[go: up one dir, main page]

JPH0617898B2 - Judgment method of defect type in ultrasonic flaw detection - Google Patents

Judgment method of defect type in ultrasonic flaw detection

Info

Publication number
JPH0617898B2
JPH0617898B2 JP63127529A JP12752988A JPH0617898B2 JP H0617898 B2 JPH0617898 B2 JP H0617898B2 JP 63127529 A JP63127529 A JP 63127529A JP 12752988 A JP12752988 A JP 12752988A JP H0617898 B2 JPH0617898 B2 JP H0617898B2
Authority
JP
Japan
Prior art keywords
defect
defects
square steel
flaw detection
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63127529A
Other languages
Japanese (ja)
Other versions
JPH01297551A (en
Inventor
三男 吉田
淳一 藤沢
仁 出町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63127529A priority Critical patent/JPH0617898B2/en
Publication of JPH01297551A publication Critical patent/JPH01297551A/en
Publication of JPH0617898B2 publication Critical patent/JPH0617898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、断面が正方形の長尺角材(以下角鋼という)
等の超音波探傷における欠陥種類の判定方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a long square bar having a square cross section (hereinafter referred to as square steel).
The present invention relates to a method of determining a defect type in ultrasonic flaw detection such as.

〔従来の技術〕 一般に角鋼の超音波探傷は、第6図に示す様に、超音波
を送受信するセンサーである探触子1を複数個設置した
鞍型形状の探傷ヘッド10を固定し、角鋼3をその長手
方向に搬送させて、角鋼3をその全長に渡り探傷する、
という方法で実施されている。
[Prior Art] Generally, as shown in FIG. 6, ultrasonic flaw detection of square steel is performed by fixing a saddle-shaped flaw detection head 10 having a plurality of probes 1 which are sensors for transmitting and receiving ultrasonic waves. 3 is conveyed in the longitudinal direction, and square steel 3 is flaw-detected over its entire length,
It is carried out by the method.

この探傷方法において、角鋼3に存在する有害欠陥の有
無は、ある一定レベル以上の大きさの欠陥が有るか無い
かによるオン/オフ判定、又は、第7図に示す様に、角
鋼3の任意の検出ピッチl毎に欠陥の有無を検出し、欠
陥があればその数をカウントし、このカウント数を監視
して、連続的に現われた欠陥の連続数(以下連続度とい
う)、若しくは角鋼3の全長に渡って現われた欠陥の総
個数(以下累積度という)が予め設定した値を超えたと
きに、有害欠陥有りと判定する方法により行われてい
る。尚、一般にlは5mm程度としている。
In this flaw detection method, the presence / absence of harmful defects existing in the square steel 3 is determined by on / off judgment based on whether there is a defect of a certain level or more, or as shown in FIG. The presence / absence of defects is detected for each detection pitch l, and if there are defects, the number of defects is counted, and the counted number is monitored to continuously detect defects (hereinafter referred to as continuity) or square steel 3 When the total number of defects appearing over the entire length of (1) (hereinafter referred to as “accumulation degree”) exceeds a preset value, it is determined that there is a harmful defect. Generally, l is about 5 mm.

又、これら角鋼の長手方向の欠陥分布に基づく判定方法
の他に、最近では第8図に示す様に角鋼3の周方向に配
置した多数の探触子1のうち、欠陥11を検出した探触
子(図中1a,1b,1c,1d)を角鋼3の任意の長
さ毎にカウントして角鋼の断面方向の欠陥分布(以下密
集度という)を判定する方法や、更にこの方法を発展さ
せた特開昭58−24858号公報に開示される角鋼の断面方
向の欠陥評点付けによる判定も組合わせて実施されてい
る。
In addition to the determination method based on the defect distribution in the longitudinal direction of these square steels, recently, as shown in FIG. 8, among the many probes 1 arranged in the circumferential direction of the square steel 3, a probe that detects a defect 11 is detected. A method of counting defects (1a, 1b, 1c, 1d in the figure) for each arbitrary length of the square steel 3 to determine the defect distribution in the cross-sectional direction of the square steel (hereinafter referred to as "density"), and further developing this method. Judgment by scoring defects in the cross-sectional direction of the square steel disclosed in Japanese Patent Laid-Open No. 58-24858 is also carried out in combination.

しかし、これらの方法は、欠陥の有害性を判定する方法
であって、欠陥の種類は判定出来なかった。このため、
欠陥の発生頻度は把握できても、品質改善のアクション
につなげるだけの情報は得られなかった。
However, these methods are methods for judging the harmfulness of defects, and the type of defects cannot be judged. For this reason,
Although we could understand the frequency of defects, we could not obtain enough information to link them to quality improvement actions.

鉄鋼業では、製鋼工程での角鋼製造状況と、発生する欠
陥の種類とに密接な相関のある事が知られており、製造
技術のレベルアップのために、欠陥の種類を知る事は非
常に重要である。そこで従来は、角鋼を切断し、マク
ロ,ミクロ顕微鏡調査により、欠陥の種類を判定してい
た。
In the steel industry, it is known that there is a close correlation between the state of square steel production in the steelmaking process and the types of defects that occur, and it is very important to know the types of defects in order to improve the level of manufacturing technology. is important. Therefore, conventionally, square steel was cut and the type of defect was determined by macro and microscopic examination.

又、簡易的な方法として、特に特許情報としては存在し
ないが、角鋼の超音波探傷状況をチャート(以下探傷チ
ャートという)に記録して、この探傷チャートから、熟
練者が欠陥の種類を判定する、という方法も実施されて
いる。
In addition, as a simple method, although it does not exist as patent information, the ultrasonic flaw detection condition of square steel is recorded in a chart (hereinafter referred to as flaw detection chart), and an expert determines the type of defect from this flaw detection chart. , Is also practiced.

第9a図,第9b図および第9c図に、欠陥の種類と探
傷チャートの例を示す。
Examples of defect types and flaw detection charts are shown in FIGS. 9a, 9b and 9c.

第9a図は、角鋼のポロシティ,毛ワレ欠陥の探傷チャ
ートを示している、この欠陥の特徴は、探傷チャートの
ベースレベルが全体的に高くなり、信号レベルの高低変
化が激しい。
FIG. 9a shows a flaw detection chart for porosity and hair crack defects of square steel. The feature of this flaw is that the base level of the flaw detection chart is generally high and the signal level changes greatly.

第9図bは、角鋼のパイプ欠陥の探傷チャートを示して
いる。この欠陥では、探傷チャートのベースレベルが全
体的に高く、信号が白ヌキとなることが多い。またこの
欠陥は角鋼の先端もしくは後端で発生する頻度が高い。
FIG. 9b shows a flaw detection chart for pipe defects in square steel. In this defect, the base level of the flaw detection chart is generally high, and the signal is often white. Moreover, this defect is frequently generated at the front end or the rear end of the square steel.

第9c図は、角鋼の介在物の探傷チャートを示してい
る。この欠陥では、信号が単独又は散発的に発生する。
FIG. 9c shows a flaw detection chart for inclusions of square steel. In this defect, signals are generated individually or sporadically.

この様な欠陥の特徴に基づいて、熟練者は、探傷チャー
トから欠陥の種類を判定するが、人間の官能判断である
ため、あいまいさが残り、又、最近の省力化,自動化の
観点からも問題があった。更に、角鋼を切断して欠陥種
類を判定する方法は、手間と時間がかかるため、全数を
検査することが出来ないという問題があった。
Based on such defect characteristics, an expert determines the type of defect from the flaw detection chart, but since it is a human sensory judgment, ambiguity remains, and also from the viewpoint of recent labor saving and automation. There was a problem. Furthermore, the method of cutting the square steel and determining the defect type has a problem that it is not possible to inspect all of them because it takes time and labor.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、このような問題を解決するためになされたも
のであり、人間の官能判断に頼ることなく、自動的に欠
陥の種類を識別することが課題である。
The present invention has been made to solve such a problem, and an object thereof is to automatically identify the type of defect without relying on human sensory judgment.

〔課題を解決するための手段〕[Means for Solving the Problems]

この目的を達成するため、本発明においては、角鋼の欠
陥有無を所定の長さ単位で検出し、欠陥の長手方向連続
度及び累積度並びに角鋼断面方向の欠陥の密集度から欠
陥の有害度を判定する超音波探傷において、これら3つ
の情報の組合せにより欠陥の種類を判定する。
In order to achieve this object, in the present invention, the presence or absence of defects in the square steel is detected in a predetermined length unit, and the harmfulness of the defects is determined from the degree of continuity and the degree of accumulation of the defects and the density of defects in the cross section of the square steel. In ultrasonic flaw detection, the type of defect is determined based on the combination of these three pieces of information.

つまり、角鋼の超音波探傷における欠陥の連続度,欠陥
の累積度及び欠陥の密集度の欠陥有害判定を角鋼の中心
エリア及び表層エリア毎に行い、これと、例えば、ポロ
シティ,パイプ,介在物等の欠陥種類との相関を対応づ
けて、これら3つの情報の組合せにより、欠陥の種類を
正確に判定可能とした事を特徴とする。
That is, in the ultrasonic flaw detection of square steel, the defect harmfulness such as the degree of continuity of defects, the degree of accumulation of defects and the density of defects is determined for each central area and surface area of the square steel, and, for example, porosity, pipes, inclusions, etc. The defect type can be accurately determined by associating the correlation with the defect type and combining these three pieces of information.

具体的には、 (1)欠陥の中心連続度と中心累積度の組合せにより、
毛ワレ・ポロシティ欠陥,パイプ欠陥及び介在物を判定
し、 (2)欠陥の表層連続度と表層断面密集度の組合せによ
り、表層デッケル欠陥及び介在物を判定し、 (3)欠陥の中心連続度と中心断面密集度の組合せによ
り、中心デッケル欠陥及び介在物欠陥を判定する。
Specifically, (1) By combining the central continuity and the central cumulative degree of defects,
Wool cracks / porosity defects, pipe defects and inclusions are determined. (2) Surface deckle defects and inclusions are determined by the combination of surface continuity and surface cross-section density, and (3) central continuity of defects. The central deckle defect and the inclusion defect are determined by the combination of and the central cross-section density.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して詳細に説明す
る。第1図は、角鋼の超音波探傷エリアを中心と表層と
に分ける方法を示す。探触子1から送信された超音波ビ
ーム2は、角鋼3の表面及び底面で反射され、各々の反
射波により、表面エコー4(以下、Sエコーという)及
び底面エコー5(以下、Bエコーという)の信号が得ら
れる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a method of dividing an ultrasonic flaw detection area of square steel into a center and a surface layer. The ultrasonic beam 2 transmitted from the probe 1 is reflected by the surface and the bottom surface of the square steel 3, and the surface echo 4 (hereinafter, referred to as S echo) and the bottom surface echo 5 (hereinafter, referred to as B echo) are caused by each reflected wave. ) Signal is obtained.

このSエコー4を基準として、探傷ゲートと呼ばれる信
号の受信エリアを設定する。即ち、探傷ゲートのうち、
中心ゲート6としてはSエコー4の後10mmからBエコ
ー5の前10mmまでの範囲を、表層ゲート7としては、
Sエコー4側は、なだれ込みといわれる探傷出来ないエ
リアがあるのでBエコー5前10mmからBエコー手前ま
での範囲を設定する。
A signal reception area called a flaw detection gate is set based on the S echo 4. That is, of the flaw detection gates
For the center gate 6, a range from 10 mm after the S echo 4 to 10 mm before the B echo 5 is used, and as the surface layer gate 7,
On the S echo 4 side, there is an area where flaw detection cannot be performed, which is called avalanche, so the range from 10 mm before the B echo 5 to the front of the B echo is set.

角鋼3の周囲4方向から探触子1で探傷することによ
り、角鋼3の探傷領域は、表面から10mm深さまでの表
層エリア8とそれ以外の中心エリア9とに区分できる。
By performing flaw detection with the probe 1 from four directions around the square steel 3, the flaw detection area of the square steel 3 can be divided into a surface layer area 8 having a depth of 10 mm from the surface and a central area 9 other than the surface area 8.

第2図,第3図及び第4図は、各種類の欠陥を有する角
鋼を超音波探傷した結果を、第1図に示す中心と表層と
に分けて連続度,累積度及び密集度の指標にて整理した
グラフである。
Figures 2, 3, and 4 show the results of ultrasonic flaw detection on square steel with various types of defects, with the index of continuity, accumulation, and density divided into the center and surface layers shown in Figure 1. It is a graph organized in.

第2図は、角鋼の毛ワレ・ポロシティ欠陥,パイプ欠陥
及び介在物欠陥を横軸(以下、x軸という)の中心連続
度、縦軸(以下、y軸という)の中心累積度を指標とし
てプロットしたものである。
FIG. 2 is a graph showing the hair continuity / porosity defect, pipe defect, and inclusion defect of square steel with the central continuity of the horizontal axis (hereinafter referred to as the x-axis) and the central cumulative degree of the vertical axis (hereinafter referred to as the y-axis) as indexes. It is a plot.

ここで、欠陥の連続度及び累積度は、それぞれ、角鋼の
所定長さ毎にカウントした欠陥の連続個数及び角鋼の全
長についての欠陥の総個数である。
Here, the degree of continuity and the degree of accumulation of defects are the continuous number of defects counted for each predetermined length of the square steel and the total number of defects for the entire length of the square steel, respectively.

尚、各欠陥の種類は、欠陥位置で角鋼を切断し、マクロ
調査及び顕微鏡によるミクロ調査により特定したもので
ある。
The type of each defect is specified by cutting the square steel at the defect position and performing macro examination and micro examination with a microscope.

第2図から角鋼の毛ワレ・ポロシティ欠陥(A),パイプ欠
陥(B)及び介在物欠陥(E)は、次の第1表に従って中心連
続度と中心累積度の組合せを判定すれば、その種類を識
別出来る。
From FIG. 2, the hair crack / porosity defect (A), pipe defect (B) and inclusion defect (E) of square steel can be determined by determining the combination of central continuity and central cumulative degree according to Table 1 below. The type can be identified.

第3図は、角鋼の表層デッケル欠陥及び介在物欠陥につ
いて角鋼表層部の超音波探傷結果を欠陥の連続度及び断
面密集度で評価し、x軸の表層連続度、及びy軸の表層
断面密集度を指標としてプロットしたものである。
FIG. 3 shows the results of ultrasonic flaw detection on the surface layer of square steel for square deckle defects and inclusion defects of square steel evaluated by the degree of defect continuity and cross-section density, and the surface continuity on the x-axis and the surface cross-section density on the y-axis. It is plotted using degrees as an index.

ここで、角鋼表層部とは、前述の第1図に示すように、
角鋼の表面から10mm深さまでのエリア8をさす。又、
欠陥の断面密集度も前述のように、角鋼の周方向に配置
した複数の探触子のうち、欠陥を検出した探触子を角鋼
の任意長さ毎にカウントして、角鋼の断面方向の欠陥分
布を求めたものである。
Here, the square steel surface layer portion, as shown in FIG.
Area 8 up to a depth of 10 mm from the surface of square steel. or,
As described above, the cross-sectional density of defects is, among the multiple probes arranged in the circumferential direction of the square steel, the number of probes in which defects are detected, counted for each arbitrary length of the square steel, and This is the defect distribution.

第3図から、角鋼の表層デッケル欠陥(C)及び介在物欠
陥(E)は、次の判定値により種類分けすることが出来
る。
From FIG. 3, the surface deckle defect (C) and the inclusion defect (E) of the square steel can be classified according to the following judgment values.

表層デッケル欠陥…y≧−x+4 介在物欠陥…x≧1,y≧1,y<−x+4 第4図は、第3図と同様に、角鋼の中心デッケル欠陥及
び介在物欠陥について、角鋼中心部の超音波探傷結果
を、欠陥の連続度及び断面密集度で評価し、x軸の中心
連続度,及びy軸の中心断面密集度を指標として結果を
プロットしたものである。
Surface deckle defect: y ≧ −x + 4 Inclusion defect: x ≧ 1, y ≧ 1, y <−x + 4 FIG. 4 shows the center deckle defect and the inclusion defect of the square steel, as in FIG. 3. The ultrasonic flaw detection results of No. 1 are evaluated by the degree of continuity of defects and the cross-sectional density, and the results are plotted using the x-axis central continuity and the y-axis central cross-sectional density.

第4図から、角鋼の中心デッケル欠陥(D)及び介在物欠
陥(E)は、x,y値を次の第(1)式に従って判定すれば識
別出来る。
From FIG. 4, the central deckle defect (D) and inclusion defect (E) of the square steel can be identified by determining the x and y values according to the following equation (1).

中心デッケル欠陥…y≧-5x/6+20/3 介在物欠陥 …x≧1,y≧1,y<-5x/6+20/3 ……(1) 以上説明した第2図,第3図及び第4図の内容をまとめ
ると、次の第2表に示す通り、ほぼ全ての欠陥種類につ
いて、その種類の判定が可能となる。
Center deckle defect ... y ≧ -5x / 6 + 20/3 Inclusion defect ... x ≧ 1, y ≧ 1, y <-5x / 6 + 20/3 (1) The above-described FIGS. 2 and 3 When the contents of FIGS. 4 and 5 are summarized, as shown in Table 2 below, it is possible to determine the types of almost all defect types.

第5図に、上記判方法による欠陥種類の判定フローを示
す。
FIG. 5 shows a defect type determination flow according to the above determination method.

毛ワレ・ポロシティ欠陥(A)及びパイプ欠陥(B)は、中心
連続度(x)と中心累積度(y)の組合せで種類分けでき、各
々、 毛ワレ・ポロシティ欠陥(A)は、 中心連続度 x≧3,中心累積度y≧40 パイプ欠陥(B)は、 中心連続度 x≧10,中心累積度y<40 で判定される。
Hair cracks / porosity defects (A) and pipe defects (B) can be classified according to the combination of central continuity (x) and central cumulative degree (y). Degree x ≧ 3, central cumulative degree y ≧ 40 The pipe defect (B) is judged by central continuity degree x ≧ 10 and central cumulative degree y <40.

表層デッケル(C)及び中心デッケル(D)は、各々表層連続
度(x)と表層断面密集度(y)及び中心連続度(x)と中心断
面密集度(y)の組合せで種類分けでき、 表層デッケル(C)は、y≧−x+4 中心デッケル(D)は、y≧−5x/6+20/3 の関係で判定される。
Surface deckle (C) and center deckle (D) can be classified by a combination of surface layer continuity (x) and surface layer cross-section density (y) and center layer continuity (x) and center cross-section density (y), The surface deckle (C) is determined as y ≧ −x + 4, and the center deckle (D) is determined as y ≧ −5x / 6 + 20/3.

又、介在物(E)は、上記A〜D以外の全ての欠陥と判定
される。
The inclusions (E) are determined to be all defects other than the above A to D.

尚、前述の各判定値は、製鋼のマシン条件が変われば変
わる性質のものである事は勿論である。
Of course, each of the above-mentioned judgment values has the property of changing if the machine conditions for steel making change.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明方法によれば、角鋼中に存在する
欠陥の種類を正確に判定でき、また例えばマイクロコン
ピュータ等を利用すれば角鋼の超音波探傷時オンライン
で自動的に判定することが可能であり、角鋼の品質評価
を確実に行えるとともに、更に、この情報を製鋼工程へ
反映する事により、製造レベルの向上を促進させる大き
な効果をもたらす。
As described above, according to the method of the present invention, it is possible to accurately determine the types of defects existing in the square steel, and it is possible to automatically determine online with ultrasonic flaw detection of the square steel by using, for example, a microcomputer. It is possible, and the quality of square steel can be surely evaluated, and further, by reflecting this information in the steelmaking process, it has a great effect of promoting the improvement of the production level.

【図面の簡単な説明】[Brief description of drawings]

第1図は、欠陥種類の判定エリアを示す角鋼の断面図、
第2図,第3図及びら第4図は、欠陥種類の判定方法を
示すグラフ、第5図は、欠陥種類の判定処理を示すフロ
ーチャート、第6図及び第8図は、探傷子と角鋼との配
置を示す正面図、第7図は欠陥の有無を示す信号の構成
を示す平面図、第9a図,第9b図及び第9c図は、各
々、各種の欠陥における探傷チャートの内容を示す波形
図である。 1:探触子、2:超音波ビーム 3:角鋼、4:表面エコー 5:底面エコー、6:中心ゲート 7:表層ゲート、8:表層エリア 9:中心エリア、10:探傷ヘッド 11:欠陥
FIG. 1 is a sectional view of a square steel showing a defect type determination area,
2, 3 and 4 are graphs showing the method of determining the defect type, FIG. 5 is a flowchart showing the determination process of the defect type, and FIGS. 6 and 8 are the flaw detector and the square steel. And FIG. 7 is a plan view showing the structure of a signal indicating the presence or absence of a defect, and FIGS. 9a, 9b and 9c show the contents of flaw detection charts for various defects. It is a waveform diagram. 1: Probe, 2: Ultrasonic beam 3: Square steel, 4: Surface echo 5: Bottom echo, 6: Center gate 7: Surface gate, 8: Surface area 9: Center area, 10: Inspection head 11: Defect

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被検査材を超音波探傷し、欠陥位置を所定
の長さ毎に検出し、該検出された欠陥情報を被検査材の
中心のものと表層のものに区分するとともに、各区分に
おける欠陥の長手方向連続度、被検査材全長の欠陥累積
度、及び被検査材断面方向の密集度を求めて、これらの
組み合わせにより毛ワレや介在物等の欠陥種類を判定す
ることを特徴とする超音波探傷における欠陥種類の判定
方法。
1. A material to be inspected is subjected to ultrasonic flaw detection, defect positions are detected for each predetermined length, and the detected defect information is classified into a center information and a surface layer information, and The feature is that the type of defects such as hair cracks and inclusions is determined by obtaining the degree of continuity of defects in the longitudinal direction, the degree of accumulation of defects over the length of the material to be inspected, and the degree of density in the cross section of the material to be inspected, based on the combination of these. And a method of determining a defect type in ultrasonic flaw detection.
JP63127529A 1988-05-25 1988-05-25 Judgment method of defect type in ultrasonic flaw detection Expired - Lifetime JPH0617898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127529A JPH0617898B2 (en) 1988-05-25 1988-05-25 Judgment method of defect type in ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127529A JPH0617898B2 (en) 1988-05-25 1988-05-25 Judgment method of defect type in ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JPH01297551A JPH01297551A (en) 1989-11-30
JPH0617898B2 true JPH0617898B2 (en) 1994-03-09

Family

ID=14962274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127529A Expired - Lifetime JPH0617898B2 (en) 1988-05-25 1988-05-25 Judgment method of defect type in ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPH0617898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177168A (en) * 2002-11-25 2004-06-24 Sanyo Special Steel Co Ltd In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118555A (en) * 1990-09-10 1992-04-20 Nippon Steel Corp Method for determining kind of defective in square steel
JP2009031094A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Non-metallic inclusion defect acceptance / rejection determination method and acceptance / rejection determination apparatus
JP6061077B2 (en) * 2012-10-29 2017-01-18 株式会社Ihi Ultrasonic flaw detection method and apparatus
JP6061076B2 (en) * 2012-10-29 2017-01-18 株式会社Ihi Ultrasonic flaw detection method and apparatus
JP7233853B2 (en) 2018-05-11 2023-03-07 三菱重工業株式会社 ULTRASOUND INSPECTION APPARATUS, METHOD, PROGRAM AND ULTRASOUND INSPECTION SYSTEM

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824858A (en) * 1981-08-07 1983-02-14 Nippon Steel Corp Deciding method for defect in square steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177168A (en) * 2002-11-25 2004-06-24 Sanyo Special Steel Co Ltd In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection

Also Published As

Publication number Publication date
JPH01297551A (en) 1989-11-30

Similar Documents

Publication Publication Date Title
US20100107725A1 (en) Calibration method of ultrasonic flaw detection and quality control method and production method of tubular body
CN105806948B (en) Cut deal supersonic detection method based on local water logging coupled modes straight probe of single crystal
US20100064495A1 (en) Quality control method and manufacturing method for pipe
US20150000095A1 (en) Ultrasonic flaw detection method, ultrasonic flaw detection apparatus, and pipe manufacturing method
EP3489674B1 (en) Ultrasonic inspection of a structure with a ramp
CN102095799A (en) Method for detecting defect of 7 series aluminium alloy forge piece by ultrasonic testing with immersion type probe
US20020194916A1 (en) Method for inspecting clad pipe
JPH0219424B2 (en)
JP3723555B2 (en) Ultrasonic inspection method for welds
JPH0617898B2 (en) Judgment method of defect type in ultrasonic flaw detection
KR101942792B1 (en) Steel material quality evaluation method and quality evaluation device
CN110988127B (en) Signal identification method for detecting defects on surface and near surface of round bar by rotary ultrasonic
Zippel et al. Crack measurement in steel plates using TOFD method
RU2191376C2 (en) Method measuring sizes of defects in process of ultrasonic inspection of articles
CN206020347U (en) Ultrasonic examination detection reference block
JP2002207028A (en) Defect discrimination method
JPH09138222A (en) Ultrasonic inspection of cast or rolled steel
Burch et al. M-skip: a quantitative technique for the measurement of wall loss in inaccessible components
Anandika et al. Non-destructive measurement of artificial near-surface cracks for railhead inspection
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
JP2001240937A (en) High cleanliness steel
CN115389623A (en) Continuous casting billet ultrasonic flaw detection process
JPS59116541A (en) Method for detecting flaw of square steel piece by using both electronic sector scanning and electronic linear scanning
Hesse et al. Defect detection in rails using ultrasonic surface waves
JP2000146926A (en) Defect type discrimination method