characteristics are almost the same. However, the antenna of FIG. 5 can be made shorter than the antenna of FIG.

第6図は本発明の第3の実施例の構成図である。第1の
実施例においては、誘電体基板201の一辺は辺全体に
渡って金属導体を設けて短絡辺を形成していたが、第6
図の実施例はこれを有限個の金属導線による短絡部60
1によって形成したものである。第1の実施例の設計例
で示したアンテナにおいて短絡辺204をほぼ等間隔の
7点の金属導線にる短絡部601におきかえて実験した
所、アンテナの天気的特性の変化は認められなかった。
短絡辺601はスルーホールによって形成することも可
能である。第2の実施例に関しても上記と全く同様に短
絡辺を金属導線による短絡部におきかえることができ
る。また第3の実施例においては、第7図に示すように
誘電体基板上面の金属箔は基板端部まで存在する必要は
なく金属箔端部と基板端部の間の距離701は任意に設
定することができる。
FIG. 6 is a block diagram of the third embodiment of the present invention. In the first embodiment, one side of the dielectric substrate 201 is provided with a metal conductor over the entire side to form a short-circuit side.
In the illustrated embodiment, this is a short circuit portion 60 formed by a finite number of metal conductors.
It is formed by 1. In the antenna shown in the design example of the first embodiment, when the short-circuit side 204 was replaced by the short-circuit portions 601 formed by the seven metal conductor wires at substantially equal intervals, an experiment was conducted, and no change in the weather characteristics of the antenna was observed. .
The short circuit side 601 can also be formed by a through hole. Also in the second embodiment, the short-circuited side can be replaced with the short-circuited portion by the metal conducting wire in the same manner as above. Further, in the third embodiment, as shown in FIG. 7, the metal foil on the upper surface of the dielectric substrate does not have to exist up to the end of the substrate, and the distance 701 between the end of the metal foil and the end of the substrate is set arbitrarily. can do.

第1,第2および第3の実施例では給電部の位置は基板
のほぼ中央(H≒E/2)としているが、実験によれば
給電点の位置は必ずしも中央である必要はなくHの値は
ほぼ任意に設定することができる。またアンテナの形状
も実施例では長方形に選んでいるが、第8図に示すよう
に多少の変形を加えてもアンテナは正常に動作すること
を実験的に確認している。
In the first, second and third embodiments, the position of the power feeding portion is set to approximately the center of the substrate (H≈E / 2), but according to experiments, the position of the power feeding point does not necessarily have to be the center, and The value can be set almost arbitrarily. Further, although the shape of the antenna is also selected to be rectangular in the embodiment, it has been experimentally confirmed that the antenna operates normally even if some modifications are made as shown in FIG.

このアンテナの大きな特徴は、アンテナが隣接する電子
回路および人体の影響を極めて受けにくいことである。
即ち、実験によれば、第2図の誘電体基板下面部202
に極めて隣接して電子回路を形成してもアンテナの電気
的特性にはほとんど影響しない。しかもスリーブアンテ
ナのように給電部にシュペルトップを設けなくても電子
回路のアース部および無線機筐体に高周波電流が流れな
い。またアンテナは誘電体基板で構成されるので極めて
ロープロフィール,軽量である等の特性により、小形携
帯無線機の内蔵アンテナとして好適である。
A major feature of this antenna is that it is extremely insensitive to adjacent electronic circuits and the human body.
That is, according to the experiment, the lower surface portion 202 of the dielectric substrate of FIG.
Forming an electronic circuit very close to the antenna has almost no effect on the electrical characteristics of the antenna. Moreover, high frequency current does not flow to the grounding portion of the electronic circuit and the radio housing even if the spell top is not provided in the power feeding portion like the sleeve antenna. Further, since the antenna is composed of a dielectric substrate, it is suitable as a built-in antenna for a small portable radio because of its characteristics such as extremely low profile and light weight.

発明の効果 本発明のアンテナは、一辺を短絡した長方形状の薄い誘
電体基板からなるアンテナであって次の特徴を有する。
Effects of the Invention The antenna of the present invention is an antenna formed of a rectangular thin dielectric substrate with one side short-circuited, and has the following features.

()電子回路および人体の接近による利得低下が少な
い。
() Little decrease in gain due to approach of electronic circuit and human body.

()給電部にシュペルトップのあるいはバランのような
アース側高周波電流の阻止回路を必要としない。
() It does not require a ground side high frequency current blocking circuit such as a spell top or a balun in the power supply section.

()極めて小形、軽量である。() Extremely small and lightweight.

従って、本発明のアンテナは小形携帯無線機用のアンテ
ナとして好適であるばかりでなく、各種移動体あるいは
固定局用のアンテナとして広範囲に利用できるものであ
る。
Therefore, the antenna of the present invention is not only suitable as an antenna for a small portable radio, but can be widely used as an antenna for various moving bodies or fixed stations.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来のアンテナを示す構成図、第2図は本発明
のアンテナの一実施例を示す構成図、第3図は本発明の
アンテナのインピーダンス特性を説明するためのインピ
ーダンス軌跡図、第4図は本発明のアンテナの指向性を
示す指向性図、第5図は本発明のアンテナの他の一実施
例を示す構成図、第6図および第7図は本発明のアンテ
ナの更に他の一実施例を示す構成図、第8図は本発明の
アンテナの変形による特性の変化を説明するための変形
したアンテナの平面図である。 201……誘電体基板、202,203,204……薄
い金属導体、205……高周波コネクター、206……
高周波コネクターの内部導体。
FIG. 1 is a configuration diagram showing a conventional antenna, FIG. 2 is a configuration diagram showing an embodiment of the antenna of the present invention, and FIG. 3 is an impedance locus diagram for explaining impedance characteristics of the antenna of the present invention. FIG. 4 is a directivity diagram showing the directivity of the antenna of the present invention, FIG. 5 is a configuration diagram showing another embodiment of the antenna of the present invention, and FIGS. 6 and 7 are further diagrams of the antenna of the present invention. FIG. 8 is a configuration diagram showing an embodiment of the present invention, and FIG. 8 is a plan view of a modified antenna for explaining a change in characteristics due to the modification of the antenna of the present invention. 201 ... Dielectric substrate, 202, 203, 204 ... Thin metal conductor, 205 ... High frequency connector, 206 ...
Inner conductor of high frequency connector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 純子 神奈川県横浜市港北区綱島東4丁目3番1 号 松下通信工業株式会社内 (56)参考文献 特開 昭59−126304(JP,A) 特開 昭59−97204(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junko Yamamoto 4-3-1, Tsunashima-higashi, Kohoku-ku, Yokohama-shi, Kanagawa Matsushita Communication Industrial Co., Ltd. (56) Reference JP-A-59-126304 (JP, A) JP 59-97204 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】両面に金属導体が存在する波長に比べて十
分薄い多角形の誘電体基板を有し、前記誘電体基板の一
端面を電気的に接続して短絡辺を形成し、 前記誘電体基板の第1の面の金属導体の前記短絡辺と前
記短絡辺と対向する開放辺の間の長さを電気的に前記誘
電体基板上の波長のほぼ4分の1に選び、 前記誘電体基板の第1の面の金属導体上の一点を給電点
高周波側端子、第2の面の金属導体上の一点を給電点ア
ース側端子とし、 前記給電点アース側端子と前記誘電体基板の第2の面の
金属導体の開放辺までの距離をほぼ電気的に4分の1波
長または4分の3波長にしたことを特徴とするアンテ
ナ。
1. A dielectric substrate having a polygonal shape, which is sufficiently thin as compared with a wavelength at which metal conductors are present on both surfaces, and one end surface of the dielectric substrate is electrically connected to form a short-circuit side, The length between the short-circuited side and the open side facing the short-circuited side of the metal conductor on the first surface of the body substrate is electrically selected to be approximately one quarter of the wavelength on the dielectric substrate, One point on the metal conductor of the first surface of the body substrate is a high-frequency side terminal at the feeding point, and one point on the metal conductor of the second surface is a grounding-side terminal at the feeding point, and the grounding-side terminal of the feeding point and the dielectric substrate are An antenna characterized in that the distance to the open side of the metal conductor on the second surface is set to be substantially electrically one quarter wavelength or three quarter wavelength.
【請求項2】給電点高周波側端子およびアース側端子と
誘電体基板短絡辺の距離を一致させたことを特徴とする
特許請求の範囲第1項記載のアンテナ。
2. The antenna according to claim 1, wherein the high frequency side terminal and the ground side terminal of the feeding point and the short side of the dielectric substrate have the same distance.
【請求項3】給電点アース側端子を誘電体基板の短絡辺
上に設定したことを特徴とする特許請求の範囲第1項記
載のアンテナ。
3. The antenna according to claim 1, wherein the grounding side terminal of the feeding point is set on the short-circuited side of the dielectric substrate.
【請求項4】短絡辺を有限個の金属導線あるいはスルー
ホール加工による短絡部によって形成したことを特徴と
する特許請求の範囲第1項記載のアンテナ。
4. The antenna according to claim 1, wherein the short-circuited side is formed by a finite number of metal conductor wires or a short-circuited portion formed by through-hole processing.
JP59194225A 1984-09-17 1984-09-17 antenna Expired - Lifetime JPH061848B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59194225A JPH061848B2 (en) 1984-09-17 1984-09-17 antenna
US06/776,960 US4700194A (en) 1984-09-17 1985-09-17 Small antenna
EP85306606A EP0176311B1 (en) 1984-09-17 1985-09-17 Small antenna
DE8585306606T DE3584658D1 (en) 1984-09-17 1985-09-17 MINI AERIAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59194225A JPH061848B2 (en) 1984-09-17 1984-09-17 antenna

Publications (2)

Publication Number Publication Date
JPS6171701A JPS6171701A (en) 1986-04-12
JPH061848B2 true JPH061848B2 (en) 1994-01-05

Family

ID=16321038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59194225A Expired - Lifetime JPH061848B2 (en) 1984-09-17 1984-09-17 antenna

Country Status (4)

Country Link
US (1) US4700194A (en)
EP (1) EP0176311B1 (en)
JP (1) JPH061848B2 (en)
DE (1) DE3584658D1 (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3616723A1 (en) * 1986-05-17 1987-11-19 Philips Patentverwaltung MICROWAVE BLOCK
JPH0693635B2 (en) * 1986-12-19 1994-11-16 日本電気株式会社 Small radio
US4835541A (en) * 1986-12-29 1989-05-30 Ball Corporation Near-isotropic low-profile microstrip radiator especially suited for use as a mobile vehicle antenna
JPH01246904A (en) * 1988-03-28 1989-10-02 Kokusai Electric Co Ltd small antenna
US4876552A (en) * 1988-04-27 1989-10-24 Motorola, Inc. Internally mounted broadband antenna
US4903326A (en) * 1988-04-27 1990-02-20 Motorola, Inc. Detachable battery pack with a built-in broadband antenna
JPH0646682B2 (en) * 1988-07-04 1994-06-15 三菱電機株式会社 Short-circuited microstrip antenna
RU1838850C (en) * 1988-11-02 1993-08-30 Моторола, Инк. Telescopic aerial system for portable transceiver
US4980694A (en) * 1989-04-14 1990-12-25 Goldstar Products Company, Limited Portable communication apparatus with folded-slot edge-congruent antenna
US5184143A (en) * 1989-06-01 1993-02-02 Motorola, Inc. Low profile antenna
US5173711A (en) * 1989-11-27 1992-12-22 Kokusai Denshin Denwa Kabushiki Kaisha Microstrip antenna for two-frequency separate-feeding type for circularly polarized waves
JPH03228407A (en) * 1989-12-11 1991-10-09 Nec Corp Antenna and portable radio equipment using antenna concerned
IT1241854B (en) * 1990-12-31 1994-02-01 Consiglio Nazionale Ricerche HIGH PERMIT COMPACT CERAMIC APPLICATORS FOR USE IN ELECTROMAGNETIC HYPERTHERMIA
US5355142A (en) * 1991-10-15 1994-10-11 Ball Corporation Microstrip antenna structure suitable for use in mobile radio communications and method for making same
EP0601576B1 (en) * 1992-12-09 1999-09-01 Matsushita Electric Industrial Co., Ltd. Antenna system for mobile communication
JPH06314924A (en) * 1993-04-19 1994-11-08 Wireless Access Inc Partly shorted microstrip antenna
JPH06314923A (en) * 1993-04-19 1994-11-08 Wireless Access Inc Small double ring microstrip antenna
WO1995005011A1 (en) * 1993-08-09 1995-02-16 Motorola, Inc. Printed circuit dipole antenna
FI952406A0 (en) * 1993-09-20 1995-05-17 Motorola Inc Antenna device for a wireless communication device
US5420596A (en) * 1993-11-26 1995-05-30 Motorola, Inc. Quarter-wave gap-coupled tunable strip antenna
JPH08510621A (en) * 1994-03-08 1996-11-05 セテルコ セルラー テレフォーン カンパニー アー/エス Handy transmitter / receiver
GB2290416B (en) * 1994-06-11 1998-11-18 Motorola Israel Ltd An antenna
US5483246A (en) * 1994-10-03 1996-01-09 Motorola, Inc. Omnidirectional edge fed transmission line antenna
DE19504577A1 (en) * 1995-02-11 1996-08-14 Fuba Automotive Gmbh Flat aerial for GHz frequency range for vehicle mobile radio or quasi-stationary aerial
DE19510236A1 (en) * 1995-03-21 1996-09-26 Lindenmeier Heinz Flat antenna with low overall height
US5657028A (en) * 1995-03-31 1997-08-12 Nokia Moblie Phones Ltd. Small double C-patch antenna contained in a standard PC card
US5781158A (en) * 1995-04-25 1998-07-14 Young Hoek Ko Electric/magnetic microstrip antenna
EP0749176B1 (en) * 1995-06-15 2002-09-18 Nokia Corporation Planar and non-planar double C-patch antennas having different aperture shapes
US5627550A (en) * 1995-06-15 1997-05-06 Nokia Mobile Phones Ltd. Wideband double C-patch antenna including gap-coupled parasitic elements
US5680144A (en) * 1996-03-13 1997-10-21 Nokia Mobile Phones Limited Wideband, stacked double C-patch antenna having gap-coupled parasitic elements
US5995048A (en) * 1996-05-31 1999-11-30 Lucent Technologies Inc. Quarter wave patch antenna
DE19638874A1 (en) * 1996-09-23 1998-03-26 Rothe Lutz Dr Ing Habil Mobile telephone planar antenna
US6342855B1 (en) * 1996-09-23 2002-01-29 Lutz Rothe Mobile radiotelephony planar antenna
US5945950A (en) * 1996-10-18 1999-08-31 Arizona Board Of Regents Stacked microstrip antenna for wireless communication
KR100193851B1 (en) * 1996-11-05 1999-06-15 윤종용 Small antenna of portable radio
US6049278A (en) * 1997-03-24 2000-04-11 Northrop Grumman Corporation Monitor tag with patch antenna
FI110395B (en) * 1997-03-25 2003-01-15 Nokia Corp Broadband antenna is provided with short-circuited microstrips
US6314275B1 (en) 1997-08-19 2001-11-06 Telit Mobile Terminals, S.P.A. Hand-held transmitting and/or receiving apparatus
JP3449484B2 (en) * 1997-12-01 2003-09-22 株式会社東芝 Multi-frequency antenna
US6040803A (en) * 1998-02-19 2000-03-21 Ericsson Inc. Dual band diversity antenna having parasitic radiating element
US6184833B1 (en) * 1998-02-23 2001-02-06 Qualcomm, Inc. Dual strip antenna
WO1999050932A1 (en) * 1998-03-31 1999-10-07 Matsushita Electric Industrial Co., Ltd. Antenna unit and digital television receiver
US6049309A (en) * 1998-04-07 2000-04-11 Magellan Corporation Microstrip antenna with an edge ground structure
BR9915453A (en) * 1998-11-17 2001-10-16 Xertex Technologies Inc Broadband antenna with radiator / unit ground plan
US6049314A (en) * 1998-11-17 2000-04-11 Xertex Technologies, Inc. Wide band antenna having unitary radiator/ground plane
WO2001048858A2 (en) 1999-12-14 2001-07-05 Rangestar Wireless, Inc. Low sar broadband antenna assembly
US6421016B1 (en) 2000-10-23 2002-07-16 Motorola, Inc. Antenna system with channeled RF currents
JP2002171111A (en) * 2000-12-04 2002-06-14 Anten Corp Portable radio and antenna for it
US6501427B1 (en) * 2001-07-31 2002-12-31 E-Tenna Corporation Tunable patch antenna
US6667716B2 (en) * 2001-08-24 2003-12-23 Gemtek Technology Co., Ltd. Planar inverted F-type antenna
SE0201490D0 (en) * 2002-05-17 2002-05-17 St Jude Medical Implantable Antenna
US7162264B2 (en) * 2003-08-07 2007-01-09 Sony Ericsson Mobile Communications Ab Tunable parasitic resonators
WO2005099039A1 (en) 2004-03-31 2005-10-20 Toto Ltd. Microstrip antenna
JP4705537B2 (en) * 2006-03-30 2011-06-22 富士通コンポーネント株式会社 Antenna device and manufacturing method thereof
WO2008036396A2 (en) * 2006-09-21 2008-03-27 Noninvasive Medical Technologies, Inc. Apparatus and method for non-invasive thoracic radio interrogation
WO2008105837A2 (en) * 2006-09-21 2008-09-04 Noninvasive Medical Technologies, Inc. Method of processing thoracic reflected radio interrogation signals
CA2664166A1 (en) * 2006-09-21 2008-03-27 Noninvasive Medical Technologies, Inc. Antenna for thoracic radio interrogation
JP4762965B2 (en) * 2007-10-09 2011-08-31 古河電気工業株式会社 Antenna device, portable wireless device, and portable television
US7898482B2 (en) * 2008-04-24 2011-03-01 Sirit Technologies Inc. Conducting radio frequency signals using multiple layers
DE202008011254U1 (en) 2008-08-22 2008-12-24 Delphi Delco Electronics Europe Gmbh Flat antenna of "U" type
US8259026B2 (en) * 2008-12-31 2012-09-04 Motorola Mobility Llc Counterpoise to mitigate near field radiation generated by wireless communication devices
AU2010246438A1 (en) * 2009-09-10 2011-03-24 World Products, Llc Surface-independent body mount conformal antenna
US8717245B1 (en) * 2010-03-16 2014-05-06 Olympus Corporation Planar multilayer high-gain ultra-wideband antenna
CN103620870B (en) 2011-06-23 2017-02-15 加利福尼亚大学董事会 Small electric vertical split-ring resonator antenna
US9355349B2 (en) 2013-03-07 2016-05-31 Applied Wireless Identifications Group, Inc. Long range RFID tag
US10263341B2 (en) * 2016-04-19 2019-04-16 Ethertronics, Inc. Low profile antenna system
US20180175493A1 (en) * 2016-12-15 2018-06-21 Nanning Fugui Precision Industrial Co., Ltd. Antenna device and electronic device using the same
CN106941208B (en) * 2016-12-22 2019-09-20 华南理工大学 Compact quasi-isotropic short-circuit patch antenna and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095227A (en) * 1976-11-10 1978-06-13 The United States Of America As Represented By The Secretary Of The Navy Asymmetrically fed magnetic microstrip dipole antenna
US4078237A (en) * 1976-11-10 1978-03-07 The United States Of America As Represented By The Secretary Of The Navy Offset FED magnetic microstrip dipole antenna
FR2507825A1 (en) * 1981-06-15 1982-12-17 Trt Telecom Radio Electr Thin structure HF directional aerial for guided missile - has two conducting plates separated by dielectric layer of width determined by dielectric constant and cone angle of radiation
JPS5997204A (en) * 1982-11-26 1984-06-05 Matsushita Electric Ind Co Ltd Inverted l-type antenna
JPS59126304A (en) * 1983-01-10 1984-07-20 Nippon Telegr & Teleph Corp <Ntt> Shared microstrip antenna for two frequency bands

Also Published As

Publication number Publication date
US4700194A (en) 1987-10-13
EP0176311B1 (en) 1991-11-13
DE3584658D1 (en) 1991-12-19
EP0176311A3 (en) 1988-07-20
JPS6171701A (en) 1986-04-12
EP0176311A2 (en) 1986-04-02

Similar Documents

Publication Publication Date Title
JPH061848B2 (en) antenna
JP4089680B2 (en) Antenna device
US6768476B2 (en) Capacitively-loaded bent-wire monopole on an artificial magnetic conductor
EP0757405B1 (en) Antenna
US6429819B1 (en) Dual band patch bowtie slot antenna structure
US6674405B2 (en) Dual-band meandering-line antenna
US6271803B1 (en) Chip antenna and radio equipment including the same
US7515114B2 (en) Unbalanced antenna
US20040027298A1 (en) Antenna device and communication equipment using the device
US20050195124A1 (en) Coupled multiband antennas
JP2001521311A (en) Small antenna structure including balun
WO2002060005A1 (en) Pifa antenna arrangement
EP0860896B1 (en) Antenna device
JPH05259724A (en) Print antenna
US5999146A (en) Antenna device
JP3250479B2 (en) Antenna device
Krall et al. The omni microstrip antenna: A new small antenna
JP2003133842A (en) Monopole antenna
JP4329579B2 (en) Antenna device
Fukushima et al. Planar sleeve antenna with left-handed choke structure
JP4017137B2 (en) ANTENNA ELEMENT AND RADIO COMMUNICATION DEVICE USING THE SAME
JPS6284606A (en) Antenna
Greenberg et al. Characterization of bunny-ear antennas for wireless basestation applications
KR20060090174A (en) Radiating element designed to operate on small antennas
JPH06260825A (en) Antenna mounting structure for portable radio equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term