[go: up one dir, main page]

JPH06177487A - Manufacture of high-resistance buried layer - Google Patents

Manufacture of high-resistance buried layer

Info

Publication number
JPH06177487A
JPH06177487A JP32773992A JP32773992A JPH06177487A JP H06177487 A JPH06177487 A JP H06177487A JP 32773992 A JP32773992 A JP 32773992A JP 32773992 A JP32773992 A JP 32773992A JP H06177487 A JPH06177487 A JP H06177487A
Authority
JP
Japan
Prior art keywords
layer
resistance
high resistance
buried
mesa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32773992A
Other languages
Japanese (ja)
Inventor
Hiromitsu Asai
裕充 浅井
Isamu Odaka
勇 小▲高▼
Koichi Wakita
紘一 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32773992A priority Critical patent/JPH06177487A/en
Publication of JPH06177487A publication Critical patent/JPH06177487A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a flat high-resistance buried layer when a mesa to be buried is deep or even in any substrate orientation by forming undoped InAlAs at a specific growth temperature through a molecular-beam epitaxial method and burying the high resistance layer in high-resistance layer burying. CONSTITUTION:An n-type InP clad-layer undoped InGaAs active layer 4, a p-type InP clad layer 5 and a p-type InGaAsP electrode layer 6 having high mesa structure are formed onto the top face of an n-type InP substrate 2 while undoped high-resistance InAlAs 23 is buried flatly on both sides of the high mesa stripe as high-resistance buried layers. The flat high-resistance buried layer is acquired even in any substrate orientation and in any stripe direction through the manufacture of the high-resistance buried layer. When the method is applied to an actual element, the element excellent in high-speed response, high-speed modulation characteristics and transverse-mode stability can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信あるいは光情報
処理の分野で利用される半導体光源、光変調器、光検出
器、光非線形素子などの素子を高性能化するために適応
される高抵抗埋込層の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to improve the performance of devices such as semiconductor light sources, optical modulators, photodetectors, and optical nonlinear devices used in the field of optical communication or optical information processing. The present invention relates to a method of manufacturing a high resistance buried layer.

【0002】[0002]

【従来の技術】従来使われている高抵抗層埋込方法を、
半導体素子としてレーザを例に取り、以下に説明する。
図8はInGaAsP/InP系半導体レーザの基本構
造を示す。同図において、1はn形のAu−Ge−Ni
電極、2はn形InP基板、3はn形InPクラッド
層、4はアンドープInGaAsP活性層、5はp形I
nPクラッド層、6はp形InGaAsP電極層、7は
p形のAu−Zn−Ni電極を各々図示する。
2. Description of the Related Art A conventional high resistance layer embedding method is
A laser will be taken as an example of the semiconductor element and described below.
FIG. 8 shows the basic structure of an InGaAsP / InP semiconductor laser. In the figure, 1 is n-type Au-Ge-Ni
Electrodes 2, n-type InP substrate, 3 n-type InP cladding layer, 4 undoped InGaAsP active layer, 5 p-type I
An nP clad layer, 6 is a p-type InGaAsP electrode layer, and 7 is a p-type Au-Zn-Ni electrode.

【0003】一般に、発振間電流の低減と素子の容量の
低減のため、電極ストライプを狭くし、ハイメサ構造と
する場合がある。然るに、この構造では活性層付近の横
方向の屈折率差が大きすぎ、横モードが安定しないとい
う問題がある。
Generally, in order to reduce the current between oscillations and the capacitance of the element, the electrode stripe may be narrowed to have a high mesa structure. However, in this structure, there is a problem that the lateral mode is unstable because the difference in refractive index in the lateral direction near the active layer is too large.

【0004】そこで、図9に示すように、狭ストライプ
レーザの両わきに高抵抗埋込層としてFeドープInP
埋込層8,8を各々配置し、活性層との屈折率差を低減
することで、安定した横モード単一のレーザが実現され
ている。
Therefore, as shown in FIG. 9, Fe-doped InP is formed as a high resistance buried layer on both sides of the narrow stripe laser.
By arranging the buried layers 8 and 8 respectively and reducing the difference in refractive index from the active layer, a stable single laser in the transverse mode is realized.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来におい
ては、この高抵抗埋込層には、有機金属気相成長法によ
って選択成長させたFeドープのInPが用いられてお
り、分子線エピタキシ法は用いられていなかった。
By the way, in the prior art, Fe-doped InP selectively grown by the metal organic chemical vapor deposition method is used for the high resistance buried layer, and the molecular beam epitaxy method is used. It was not used.

【0006】よってこの従来の方法では以下のような問
題がある。 (a)埋め込むべきメサが深い時やストライプの結晶学
的な方向によっては、しばしばメサ端から異常成長が起
こる。そのため、平坦に埋め込むことができず、その後
の素子作製プロセスに重大な支障があった。 (b)InP層にFeをドープすることで高抵抗層を得
るため、Feの分布の仕方で高抵抗にならない場合もあ
った。 この問題は、前述した図9に示した加工基板上の成長で
は特に問題とされている。
Therefore, this conventional method has the following problems. (A) Abnormal growth often occurs from the edge of the mesa when the mesa to be embedded is deep or depending on the crystallographic direction of the stripe. Therefore, it cannot be embedded evenly, which seriously hinders the subsequent element manufacturing process. (B) Since the high resistance layer is obtained by doping the InP layer with Fe, the resistance may not be high depending on the distribution of Fe. This problem is particularly problematic in the above-described growth on the processed substrate shown in FIG.

【0007】以上の二つの問題点は、有機金属気相成長
法は比較的熱平衡に近い状態での成長である事に関連が
ある。即ち、有機金属気相成長法では、成長速度やFe
のドーピング特性に、結晶面依存性があるからである。
The above two problems are related to the fact that the metal-organic vapor phase epitaxy is a growth in a state relatively close to thermal equilibrium. That is, in the metal organic chemical vapor deposition method, the growth rate and Fe
This is because the doping characteristics of are dependent on the crystal plane.

【0008】本発明は上記問題に鑑み、埋め込むべきメ
サが深い時や如何なる基板面方位であっても平坦な高抵
抗埋込層が得られる高抵抗埋込層の製造方法を提供する
ことを目的とする。
In view of the above problems, it is an object of the present invention to provide a method for manufacturing a high resistance buried layer, which can obtain a flat high resistance buried layer even when the mesa to be buried is deep and in any substrate plane orientation. And

【0009】[0009]

【課題を解決するための手段】前記目的を達成する本発
明に係る高抵抗埋込層の製造方法は、半導体ウエハ上に
シリコン酸化膜或いはシリコン窒化膜でエッチングマス
クを形成する工程と、化学湿式エッチング或いはプラズ
マ乾式エッチングまたはその二つを組み合わせたエッチ
ングによって半導体ウエハをメサ状に削る工程と、高抵
抗半導体層で該半導体メサを埋め込む工程と、化学湿式
エッチングによって該半導体ウエハのシリコン酸化膜或
いはシリコン窒化膜上の多結晶高抵抗半導体をリフトオ
フする工程からなる高抵抗層埋込方法において、該高抵
抗層埋込をアンドープのInAlAsを分子線エピタキ
シ法により600℃以下の成長温度で形成して上記高抵
抗層を埋込むことを特徴とする。
A method of manufacturing a high resistance buried layer according to the present invention, which achieves the above object, comprises a step of forming an etching mask of a silicon oxide film or a silicon nitride film on a semiconductor wafer, and a chemical wet process. Etching a semiconductor wafer into a mesa by etching or plasma dry etching or a combination of the two; a step of embedding the semiconductor mesa in a high resistance semiconductor layer; and a silicon oxide film or silicon of the semiconductor wafer by chemical wet etching. In a method of burying a high resistance layer, which comprises a step of lifting off a polycrystalline high resistance semiconductor on a nitride film, the high resistance layer burying is performed by forming undoped InAlAs at a growth temperature of 600 ° C. or less by a molecular beam epitaxy method. It is characterized by embedding a high resistance layer.

【0010】[0010]

【実施例】以下に、本発明の実施例について詳細に説明
する。
EXAMPLES Examples of the present invention will be described in detail below.

【0011】先ず、発明の方法によって高抵抗層が実現
できること及び比抵抗と成長温度との関係を実施例の説
明に先立って示す。図5は、図6に示した構造の素子の
電流−電圧特性である。図6において、素子は、分子線
エピタキシ法を用いて、n形InP基板上11に高抵抗
InAlAs(h:1μm)12とn形InGaAs電
極層13を順次成長させた後、直径(d:100μm)
のメサを形成し、上下にAu−Ge−Ni電極14を形
成して作製された。
First, the fact that a high resistance layer can be realized by the method of the invention and the relationship between the specific resistance and the growth temperature will be shown prior to the description of the embodiments. FIG. 5 shows current-voltage characteristics of the device having the structure shown in FIG. In FIG. 6, a device was prepared by sequentially growing a high-resistance InAlAs (h: 1 μm) 12 and an n-type InGaAs electrode layer 13 on an n-type InP substrate 11 by using a molecular beam epitaxy method, and then producing a diameter (d: 100 μm). )
Was formed, and Au-Ge-Ni electrodes 14 were formed on the upper and lower sides.

【0012】この時の分子線エピタキシ法によるInA
lAsの成長温度は500℃であった。図5から分かる
ようにこの成長条件で高抵抗InAlAsが獲られる。
この時の比抵抗は109 〜1010Ωcmである。図7
は、この様に求めたInAlAsの比抵抗と成長温度の
関係を示している。同図から明らかなように、109 Ω
cm以上の比抵抗を得るには成長温度として600℃以
下に保つ必要がある。
InA by the molecular beam epitaxy method at this time
The growth temperature of 1As was 500 ° C. As can be seen from FIG. 5, high resistance InAlAs is obtained under this growth condition.
The specific resistance at this time is 10 9 to 10 10 Ωcm. Figure 7
Indicates the relationship between the specific resistance of InAlAs thus obtained and the growth temperature. As is clear from the figure, 10 9 Ω
To obtain a specific resistance of cm or more, it is necessary to keep the growth temperature at 600 ° C. or lower.

【0013】次に本発明の製造方法を使って、実際の埋
込構造を形成する方法を説明する。
Next, a method of forming an actual buried structure using the manufacturing method of the present invention will be described.

【0014】図1は本方法によって得られる半導体素子
の一例を示す。同図に示すように、n形InP基板2の
上面にはハイメサ構造のn形InPクラッド層3アンド
ープInGaAs活性層4,p形InPクラッド層5及
びp形InGaAsP電極層を形成すると共に、このハ
イメサストライプの両わきには高抵抗埋込層としてアン
ドープの高抵抗InAlAs23が平坦に埋込まれてい
る。以下に、この高抵抗埋込層の製造方法を具体的に説
明する。
FIG. 1 shows an example of a semiconductor device obtained by this method. As shown in the figure, an n-type InP clad layer 3, an undoped InGaAs active layer 4, a p-type InP clad layer 5, and a p-type InGaAsP electrode layer having a high mesa structure are formed on the upper surface of the n-type InP substrate 2, and the high-level mesa structure is formed. Undoped high-resistance InAlAs 23 is flatly buried as a high-resistance buried layer on both sides of the mesa stripe. The method of manufacturing the high resistance buried layer will be specifically described below.

【0015】先ず、製造方法は、従来技術の図8に示さ
れる様な素子構造を有する半導体ウエハから出発する。
図2(A)は、図8と同じ構造を有するレーザ構造の半
導体ウエハであり、図中、2はn形InP基板,3はn
形InPクラッド層,4はアンドープInGaAsP活
性層,5はp形InPクラッド層及び6はp形InGa
AsP電極層を各々図示する。この構造を例に取って以
下に説明する。
First, the manufacturing method starts from a semiconductor wafer having a device structure as shown in FIG. 8 of the prior art.
FIG. 2A shows a semiconductor wafer having a laser structure having the same structure as FIG. 8, in which 2 is an n-type InP substrate and 3 is an n-type InP substrate.
-Type InP clad layer, 4 undoped InGaAsP active layer, 5 p-type InP clad layer and 6 p-type InGa
Each AsP electrode layer is illustrated. This structure will be described below as an example.

【0016】まず、p形InGaAsP電極層6の上に
シリコン酸化膜又はシリコン窒化膜21を0.3μmほど
熱CVD、プラズマCVD、或いはスパッター法で形成
する。(図2(B))。
First, a silicon oxide film or silicon nitride film 21 is formed on the p-type InGaAsP electrode layer 6 by thermal CVD, plasma CVD, or sputtering to a thickness of 0.3 μm. (FIG. 2 (B)).

【0017】この上に通常の光露光あるいは電子電露
光、X線露光法を使って、レジストを転写し、HFなど
の化学湿式エッチング或いはCF4 ガスなどを使った乾
式エッチングで酸化膜或いは窒化膜21に転写する(図
2(C))。
A resist is transferred onto the above by ordinary photo-exposure, electron-electric exposure or X-ray exposure, and an oxide film or a nitride film is formed by chemical wet etching such as HF or dry etching using CF 4 gas. 21 is transferred (FIG. 2 (C)).

【0018】その後、乾式エッチング或いはHCI系な
どの化学湿式エッチングで半導体ウエハをメサ状にエッ
チングするが、その際意識的にサイドエッチングを導入
して、0.8μm程度のマスクの庇21aを形成する(図
3(A))。
Thereafter, the semiconductor wafer is etched into a mesa shape by dry etching or chemical wet etching such as HCI system. At this time, side etching is intentionally introduced to form a mask eave 21a of about 0.8 μm. (FIG. 3 (A)).

【0019】その後、分子線エピタキシ法を使って、先
に述べたように、成長温度600℃以下でのInAlA
sを成長させる(図3(B))。
Thereafter, using the molecular beam epitaxy method, as described above, InAlA at a growth temperature of 600 ° C. or lower is used.
s is grown (FIG. 3 (B)).

【0020】この工程の中で、メサ上はマスクがあるた
め、その上のInAlAsは多結晶InAlAs22に
なる。また、分子線エピタキシ法では、各原料(In,
Al,As)がビーム状に飛来するため、メサ端ではマ
スクの庇21aが陰となってビームが妨げられる。従っ
て、メサ端でのInAlAs23の盛り上がりを防ぐこ
とができ、結果的に平坦な埋め込み層が実現できる。最
後に希薄HFなどの中で、マスクをエッチングし、同上
にマスク上に形成されている多結晶InAlAsをリフ
トオフによって除去し、図1に示す平坦な高抵抗埋込層
としてのアンドープInAlAs23を得る。
In this process, since there is a mask on the mesa, InAlAs on it becomes polycrystalline InAlAs22. In the molecular beam epitaxy method, each raw material (In, In
Since Al, As) fly in a beam shape, the eaves 21a of the mask becomes a shadow at the mesa end to obstruct the beam. Therefore, swelling of InAlAs 23 at the mesa edge can be prevented, and as a result, a flat buried layer can be realized. Finally, the mask is etched in dilute HF or the like, and the polycrystalline InAlAs formed on the mask is removed by lift-off to obtain the undoped InAlAs 23 as the flat high resistance buried layer shown in FIG.

【0021】更にこの方法では、分子線エピタキシ法が
非平衡状態での成長であるため、台形メサに現れる側壁
の結晶面に影響を受けず、メサの方向としてどの方向で
も対応できる利点がある。また、基板の結晶面そのもの
にも影響を受け無いので、どの基板面方位に対しても本
発明の製造工程が適応できる。本発明では、高抵抗層と
してアンドープのInAlAsを使っているため、Fe
などの不純物の分布に影響されず、安定した高抵抗層と
なる、などの利点もある。
Further, in this method, since the molecular beam epitaxy method is growth in a non-equilibrium state, there is an advantage that the crystal plane of the side wall appearing in the trapezoidal mesa is not affected and the mesa can be oriented in any direction. Further, since the crystal plane of the substrate itself is not affected, the manufacturing process of the present invention can be applied to any substrate plane orientation. In the present invention, since undoped InAlAs is used as the high resistance layer, Fe
There is also an advantage that a stable high resistance layer is formed without being affected by the distribution of impurities such as.

【0022】この様に作製した埋込レーザのI−V特性
を図4に示す。逆方向耐圧も数ボルトあり、良好な埋め
込み層が形成されていることが分かる。
FIG. 4 shows the IV characteristics of the embedded laser thus manufactured. The reverse breakdown voltage is also several volts, which shows that a good buried layer is formed.

【0023】本発明の実施例では、InGaAsP/I
nP系のレーザを素子として取り上げて説明したが、埋
め込まれる材料としてはInGaAsP/InAlAs
系、GaAsP/InGaAsP系など、素子例として
は光変調器、光検出器などにも適応可能であることが言
うまでもない。
In the embodiment of the present invention, InGaAsP / I is used.
The nP-based laser has been described as an element, but the material to be embedded is InGaAsP / InAlAs.
It goes without saying that the present invention can be applied to optical modulators, photodetectors, etc., as examples of elements such as a system and GaAsP / InGaAsP system.

【0024】[0024]

【発明の効果】本発明の高抵抗埋込層の製造方法は、如
何なる基板面方位でも、また如何なるストライプ方向で
も平坦な高抵抗埋込層が得られる効果があり、この方法
を実際の素子に適応すれば、高速応答性、高速変調特
性、横モード安定性に優れた素子が実現できる。
The method of manufacturing a high resistance buried layer according to the present invention has an effect that a flat high resistance buried layer can be obtained in any substrate plane orientation and in any stripe direction, and this method can be applied to an actual device. If adapted, an element having excellent high-speed response, high-speed modulation characteristics, and transverse mode stability can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】平坦な高抵抗層を形成した半導体素子の概略図
である。
FIG. 1 is a schematic view of a semiconductor device having a flat high resistance layer formed thereon.

【図2】高抵抗埋込層の製造工程の工程図である。FIG. 2 is a process drawing of a manufacturing process of a high resistance buried layer.

【図3】高抵抗埋込層の製造工程の工程図である。FIG. 3 is a process drawing of a manufacturing process of a high resistance buried layer.

【図4】埋込レーザのI−V特性図である。FIG. 4 is an IV characteristic diagram of an embedded laser.

【図5】高抵抗InAlAsの電流−電圧特性図であ
る。
FIG. 5 is a current-voltage characteristic diagram of high resistance InAlAs.

【図6】図5の結果を得た分子線エピタキシ法によって
作製した素子の構造図である。
FIG. 6 is a structural diagram of an element produced by the molecular beam epitaxy method, which obtained the result of FIG.

【図7】InAlAsの比抵抗と成長温度との関係図で
ある。
FIG. 7 is a relationship diagram between the specific resistance of InAlAs and the growth temperature.

【図8】InGaAsP/InP系半導体レーザの構造
図である。
FIG. 8 is a structural diagram of an InGaAsP / InP based semiconductor laser.

【図9】従来の埋込レーザの構造図である。FIG. 9 is a structural diagram of a conventional embedded laser.

【符号の説明】[Explanation of symbols]

1 n形Au−Ge−Ni電極 2 n形InP基板 3 n形InPクラッド層 4 アンドープInGaAsP活性層 5 p形InPクラッド層 6 p形InGaAs層 7 p形Au−Zn−Ni電極 8 FeドープInP埋込層 11 n形InP基板 12 高抵抗InAlAs 13 n形InGaAs電極層 14 Au−Ge−Ni電極 21 シリコン酸化膜又はシリコン窒化膜 21a 庇 22 多結晶InAlAs 23 アンドープInAlAs 1 n-type Au-Ge-Ni electrode 2 n-type InP substrate 3 n-type InP clad layer 4 undoped InGaAsP active layer 5 p-type InP clad layer 6 p-type InGaAs layer 7 p-type Au-Zn-Ni electrode 8 Fe-doped InP buried layer Embedded layer 11 n-type InP substrate 12 high resistance InAlAs 13 n-type InGaAs electrode layer 14 Au-Ge-Ni electrode 21 silicon oxide film or silicon nitride film 21a eaves 22 polycrystal InAlAs 23 undoped InAlAs

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエハ上にシリコン酸化膜或いは
シリコン窒化膜でエッチングマスクを形成する工程と、
化学湿式エッチング或いはプラズマ乾式エッチングまた
はその二つを組み合わせたエッチングによって半導体ウ
エハをメサ状に削る工程と、高抵抗半導体層で該半導体
メサを埋め込む工程と、化学湿式エッチングによって該
半導体ウエハのシリコン酸化膜或いはシリコン窒化膜上
の多結晶高抵抗半導体をリフトオフする工程からなる高
抵抗層埋込方法において、該高抵抗層埋込をアンドープ
のInAlAsを分子線エピタキシ法により600℃以
下の成長温度で形成して上記高抵抗層を埋込むことを特
徴とする高抵抗埋込層の製造方法。
1. A step of forming an etching mask of a silicon oxide film or a silicon nitride film on a semiconductor wafer,
A step of shaving a semiconductor wafer into a mesa by chemical wet etching or plasma dry etching or a combination of the two, a step of embedding the semiconductor mesa in a high resistance semiconductor layer, and a silicon oxide film of the semiconductor wafer by chemical wet etching. Alternatively, in a high resistance layer burying method including a step of lifting off a polycrystalline high resistance semiconductor on a silicon nitride film, the high resistance layer burying is performed by forming undoped InAlAs at a growth temperature of 600 ° C. or less by a molecular beam epitaxy method. A method for manufacturing a high resistance buried layer, comprising:
JP32773992A 1992-12-08 1992-12-08 Manufacture of high-resistance buried layer Withdrawn JPH06177487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32773992A JPH06177487A (en) 1992-12-08 1992-12-08 Manufacture of high-resistance buried layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32773992A JPH06177487A (en) 1992-12-08 1992-12-08 Manufacture of high-resistance buried layer

Publications (1)

Publication Number Publication Date
JPH06177487A true JPH06177487A (en) 1994-06-24

Family

ID=18202445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32773992A Withdrawn JPH06177487A (en) 1992-12-08 1992-12-08 Manufacture of high-resistance buried layer

Country Status (1)

Country Link
JP (1) JPH06177487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758403A (en) * 1993-08-17 1995-03-03 Nec Corp High-resistance buried semiconductor laser
FR2736211A1 (en) * 1995-06-27 1997-01-03 Mitsubishi Electric Corp METHOD FOR MANUFACTURING HIGH RESISTANCE SEMICONDUCTOR DEVICES FOR CURRENT STOP LAYERS
EP0827243A1 (en) * 1996-08-30 1998-03-04 Nec Corporation Optical semiconductor device and method for making the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758403A (en) * 1993-08-17 1995-03-03 Nec Corp High-resistance buried semiconductor laser
FR2736211A1 (en) * 1995-06-27 1997-01-03 Mitsubishi Electric Corp METHOD FOR MANUFACTURING HIGH RESISTANCE SEMICONDUCTOR DEVICES FOR CURRENT STOP LAYERS
US5804840A (en) * 1995-06-27 1998-09-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device structure including InAlAs or InAlGaAs current blocking layers
EP0827243A1 (en) * 1996-08-30 1998-03-04 Nec Corporation Optical semiconductor device and method for making the same
US6134368A (en) * 1996-08-30 2000-10-17 Nec Corporation Optical semiconductor device with a current blocking structure and method for making the same

Similar Documents

Publication Publication Date Title
GB2114808A (en) Semiconductor laser manufacture
US5665612A (en) Method for fabricating a planar buried heterostructure laser diode
US7184640B2 (en) Buried heterostructure device fabricated by single step MOCVD
JPH06177487A (en) Manufacture of high-resistance buried layer
JPH05327112A (en) Manufacture of semiconductor laser
JP3047049B2 (en) Method of manufacturing buried semiconductor laser
JPH07202317A (en) Manufacture of embedded structure semiconductor laser
JP2694260B2 (en) Semiconductor element
JP4350227B2 (en) Semiconductor crystal growth method
JP3132054B2 (en) Method of manufacturing buried semiconductor laser
JP3249987B2 (en) Manufacturing method of buried semiconductor laser
JPH06283816A (en) Semiconductor laser of embedded structure and fabrication thereof
JPS62245691A (en) Manufacure of semiconductor laser
JP2996221B2 (en) Semiconductor laser and method of manufacturing the same
KR920008891B1 (en) Method of manufacturing buried heterostructure laser diode
JPS63240089A (en) Manufacture of semiconductor device
JP3522151B2 (en) Method for manufacturing compound semiconductor laser
JPH09148670A (en) Semiconductor laser and its manufacture
JPH04133315A (en) Manufacturing method of semiconductor device
JPH0513876A (en) Manufacture of semiconductor laser
JPH0936475A (en) Fabrication of ridge waveguide semiconductor laser
JPH0537079A (en) Manufacture of semiconductor laser diode
JPH0983060A (en) Fabrication of semiconductor laser
JPH04206985A (en) Manufacture of optical semiconductor element
JPH07162091A (en) Manufacture of buried structure semiconductor laser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307