JPH06179880A - Method of hydrotreatment of heavy oil - Google Patents
Method of hydrotreatment of heavy oilInfo
- Publication number
- JPH06179880A JPH06179880A JP35238592A JP35238592A JPH06179880A JP H06179880 A JPH06179880 A JP H06179880A JP 35238592 A JP35238592 A JP 35238592A JP 35238592 A JP35238592 A JP 35238592A JP H06179880 A JPH06179880 A JP H06179880A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- oil
- heavy oil
- powder
- hydrotreating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000000295 fuel oil Substances 0.000 title claims abstract description 31
- 239000003054 catalyst Substances 0.000 claims abstract description 90
- 239000000843 powder Substances 0.000 claims abstract description 46
- 239000002245 particle Substances 0.000 claims abstract description 22
- 239000006148 magnetic separator Substances 0.000 claims abstract description 21
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 20
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 16
- 239000001257 hydrogen Substances 0.000 claims abstract description 15
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 15
- 239000002002 slurry Substances 0.000 claims abstract description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 11
- 238000000926 separation method Methods 0.000 claims abstract description 7
- 239000003921 oil Substances 0.000 claims description 54
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 30
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 13
- 239000010419 fine particle Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 20
- 239000002184 metal Substances 0.000 abstract description 20
- 150000002739 metals Chemical class 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 description 22
- 230000005291 magnetic effect Effects 0.000 description 16
- 229910000859 α-Fe Inorganic materials 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 239000003302 ferromagnetic material Substances 0.000 description 8
- 238000012856 packing Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000007885 magnetic separation Methods 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000004821 distillation Methods 0.000 description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 238000005292 vacuum distillation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical class O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- -1 orinocotal Substances 0.000 description 1
- 230000005408 paramagnetism Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、重質油の水素化処理方
法に関し、特にニッケル、バナジウム、鉄および銅等よ
りなる重金属のうち少なくともニッケルおよびバナジウ
ムを両者の合計量で10ppm以上含む重質油を、粉末
触媒存在下で水素化脱金属し、次いで磁気分離機を用い
て効率良く水素化脱金属油と粉末触媒とを分離する重質
油の水素化処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating heavy oil, and particularly to a heavy metal containing at least nickel and vanadium in a total amount of at least 10 ppm among heavy metals such as nickel, vanadium, iron and copper. The present invention relates to a method for hydrotreating heavy oil, which comprises hydrodemetallizing an oil in the presence of a powder catalyst, and then efficiently separating the hydrodemetallized oil and the powder catalyst by using a magnetic separator.
【0002】[0002]
【従来の技術】常圧蒸留あるいは減圧蒸留より得られる
蒸留残渣を含む重質油中には、窒素分、硫黄分の他に多
量のニッケル、バナジウム、鉄、銅、ナトリウム等の金
属類が含まれている。従って、このような重質油を水素
化精製して燃料油を得ようとする場合、重質油に含まれ
るこれらの金属類が水素化処理触媒上に堆積して触媒活
性を低下させるばかりではなく、コークの生成を促進し
触媒床における原料油の偏流を引き起こすことにもな
る。ここでいう水素化精製とは水素加圧下に原料油を接
触的に処理し、原料油中の硫黄分、窒素分を硫化水素や
アンモニアとして除去する方法である。BACKGROUND ART Heavy oil containing distillation residues obtained by atmospheric distillation or vacuum distillation contains a large amount of metals such as nickel, vanadium, iron, copper and sodium in addition to nitrogen and sulfur. Has been. Therefore, when such a heavy oil is subjected to hydrorefining to obtain a fuel oil, not only these metals contained in the heavy oil are deposited on the hydrotreating catalyst to lower the catalytic activity. However, it also promotes the formation of coke and causes a drift of the feedstock in the catalyst bed. The hydrorefining referred to here is a method in which the feedstock oil is catalytically treated under pressurized hydrogen to remove the sulfur and nitrogen components in the feedstock oil as hydrogen sulfide and ammonia.
【0003】通常、このような汚染金属の影響を軽減す
るため、水素化脱硫触媒の前段に脱金属選択性が高く、
金属保持容量の大きな水素化脱金属触媒を充填する。こ
れにより水素化脱硫触媒の寿命は延びるが、水素化脱金
属触媒で原料油中の金属を全量捕捉できるわけではない
ので、水素化脱金属触媒をスリップした金属が水素化脱
硫触媒に堆積し、水素化脱硫触媒の活性を徐々に低下さ
せる。また金属類を高濃度に含んだ重質油を水素化処理
する場合、短期間に水素化脱金属触媒の金属保持容量を
越えてしまうため頻繁に触媒交換する必要がある。Usually, in order to reduce the influence of such polluted metals, the metal removal selectivity is high in the preceding stage of the hydrodesulfurization catalyst,
It is filled with a hydrodemetallization catalyst having a large metal holding capacity. Although the life of the hydrodesulfurization catalyst is extended by this, not all the metal in the feed oil can be captured by the hydrodemetalization catalyst, so the metal slipping the hydrodemetalization catalyst is deposited on the hydrodesulfurization catalyst, The activity of the hydrodesulfurization catalyst is gradually reduced. Further, when the heavy oil containing a high concentration of metals is hydrotreated, the metal holding capacity of the hydrodemetallizing catalyst will be exceeded in a short period of time, so it is necessary to frequently replace the catalyst.
【0004】また重質油から汚染金属を取り除く方法と
して、粉末触媒を用いたスラリー床で水素化脱金属反応
を行なわせ、使用済み触媒を装置から連続的に抜き出す
という方法も考えられる。但し、この場合、生成油と触
媒を分離するのが困難である。As a method of removing pollutant metals from heavy oil, a method of carrying out a hydrodemetallization reaction in a slurry bed using a powder catalyst and continuously withdrawing a used catalyst from the apparatus can be considered. However, in this case, it is difficult to separate the produced oil and the catalyst.
【0005】特公昭61−44916号公報には、この
ようなスラリー床で反応させた生成油から触媒を分離す
る方法として高勾配磁気分離機を用いることが報告され
ている。この場合、触媒として用いているのはアルミナ
のような多孔性の担体に水素化活性を有するNi、C
o、Mo、W等の硫化物を担持した、いわゆる水素化処
理触媒を粉末にしたもの、あるいは前記粉末触媒に磁鉄
鉱のような強磁性の粉末物質を物理的に混合した触媒で
ある。前者の触媒は水素化処理触媒であるから脱金属活
性は高いが、この触媒は常磁性であるため350〜50
0℃の反応温度条件下では極めて磁性が弱く、例え高勾
配磁気分離機を用いても完全に触媒を分離することは困
難である。従って、触媒を生成油から完全に分離するた
めには磁気分離の温度を低くしなければならないが、後
段の水素化脱硫で再び昇温しなければならないため経済
的観点から不利である。また磁鉄鉱のような強磁性体な
らば反応温度条件下においても容易に触媒を生成油から
分離することができるが、このような物質は表面積が極
めて小さいため、水素化脱金属活性を殆ど有していな
い。Japanese Patent Publication No. 61-44916 has reported the use of a high gradient magnetic separator as a method for separating the catalyst from the product oil reacted in such a slurry bed. In this case, the catalyst used is Ni, C having hydrogenation activity on a porous carrier such as alumina.
It is a powder of a so-called hydrotreating catalyst supporting sulfides such as o, Mo and W, or a catalyst in which a ferromagnetic powder substance such as magnetite is physically mixed with the powder catalyst. The former catalyst has a high demetallizing activity because it is a hydrotreating catalyst, but this catalyst has a paramagnetic property of 350 to 50.
Under the reaction temperature condition of 0 ° C., the magnetism is extremely weak, and it is difficult to completely separate the catalyst even by using a high gradient magnetic separator. Therefore, in order to completely separate the catalyst from the produced oil, the temperature of the magnetic separation must be lowered, but the temperature must be raised again in the subsequent hydrodesulfurization, which is disadvantageous from an economical point of view. In addition, if it is a ferromagnetic material such as magnetite, the catalyst can be easily separated from the produced oil even under reaction temperature conditions, but since such a material has a very small surface area, it has almost no hydrodemetallizing activity. Not not.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、重質
油中に含まれる金属類を除去するのに適した重質油の水
素化処理方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a heavy oil hydrotreating method suitable for removing metals contained in the heavy oil.
【0007】[0007]
【課題を解決するための手段】本発明者らは前記の課題
を解決するため鋭意研究した結果、特定の成分を含む触
媒を用いることにより、磁気分離の効率、選択性が向上
し、平衡触媒の活性、選択性を高く維持することができ
ることを知見し、本発明を完成するに至った。The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, by using a catalyst containing a specific component, the efficiency and selectivity of magnetic separation are improved, and an equilibrium catalyst is obtained. The inventors have found that the activity and selectivity of can be maintained at a high level, and have completed the present invention.
【0008】すなわち、本発明は、重金属分としてニッ
ケルとバナジウムを合計量で10ppm以上含む重質油
を、平均粒子径が0.1〜200μmで難硫化性の強磁
性微粒子を分散含有した粉末触媒を混合したスラリーを
水素存在下、温度300〜500℃、圧力10〜250
kg/cm2で処理する水素化脱金属処理工程と、該脱
金属処理したスラリーから前記粉末触媒を磁気分離機を
用いて分離する触媒分離工程を含むことを特徴とする重
質油の水素化処理方法を提供する。That is, according to the present invention, a powder catalyst containing a heavy oil containing nickel and vanadium in a total amount of 10 ppm or more as a heavy metal content and having an average particle size of 0.1 to 200 μm dispersed and containing non-sulfurizable ferromagnetic fine particles is dispersed. In the presence of hydrogen, the temperature of the slurry is 300 to 500 ° C., and the pressure is 10 to 250.
Hydrogenation of heavy oil comprising a hydrodemetallization treatment step of treating with kg / cm 2 and a catalyst separation step of separating the powdered catalyst from the demetallized slurry with a magnetic separator. Provide a processing method.
【0009】また、本発明は、重金属分としてニッケル
とバナジウムを合計量で10ppm以上含む重質油を、
平均粒子径が0.1〜200μmで難硫化性の強磁性微
粒子を分散含有した粉末触媒を混合したスラリーを水素
存在下、温度300〜500℃、圧力10〜250kg
/cm2で処理する水素化脱金属処理工程と、該脱金属
処理したスラリーから前記粉末触媒を磁気分離機を用い
て分離する触媒分離工程と、該分離工程から得られた粉
末触媒が分離された処理油を水素化する水素化処理工程
を含むことを特徴とする重質油の水素化処理方法を提供
する。The present invention also provides a heavy oil containing nickel and vanadium as a heavy metal component in a total amount of 10 ppm or more,
In the presence of hydrogen, a slurry mixed with a powder catalyst having an average particle diameter of 0.1 to 200 μm and containing non-sulfurizable ferromagnetic fine particles dispersed therein is heated at a temperature of 300 to 500 ° C. and a pressure of 10 to 250 kg.
/ Cm 2 , a hydrodemetallization treatment step, a catalyst separation step of separating the powder catalyst from the demetallized slurry using a magnetic separator, and a powder catalyst obtained from the separation step are separated. And a hydrotreating step of hydrotreating the treated oil.
【0010】以下、本発明をさらに詳細に説明する。本
発明で用いる重質油とは、沸点565℃以上の留分を1
0vol%以上含み15℃における密度が0.89g/
cm3以上である炭化水素油であって、硫黄分、窒素分
と共に鉄、ニッケル、バナジウム、銅等の重金属を含
み、これら重金属のうち、少なくともニッケルおよびバ
ナジウムを両者の合計量で10ppm以上含む炭化水素
油である。このようなものとして、常圧蒸留残油、減圧
蒸留残油、シェールオイル、タールサンドビチューメ
ン、オリノコタール、石炭液化油等が例示できる。また
直留軽油あるいは減圧軽油等の比較的軽質な油と上記重
質油の混合物も本発明でいう重質油に含まれる。本発明
では常圧蒸留残油および減圧蒸留残油が特に好ましく用
いられる。また、本発明の処理方法による経済的利点を
大きくするためには、重質油中に含まれるニッケルとバ
ナジウムの合計量は50ppm以上が好ましく、100
ppm以上がさらに好ましい。The present invention will be described in more detail below. The heavy oil used in the present invention means a fraction having a boiling point of 565 ° C or higher.
Contains 0 vol% or more and has a density at 15 ° C of 0.89 g /
A hydrocarbon oil containing 3 cm 3 or more, containing heavy metals such as iron, nickel, vanadium and copper together with sulfur and nitrogen, and carbonizing at least 10 ppm or more of nickel and vanadium in total of these heavy metals. It is hydrogen oil. Examples of such oils include atmospheric distillation residual oil, vacuum distillation residual oil, shale oil, tar sand bitumen, orinocotal, and coal liquefied oil. Further, a mixture of a relatively light oil such as straight-run light oil or vacuum light oil and the above heavy oil is also included in the heavy oil in the present invention. In the present invention, atmospheric distillation residual oil and vacuum distillation residual oil are particularly preferably used. Further, in order to increase the economic advantage of the treatment method of the present invention, the total amount of nickel and vanadium contained in the heavy oil is preferably 50 ppm or more, and 100
More than ppm is more preferable.
【0011】本発明で用いられる触媒は平均粒径0.1
〜200μm、好ましくは1〜100μmの粉末触媒で
あり、該粉末触媒中に難硫化性の強磁性物質粒子を含む
ものである。該粉末触媒の平均粒径は細かいほど水素化
脱金属活性が高いが、平均粒径が0.1μm未満である
と磁気分離機を用いても生成油から触媒を分離するのが
困難になる。また平均粒径が200μmを越える場合は
水素化脱金属活性が低下する。The catalyst used in the present invention has an average particle size of 0.1.
The powder catalyst has a particle diameter of ˜200 μm, preferably 1 μm to 100 μm, and contains the non-sulfurizable ferromagnetic substance particles in the powder catalyst. The smaller the average particle size of the powder catalyst is, the higher the hydrodemetallizing activity is, but if the average particle size is less than 0.1 μm, it becomes difficult to separate the catalyst from the produced oil even by using a magnetic separator. Further, if the average particle size exceeds 200 μm, the hydrodemetallizing activity decreases.
【0012】本発明において、粉末触媒としては多孔性
担体、水素化活性金属、および難硫化性の強磁性化合物
よりなるものが好ましく採用される。該多孔性担体とは
表面積が10m2/g以上、好ましくは50m2/g以
上、さらに好ましくは200m2/g以上および細孔容
積が0.1cc/g以上、好ましくは0.5cc/g以
上の耐熱性のある担体であり、このようなものとして多
孔性無機酸化物および炭素質担体を例示することができ
る。多孔性無機酸化物としては、アルミナ、シリカ、シ
リカ・アルミナ、シリカ・マグネシア、アルミナ・マグ
ネシア、アルミナ・ボリア、シリカ・チタニア、シリカ
・ジルコニア、合成ゼオライト等の合成物あるいはセピ
オライト、天然ゼオライト等の天然物が挙げられるが、
アルミナが特に好ましく用いられる。また炭素質担体と
しては活性炭、カーボンブラック等が挙げられる。In the present invention, the powder catalyst preferably comprises a porous carrier, a hydrogenation active metal, and a refractory sulfur compound. The porous carrier has a surface area of 10 m 2 / g or more, preferably 50 m 2 / g or more, more preferably 200 m 2 / g or more and a pore volume of 0.1 cc / g or more, preferably 0.5 cc / g or more. Examples of such heat-resistant carriers include porous inorganic oxides and carbonaceous carriers. Examples of porous inorganic oxides include alumina, silica, silica-alumina, silica-magnesia, alumina-magnesia, alumina-boria, silica-titania, silica-zirconia, synthetic zeolites and other natural compounds such as sepiolite and natural zeolites. There are things,
Alumina is particularly preferably used. Examples of the carbonaceous carrier include activated carbon and carbon black.
【0013】該多孔性担体に担持される水素化活性金属
としては、W、V、Mo、Ni、CoおよびFeの中か
ら選ばれた少なくとも1種であり、Ni−Mo、Co−
Mo、Ni−Co−Moの組合せが特に好ましい。該水
素化活性金属は酸化物、硫化物あるいは酸化物、硫化物
の前駆体として多孔性無機酸化物に担持されていること
が好ましい。該粉末触媒中の水素化活性金属の濃度は金
属酸化物として5〜40wt%が好ましく、10〜30
wt%がさらに好ましい。The hydrogenation active metal supported on the porous carrier is at least one selected from W, V, Mo, Ni, Co and Fe. Ni-Mo, Co-
A combination of Mo and Ni-Co-Mo is particularly preferable. The hydrogenation active metal is preferably supported on the porous inorganic oxide as an oxide, a sulfide or a precursor of an oxide or a sulfide. The concentration of the hydrogenation active metal in the powder catalyst is preferably 5 to 40 wt% as a metal oxide, and 10 to 30
wt% is more preferable.
【0014】本発明に用いられる粉末触媒に含まれる難
硫化性の強磁性物質としては、スピネル型フェライト、
六方晶系アルカリ土類フェライト、イットリウムおよび
希土類フェライト等の各種フェライト等を例示すること
ができる。但し、磁気分離を行なう温度において強磁性
であることが必要であるため、強磁性から常磁性に変わ
るキューリー点が300℃以上、好ましくは500℃以
上の物質が用いられる。Spinel-type ferrite, a non-sulfurizable ferromagnetic substance contained in the powder catalyst used in the present invention,
Examples include hexagonal alkaline earth ferrite, various ferrites such as yttrium and rare earth ferrites, and the like. However, since it is necessary to be ferromagnetic at the temperature at which magnetic separation is performed, a substance having a Curie point of changing from ferromagnetism to paramagnetism of 300 ° C. or higher, preferably 500 ° C. or higher is used.
【0015】また、該強磁性物質は、この水素化脱金属
条件下において難硫化性であることが必要である。ここ
でいう難硫化性とは、例えば強磁性物質を1気圧の硫化
水素/水素混合ガス(5vol%H2S)で400℃、
1時間処理したときの強磁性物質の飽和磁化の減少率が
50%以下、好ましくは30%以下であることをいう。Further, it is necessary that the ferromagnetic material is hardly sulfurized under the hydrodemetallizing condition. The refractory sulphidity here means, for example, a ferromagnetic material at 400 ° C. in a hydrogen sulfide / hydrogen mixed gas (5 vol% H 2 S) at 1 atm,
It means that the reduction rate of the saturation magnetization of the ferromagnetic material after the treatment for 1 hour is 50% or less, preferably 30% or less.
【0016】本発明においては、Ba系フェライト、Z
n系フェライト、Mn系フェライト、Zn−Mn系フェ
ライトが好ましく用いられる。本発明に用いられる強磁
性物質の平均粒径は0.05〜50μmの範囲のものが
好ましく、0.1〜25μmの範囲のものがさらに好ま
しい。さらに上記粉末触媒の平均粒径の4分の1以下で
あることが好ましい。該強磁性物質と粉末触媒は別々の
粒子の物理混合物として用いられるのではなく、強磁性
物質が粉末触媒中に分散された一体化された状態で用い
られる。粉末触媒中の該強磁性物質の含有割合は0.0
1〜50wt%の範囲が好ましく、0.05〜10wt
%の範囲がさらに好ましい。In the present invention, Ba-based ferrite, Z
N-type ferrite, Mn-type ferrite, and Zn-Mn-type ferrite are preferably used. The average particle size of the ferromagnetic material used in the present invention is preferably in the range of 0.05 to 50 μm, more preferably 0.1 to 25 μm. Further, it is preferably 1/4 or less of the average particle diameter of the powder catalyst. The ferromagnetic material and the powdered catalyst are not used as a physical mixture of separate particles, but are used in the integrated state in which the ferromagnetic material is dispersed in the powdered catalyst. The content ratio of the ferromagnetic material in the powder catalyst is 0.0
The range of 1 to 50 wt% is preferable, and 0.05 to 10 wt
The range of% is more preferable.
【0017】本発明に用いられる粉末触媒中への強磁性
物質の分散方法は特に限定されないが、次のような方法
が好ましく採用される。例えば、すでに多孔性を有して
いる無機酸化物担体あるいは炭素質担体に、強磁性物質
あるいは強磁性物質の前駆体を担持する方法、またはゲ
ル状の金属水酸化物に強磁性物質の微粒子を分散させ、
それを乾燥、焼成する方法が挙げられる。また触媒を粉
末に成型する方法としては、乾燥あるいは焼成した触媒
を湿式あるいは乾式で粉砕する方法、またはゲル状ある
いはゾル状金属水酸化物を噴霧乾燥する方法が好ましく
用いられる。The method of dispersing the ferromagnetic substance in the powder catalyst used in the present invention is not particularly limited, but the following method is preferably adopted. For example, a method of supporting a ferromagnetic substance or a precursor of a ferromagnetic substance on a porous inorganic oxide carrier or a carbonaceous carrier, or fine particles of a ferromagnetic substance on a gel metal hydroxide. Disperse,
The method of drying and baking it is mentioned. As a method of molding the catalyst into powder, a method of pulverizing a dried or calcined catalyst by a wet method or a dry method, or a method of spray-drying a gel or sol metal hydroxide is preferably used.
【0018】本発明における水素化脱金属処理工程にお
いて、原料油中に含まれるニッケル、バナジウム等の重
金属の少なくとも40wt%、好ましくは60wt%以
上を上記粉末触媒上に堆積させる。この水素化脱金属処
理の条件は非常に広い範囲に及ぶが、反応温度は300
〜500℃の範囲であることが必要であり、好ましくは
350〜450℃の範囲である。反応温度が300℃よ
り低い場合、水素化脱金属の反応速度が遅く、十分な脱
金属率を得ることができない。また反応温度が500℃
を越える場合、熱分解により多量のスラッジが生成し好
ましくない。その他の条件については一般的には水素分
圧が10〜250kg/cm2、好ましくは50〜15
0kg/cm2、水素/原料油比が100〜2000N
l/Nl、装置内の油の滞留時間が10〜200分、好
ましくは20〜100分である。リアクターのタイプは
チューブラータイプあるいはアップフローの沸騰床タイ
プが好ましく採用される。In the hydrodemetallizing treatment step in the present invention, at least 40 wt%, preferably 60 wt% or more of heavy metals such as nickel and vanadium contained in the feed oil are deposited on the powder catalyst. The conditions of this hydrodemetallizing treatment are very wide, but the reaction temperature is 300
It is necessary to be in the range of to 500 ° C, preferably 350 to 450 ° C. When the reaction temperature is lower than 300 ° C., the reaction rate of hydrodemetallization is slow and a sufficient demetallization rate cannot be obtained. The reaction temperature is 500 ° C
If it exceeds the range, a large amount of sludge is generated due to thermal decomposition, which is not preferable. Regarding other conditions, the hydrogen partial pressure is generally 10 to 250 kg / cm 2 , preferably 50 to 15
0 kg / cm 2 , hydrogen / feed oil ratio 100-2000N
1 / Nl, the residence time of the oil in the apparatus is 10 to 200 minutes, preferably 20 to 100 minutes. The reactor type is preferably a tubular type or an upflow ebullated bed type.
【0019】水素化脱金属処理工程に供給される、原料
油と粉末触媒よりなるスラリー中の粉末触媒の濃度は
0.01〜300g/lの範囲が好ましく、0.1〜1
00g/lの範囲がさらに好ましい。The concentration of the powder catalyst in the slurry consisting of the feed oil and the powder catalyst supplied to the hydrodemetallizing process is preferably 0.01 to 300 g / l, and 0.1 to 1 is preferable.
The range of 00 g / l is more preferable.
【0020】この水素化脱金属処理工程において、原料
油中に含まれるニッケルとバナジウムの合計量の脱金属
率が40wt%以上、好ましくは60wt%以上となる
ように反応条件を設定する。In this hydrodemetallizing process, the reaction conditions are set so that the demetalization rate of the total amount of nickel and vanadium contained in the feed oil is 40 wt% or more, preferably 60 wt% or more.
【0021】本発明の重質油の水素化処理方法におい
て、水素化脱金属処理工程を出たスラリーは、次の触媒
分離工程へ送られ、そこで磁気分離機により水素化脱金
属油と粉末触媒とに分離される。In the heavy oil hydrotreating method of the present invention, the slurry that has undergone the hydrodemetallizing step is sent to the next catalyst separating step, where the magnetic separator separates the hydrodemetallizing oil and the powder catalyst. And separated.
【0022】ここでいう磁気分離機は、均一な高磁場空
間内に強磁性の充填物を置き、充填物の周囲に少なくと
も200ガウス/cm以上の磁場勾配を生じさせ、その
充填物の表面に強磁性あるいは常磁性微小粒子を着磁さ
せ、油中より分離できるように設計された磁気分離機で
あり、好ましくは100×103〜20000×103ガ
ウス/cmの高い磁場勾配を有する高勾配磁気分離機で
ある。高勾配磁気分離機としては、励磁コイルにより均
一な高磁場を発生させる高磁石型と、永久磁石により均
一な高磁場を発生させる永久磁石型とがある。The magnetic separator referred to herein is such that a ferromagnetic packing is placed in a uniform high magnetic field space, a magnetic field gradient of at least 200 gauss / cm or more is generated around the packing, and the packing surface is formed. A magnetic separator designed to magnetize ferromagnetic or paramagnetic microparticles and separate them from oil, preferably with a high gradient having a high magnetic field gradient of 100 × 10 3 to 20000 × 10 3 gauss / cm. It is a magnetic separator. As the high gradient magnetic separator, there are a high magnet type that generates a uniform high magnetic field by an exciting coil and a permanent magnet type that generates a uniform high magnetic field by a permanent magnet.
【0023】上記の強磁性充填物としては、通常1〜1
000μmの径を持つスチールウールあるいはスチール
ネットのごとき強磁性細線の集合体、またはエキスパン
ドメタルあるいはスチールビーズが用いられる。好まし
くは、エキスパンドメタルあるいはスチールビーズが用
いられる。The ferromagnetic filler is usually 1 to 1
Aggregates of ferromagnetic wires, such as steel wool or steel net with a diameter of 000 μm, or expanded metal or steel beads are used. Expanded metal or steel beads are preferably used.
【0024】磁気分離機で水素化脱金属油中からニッケ
ル、バナジウム等の重金属の堆積した粉末触媒を分離す
る方法は、該脱金属油を該磁気分離機の磁場空間内に導
入し、磁場空間に置かれた強磁性充填物に該粉末触媒を
着磁させることにより行なう。The method of separating the powdered catalyst on which heavy metals such as nickel and vanadium are deposited from the hydrodemetallized oil by the magnetic separator is to introduce the demetalized oil into the magnetic field space of the magnetic separator and This is done by magnetizing the powder catalyst on the ferromagnetic packing placed in the.
【0025】磁気分離機を運転する際のプロセス変数と
しては、通常、磁場強度、磁場勾配、線速度、粒子濃
度、処理温度があり、着磁させる粉末触媒の種類、大き
さ、濃度等により最適条件が選ばれる。As the process variables when operating the magnetic separator, there are usually magnetic field strength, magnetic field gradient, linear velocity, particle concentration and treatment temperature, which are optimal depending on the type, size and concentration of the powdered catalyst to be magnetized. Conditions are selected.
【0026】磁場強度は充填物が置かれている空間内の
磁場の強さであり、少なくとも200ガウス以上、通常
500〜25000ガウス、好ましくは1000〜20
000ガウスの範囲である。The magnetic field strength is the strength of the magnetic field in the space where the packing is placed, and is at least 200 gausses, usually 500-25000 gausses, preferably 1000-20 gausses.
It is in the range of 000 gauss.
【0027】磁場勾配とは充填物の周囲に生じる磁場強
度の距離による変化量で、磁場強度あるいは充填物の種
類および径を変えることにより変化させることができ、
少なくとも200ガウス/cm以上、通常100×10
3〜25000×103ガウス/cm、好ましくは200
0×103〜20000×103ガウス/cmの範囲が用
いられる。The magnetic field gradient is the amount of change in the magnetic field strength generated around the packing material depending on the distance and can be changed by changing the magnetic field strength or the kind and diameter of the packing material.
At least 200 gauss / cm or more, usually 100 × 10
3 to 25,000 × 10 3 gauss / cm, preferably 200
A range of 0 × 10 3 to 20000 × 10 3 gauss / cm is used.
【0028】粒子濃度とは、水素化脱金属油中に分散し
ている磁気分離の対象となる粉末触媒の濃度を意味し、
前記した範囲で運転される。The particle concentration means the concentration of the powder catalyst dispersed in the hydrodemetallized oil and to be subjected to magnetic separation,
It is operated within the above range.
【0029】処理温度とは、磁気分離に導入される際の
水素化脱金属油の温度を指し、水素化脱金属の反応温度
以下であり、通常、常温〜500℃、好ましくは300
〜500℃、さらに好ましくは350〜450℃の範囲
である。また処理温度は粉末触媒に含まれる強磁性物質
粒子のキューリー温度以下が好ましい。The treatment temperature refers to the temperature of the hydrodemetallizing oil when it is introduced into the magnetic separation, and is not higher than the reaction temperature of the hydrodemetallizing and is usually room temperature to 500 ° C., preferably 300.
To 500 ° C, more preferably 350 to 450 ° C. The treatment temperature is preferably not higher than the Curie temperature of the ferromagnetic substance particles contained in the powder catalyst.
【0030】また、線速度とは磁場内を通過する際の油
の線速度であり、通常0.1〜50cm/秒の範囲であ
り、好ましくは0.2〜20cm/秒範囲である。分離
する粉末触媒の磁性が小さいほど、また粒径が小さいほ
ど線速度を小さくする必要がある。The linear velocity is the linear velocity of oil when passing through a magnetic field, and is usually in the range of 0.1 to 50 cm / sec, preferably 0.2 to 20 cm / sec. The smaller the magnetism of the powder catalyst to be separated and the smaller the particle size, the smaller the linear velocity needs to be.
【0031】本発明において、磁気分離機内の強磁性充
填物に着磁した粉末触媒は、磁場強度を低下させて油を
流すことにより洗い流すことができる。このときの洗浄
用油としては水素化処理工程に張り込まれる原料重質
油、水素化処理工程で脱金属された水素化脱金属油、あ
るいは該脱金属油をさらに水素化処理した製品重油等を
用いることができる。磁気分離機より洗い流された粉末
触媒は、全量水素化処理工程に戻し再使用してもかまわ
ないし、一部製品重油に落とし、残りを再使用してもか
まわないし、全量製品重油に落としてもかまわない。In the present invention, the powdered catalyst magnetized in the ferromagnetic packing in the magnetic separator can be washed away by lowering the magnetic field strength and flowing oil. As the cleaning oil at this time, raw material heavy oil put into the hydrotreating step, hydrodemetallized oil demetalized in the hydrotreating step, or product heavy oil obtained by further hydrotreating the demetallized oil, etc. Can be used. The powder catalyst washed away from the magnetic separator may be returned to the hydrotreating process and reused in its entirety, or part of it may be dropped into heavy fuel oil and the rest may be reused, or it may be dropped into full product heavy oil. I don't care.
【0032】上記触媒分離工程で粉末触媒が取り除かれ
た水素化脱金属油は、さらに固定床式水素化処理するこ
とができる。固定床式水素化処理とは、触媒の存在下に
原料油と水素を高温高圧で反応させ、分解、脱硫、脱窒
素、脱金属反応を行ない、製品として有効な油に転化す
る方法である。The hydrodemetallized oil from which the powder catalyst has been removed in the above catalyst separation step can be further subjected to fixed bed hydrotreatment. The fixed bed hydrotreatment is a method in which a feedstock oil and hydrogen are reacted at high temperature and high pressure in the presence of a catalyst to carry out decomposition, desulfurization, denitrification, and demetallization reaction to convert into an oil effective as a product.
【0033】固定床式水素化処理に用いられる触媒とし
ては、アルミナ、シリカ・アルミナ、アルミナ・ボリア
等の多孔性担体に、コバルト、ニッケル、モリブデン、
タングステン、白金等の周期律表第VI族および/または
第VIII族金属もしくは金属化合物よりなる水素化金属成
分を担持した触媒が用いられる。As the catalyst used in the fixed bed hydrotreating treatment, cobalt, nickel, molybdenum, a porous carrier such as alumina, silica-alumina, or alumina-boria is used.
A catalyst supporting a metal hydride component composed of a metal or metal compound of Group VI and / or Group VIII of the periodic table such as tungsten and platinum is used.
【0034】固定床式水素化処理工程における条件とし
ては、反応温度300〜480℃、反応圧力50〜20
0kg/cm2(ゲージ)、好ましくは75〜150k
g/cm2(ゲージ)、液空間速度0.1〜10h
r-1、好ましくは0.2〜4hr-1、また水素/油比1
00〜2000Nl/lの各領域の値がそれぞれ採用さ
れる。Conditions in the fixed bed hydrotreating process are as follows: reaction temperature 300 to 480 ° C., reaction pressure 50 to 20.
0 kg / cm 2 (gauge), preferably 75 to 150 k
g / cm 2 (gauge), liquid space velocity 0.1 to 10 h
r -1 , preferably 0.2 to 4 hr -1 , and a hydrogen / oil ratio of 1
The value of each region of 00 to 2000 Nl / l is adopted.
【0035】[0035]
【実施例】次に、本発明の実施例等について説明する
が、本発明はこれに限定されるものではない。EXAMPLES Next, examples of the present invention will be described, but the present invention is not limited thereto.
【0036】実施例1 アルミン酸ソーダ680gと50%グルコン酸水溶液2
0ccを5リットルの純水に溶解し、50℃に加熱し
た。これとは別に725gの硫酸アルミニウムを5リッ
トルの純水に溶解し、50℃に加熱した。上記アルミン
酸ソーダ溶液へ硫酸アルミニウム溶液を激しく撹拌しな
がら加え、アルミナヒドロゲルを生成させた。この時の
pHは9.5であった。このヒドロゲルを1時間熟成し
た後、濾過、洗浄して擬ベーマイトのケーキを得た。こ
れに50gのMn・Zn系フェライト(平均粒径1.7
5μm、飽和磁化59.2emu/g)を混練し、次に
純水を加えて粘度を調整した後、250℃の熱風で噴霧
乾燥した。これをさらに500℃で1時間空気焼成し
た。得られた粉体の平均粒径は55μmであり、表面積
は243m2/gであった。また組成は、γ−アルミナ
が95wt%、フェライトが5wt%である。 Example 1 680 g of sodium aluminate and 50% gluconic acid aqueous solution 2
0 cc was dissolved in 5 liters of pure water and heated to 50 ° C. Separately, 725 g of aluminum sulfate was dissolved in 5 liters of pure water and heated to 50 ° C. An aluminum sulfate solution was added to the sodium aluminate solution with vigorous stirring to form an alumina hydrogel. The pH at this time was 9.5. The hydrogel was aged for 1 hour, then filtered and washed to obtain a pseudo-boehmite cake. To this, 50 g of Mn.Zn-based ferrite (average particle size 1.7
5 μm, saturation magnetization 59.2 emu / g) were kneaded, and then pure water was added to adjust the viscosity, followed by spray drying with hot air at 250 ° C. This was further air-baked at 500 ° C. for 1 hour. The obtained powder had an average particle size of 55 μm and a surface area of 243 m 2 / g. The composition is 95 wt% γ-alumina and 5 wt% ferrite.
【0037】この粉体に通常の方法でコバルトとモリブ
デンを担持した。担持量は、CoO5wt%、MoO3
15wt%である。Cobalt and molybdenum were supported on this powder by a usual method. The supported amount is 5 wt% CoO, MoO 3
It is 15 wt%.
【0038】この粉末触媒を用いて中東系減圧残油の水
素化処理を行なった。但し、反応を行なう前に、触媒を
5%硫化水素/水素気流中、400℃で1時間予備硫化
した。使用した原料油の性状を表1に示す。Using this powder catalyst, a Middle East vacuum residue was hydrotreated. However, before carrying out the reaction, the catalyst was pre-sulfided at 400 ° C. for 1 hour in a 5% hydrogen sulfide / hydrogen stream. Table 1 shows the properties of the raw material oil used.
【0039】撹拌式ステンレス製オートクレーブに表1
に記載の原料油1リットルと上記粉末触媒50gを張り
込み、以下の条件で反応を行なった。Table 1 was added to the stirring type stainless steel autoclave.
1 liter of the raw material oil described in 1 above and 50 g of the above powder catalyst were added, and the reaction was performed under the following conditions.
【0040】水素分圧:100kgf/cm2 反応温度:400℃ 反応時間:1時間Hydrogen partial pressure: 100 kgf / cm 2 Reaction temperature: 400 ° C. Reaction time: 1 hour
【0041】反応終了後、生成油を電磁石型高勾配磁気
分離機を用いて、以下の条件で処理した。 磁場強度:20キロガウス 線速度:3.0cm/秒 温度:150℃ 充填物:スチールウールAfter the reaction was completed, the produced oil was treated under the following conditions using an electromagnet type high gradient magnetic separator. Magnetic field strength: 20 kilogauss Linear velocity: 3.0 cm / sec Temperature: 150 ° C Filling material: Steel wool
【0042】この処理による粉末触媒の回収率は100
wt%であった。また粉末触媒を除去した後の処理油の
性状を表1に示す。 1The recovery rate of the powder catalyst by this treatment is 100.
It was wt%. Table 1 shows the properties of the treated oil after removing the powder catalyst. 1
【0043】[0043]
【表1】 [Table 1]
【0044】さらに、表1に示すそれぞれの油を用い
て、固定床式水素化処理を行なった。触媒はアルミナ担
体にCoO 3wt%、MoO313wt%担持した触媒
であり、1/32インチのシリンダー型押し出し成形品
である。反応条件は次の通りである。Further, using each oil shown in Table 1,
Then, fixed bed hydrotreatment was performed. The catalyst is alumina
CoO on the body 3wt%, MoO313wt% supported catalyst
And a 1/32 inch cylinder type extruded product
Is. The reaction conditions are as follows.
【0045】水素分圧:100kgf/cm2 反応温度:400℃ LHSV:0.3hr-1 反応開始から50時間後の生成油の分析結果を表2に示
す。Hydrogen partial pressure: 100 kgf / cm 2 Reaction temperature: 400 ° C. LHSV: 0.3 hr -1 Table 2 shows the analysis results of the produced oil 50 hours after the start of the reaction.
【0046】[0046]
【表2】 [Table 2]
【0047】比較例1 実施例1と同様の方法でγ−アルミナの粉体を調製し
た。但し、フェライトは含有させなかった。得られた粉
体の平均粒径は55μmであり、表面積は255m2/
gであった。この粉体に実施例1と同様の方法で、Co
O5wt%、MoO315wt%を担持した。 Comparative Example 1 γ-alumina powder was prepared in the same manner as in Example 1. However, ferrite was not included. The obtained powder has an average particle size of 55 μm and a surface area of 255 m 2 /
It was g. This powder was coated with Co in the same manner as in Example 1.
O5 wt% and MoO 3 15 wt% were supported.
【0048】触媒を予備硫化した後、実施例1と同様の
方法で表1に記載の減圧残油の水素化処理を行なった。
反応終了後、生成油を実施例1と同じ条件で電磁石型高
勾配磁気分離機により処理した。この処理による粉末触
媒の回収率は34.7wt%であった。この処理油の性
状を表3に示す。After presulfiding the catalyst, the vacuum residual oil shown in Table 1 was hydrotreated in the same manner as in Example 1.
After the reaction was completed, the produced oil was treated with an electromagnet type high gradient magnetic separator under the same conditions as in Example 1. The recovery rate of the powder catalyst by this treatment was 34.7 wt%. The properties of this treated oil are shown in Table 3.
【0049】[0049]
【表3】 [Table 3]
【0050】この処理油を実施例1と同様の方法で固定
床式水素化処理した。しかし、この処理油中には未回収
の粉末触媒が多く含まれているため、反応開始後、瞬時
に触媒床が閉塞し反応継続不可能となった。This treated oil was subjected to fixed bed hydrotreatment in the same manner as in Example 1. However, since the treated oil contained a large amount of unrecovered powder catalyst, the catalyst bed was blocked immediately after the start of the reaction and the reaction could not be continued.
【0051】[0051]
【発明の効果】本発明の重質油の水素化処理方法によっ
て、重質油中に含まれる金属類を効率的に除去できる。The heavy oil hydrotreating method of the present invention enables efficient removal of metals contained in the heavy oil.
Claims (2)
合計量で10ppm以上含む重質油を、平均粒子径が
0.1〜200μmで難硫化性の強磁性微粒子を分散含
有した粉末触媒を混合したスラリーを水素存在下、温度
300〜500℃、圧力10〜250kg/cm2で処
理する水素化脱金属処理工程と、該脱金属処理したスラ
リーから前記粉末触媒を磁気分離機を用いて分離する触
媒分離工程を含むことを特徴とする重質油の水素化処理
方法。1. A slurry in which a heavy oil containing nickel and vanadium in a total amount of 10 ppm or more as a heavy metal component is mixed with a powder catalyst containing an average particle diameter of 0.1 to 200 μm and dispersible ferromagnetic fine particles dispersed therein. In the presence of hydrogen at a temperature of 300 to 500 ° C. and a pressure of 10 to 250 kg / cm 2 , and a catalyst separation for separating the powdered catalyst from the demetalized slurry by using a magnetic separator. A method for hydrotreating heavy oil, comprising the steps of:
合計量で10ppm以上含む重質油を、平均粒子径が
0.1〜200μmで難硫化性の強磁性微粒子を分散含
有した粉末触媒を混合したスラリーを水素存在下、温度
300〜500℃、圧力10〜250kg/cm2で処
理する水素化脱金属処理工程と、該脱金属処理したスラ
リーから前記粉末触媒を磁気分離機を用いて分離する触
媒分離工程と、該分離工程から得られた粉末触媒が分離
された処理油を水素化する水素化処理工程を含むことを
特徴とする重質油の水素化処理方法。2. A slurry obtained by mixing a heavy oil containing nickel and vanadium as a heavy metal component in a total amount of 10 ppm or more with a powder catalyst having an average particle diameter of 0.1 to 200 μm and containing hard-to-sulfide ferromagnetic fine particles dispersed therein. In the presence of hydrogen at a temperature of 300 to 500 ° C. and a pressure of 10 to 250 kg / cm 2 , and a catalyst separation for separating the powdered catalyst from the demetalized slurry by using a magnetic separator. A heavy oil hydrotreating method comprising: a step; and a hydrotreating step of hydrotreating the treated oil from which the powder catalyst obtained from the separating step is separated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35238592A JPH06179880A (en) | 1992-12-11 | 1992-12-11 | Method of hydrotreatment of heavy oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35238592A JPH06179880A (en) | 1992-12-11 | 1992-12-11 | Method of hydrotreatment of heavy oil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06179880A true JPH06179880A (en) | 1994-06-28 |
Family
ID=18423716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35238592A Pending JPH06179880A (en) | 1992-12-11 | 1992-12-11 | Method of hydrotreatment of heavy oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06179880A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9086071B2 (en) | 2009-05-20 | 2015-07-21 | Edwards Limited | Side-channel pump with axial gas bearing |
CN114672340A (en) * | 2022-03-15 | 2022-06-28 | 国家能源集团宁夏煤业有限责任公司 | Electromagnetic separation device, system and method for Fischer-Tropsch synthesis hydrocracking unit |
-
1992
- 1992-12-11 JP JP35238592A patent/JPH06179880A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9086071B2 (en) | 2009-05-20 | 2015-07-21 | Edwards Limited | Side-channel pump with axial gas bearing |
US9127685B2 (en) | 2009-05-20 | 2015-09-08 | Edwards Limited | Regenerative vacuum pump with axial thrust balancing means |
US9334873B2 (en) | 2009-05-20 | 2016-05-10 | Edwards Limited | Side-channel compressor with symmetric rotor disc which pumps in parallel |
CN114672340A (en) * | 2022-03-15 | 2022-06-28 | 国家能源集团宁夏煤业有限责任公司 | Electromagnetic separation device, system and method for Fischer-Tropsch synthesis hydrocracking unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4525267A (en) | Process for hydrocracking hydrocarbons with hydrotreatment-regeneration of spent catalyst | |
US3530066A (en) | Catalytic hydrotreating process of petroleum hydrocarbons containing asphaltenes | |
US6030915A (en) | Process for preparing a large pore hydroprocessing catalyst | |
JP4109541B2 (en) | Method for producing catalyst and method for recovering metal used for hydrorefining | |
EP0770426B1 (en) | Process for preparing a hydroprocessing catalyst from waste hydroprocessing catalyst | |
AU2005265004A1 (en) | Catalyst combination and two-step hydroprocessing method for heavy hydrocarbon oil | |
PL202786B1 (en) | Hydroprocessing catalyst and use thereof | |
EP1567617B1 (en) | Hydroprocessing of hydrocarbon using a mixture of catalysts | |
JP2004010857A (en) | Method for hydrogenating hydrocarbon heavy oil | |
JP4773634B2 (en) | Two-stage hydroprocessing method for heavy hydrocarbon oil | |
JP4369871B2 (en) | Heavy material HPC process using a mixture of catalysts | |
EP1392798B1 (en) | Two-stage hydroprocessing process | |
JP4612229B2 (en) | Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method | |
CA1050915A (en) | Demetallization of high metals feedstocks using regenerated catalyst | |
JPH02305891A (en) | Descaling agent for hydrocarbon oil and hydrogenation catalyst | |
JPH0634928B2 (en) | In-process renewable heavy crude oil hydroconversion catalyst and hydroconversion method | |
CA1131199A (en) | Catalyst for hydrotreatment of heavy hydrocarbon oils and process for preparing the catalysts | |
JPS5950276B2 (en) | Method for hydrotreating mineral oils | |
JPH06179880A (en) | Method of hydrotreatment of heavy oil | |
JPH07316565A (en) | Hydrogenation treatment of heavy oil | |
CA2025220A1 (en) | Slurry hydrotreating process | |
US20040134835A1 (en) | Heavy feed HPC process using a mixture of catalysts | |
JPS58101193A (en) | Hydrogenating and removing metal from heavy oil with fine particulate catalyst | |
JPH05184941A (en) | Hydrotreating catalyst for removing scale and/or metal | |
EP0888186B1 (en) | Process for preparing a large pore hydroprocessing catalyst |