[go: up one dir, main page]

JPH06172657A - Latex composition excellent in antistatic properties - Google Patents

Latex composition excellent in antistatic properties

Info

Publication number
JPH06172657A
JPH06172657A JP32805392A JP32805392A JPH06172657A JP H06172657 A JPH06172657 A JP H06172657A JP 32805392 A JP32805392 A JP 32805392A JP 32805392 A JP32805392 A JP 32805392A JP H06172657 A JPH06172657 A JP H06172657A
Authority
JP
Japan
Prior art keywords
latex
clay mineral
weight
smectite
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32805392A
Other languages
Japanese (ja)
Other versions
JP3247167B2 (en
Inventor
Takeshi Ishikawa
剛 石川
Toshiichi Fukunaga
登志一 福永
Akira Fujii
昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Silica Corp
Original Assignee
Nippon Silica Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Silica Industrial Co Ltd filed Critical Nippon Silica Industrial Co Ltd
Priority to JP32805392A priority Critical patent/JP3247167B2/en
Publication of JPH06172657A publication Critical patent/JPH06172657A/en
Application granted granted Critical
Publication of JP3247167B2 publication Critical patent/JP3247167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the subject composition containing a latex, a smectite-based clay mineral and a condensed phosphate salt in a specified ratio, excellent in antistatic properties and useful, e.g. as a filler for a coating material in the fields of textile industry or coating material. CONSTITUTION:The objective composition contains (A) 100 pts.wt. latex, (B) 5 to 50 pts.wt. smectite-based clay mineral (e.g. hectorite) and (C) a condensed phosphate (e.g. pyrophosphate) in an amount of 3 to 10 pts.wt. based on 100 pts.wt. component (B).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスメクタイト系粘土鉱物
を有効成分とした帯電防止性に優れたラテックス組成物
に関するものであり、織維加工及び塗料分野に有用であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a latex composition having a smectite clay mineral as an active ingredient and having an excellent antistatic property, and is useful in the fields of textile processing and coatings.

【0002】[0002]

【従来の技術】ラテックスとは一般的に直径が0.1〜
0.5μm程度の球状ポリマーが水に分散したものであ
る。構成する成分は大きくラテックス粒子と水相に分け
られる。ラテックス粒子はポリマー粒子と保護層から形
成されており、ポリマー粒子は単純にポリマーだけから
構成されていることもあれば成膜助剤や可塑剤を吸蔵し
ていることもある。又、保護層は吸着保護層と化学的吸
着保護層に分けられ、吸着保護層は水相中の界面活性剤
や水溶性ポリマーを吸着して形成される。化学的吸着保
護層は各種の親水基をポリマー粒子に化学的に結合する
ことにより形成される。
2. Description of the Related Art Latex generally has a diameter of 0.1 to 10.
A spherical polymer having a diameter of about 0.5 μm is dispersed in water. The constituent components are roughly divided into latex particles and an aqueous phase. The latex particles are formed of polymer particles and a protective layer, and the polymer particles may be simply composed of a polymer or may occlude a film forming aid or a plasticizer. The protective layer is divided into an adsorption protective layer and a chemical adsorption protective layer, and the adsorption protective layer is formed by adsorbing a surfactant or a water-soluble polymer in the aqueous phase. The chemical adsorption protection layer is formed by chemically bonding various hydrophilic groups to the polymer particles.

【0003】一方、水相は水,乳化重合に用いられた界
面活性剤,水溶性ポリマー及び電解質(主として重合開
始剤),重合過程で生成したオリゴソープや水溶性ポリ
マー並びに必要に応じて添加された溶剤などから構成さ
れる。このうち界面活性をもつ界面活性剤と水溶性ポリ
マーは、保護層のそれらと吸着平衡を保っている。ポリ
マー粒子の水中ヘの分散安定は保護層の働きによるもの
であり、吸着する水溶性物質及び結合する親水基により
電気二重層によるものか、水和層の立体的障害によるも
のか、に分かれる。
On the other hand, the aqueous phase is added with water, a surfactant used for emulsion polymerization, a water-soluble polymer and an electrolyte (mainly a polymerization initiator), oligosoap or water-soluble polymer produced in the polymerization process, and if necessary. It is composed of a solvent. Of these, the surfactant having surface activity and the water-soluble polymer maintain adsorption equilibrium with those of the protective layer. Dispersion stability of the polymer particles in water is due to the function of the protective layer, which is divided into an electric double layer and a steric hindrance of the hydration layer depending on the adsorbed water-soluble substance and the hydrophilic group to be bonded.

【0004】ラテックスの種類としては天然ラテック
ス,合成ラテックス及び人造ラテックスがある。天然ラ
テックスとは天然において生成するポリマーのエマルジ
ヨンであり天然ゴムラテックスに限定される。合成ラテ
ックスとは乳化重合によって製造された合成ポリマーの
エマルジヨンを表し、スチレンブタジエンゴム、アクリ
ロニトリル、ブタジエン、塩化ビニルなどのポリマーエ
マルジヨンが挙げられる。人造ラテックスとは乳化重合
では製造不可能な一部のポリマーを他の重合方法で生成
した後、乳化剤等を使用して人工的にエマルジヨン化、
デイスパージヨン化したものである。この種のラテック
スとしてはイソプレンゴム、ブタジエンゴム、ウレタン
樹脂等が挙げられる。
Types of latex include natural latex, synthetic latex and artificial latex. Natural latex is an emulsion of a polymer produced in nature and is limited to natural rubber latex. Synthetic latex refers to a synthetic polymer emulsion produced by emulsion polymerization, and examples thereof include polymer emulsions such as styrene-butadiene rubber, acrylonitrile, butadiene, and vinyl chloride. Artificial latex is a emulsion that cannot be produced by emulsion polymerization, but after it is produced by another polymerization method, it is artificially emulsified using an emulsifier, etc.
It is a version of the Day Sparge. Examples of this type of latex include isoprene rubber, butadiene rubber, urethane resin and the like.

【0005】又、ラテックスの特徴としては、(l)基
本的にポリマー粒子と水で形成されるので取り扱いが簡
単で安全である。(2)ラテックスの粘度は一定濃度に
おいては粒子の大きさに依存するため分子量を大きくし
ても粘度が高くならない。そのため高分子化が可能にな
り接着性など性能の向上が可能である。又、粒子を大き
くすることにより高濃度化も可能になる。
Further, the characteristics of the latex are: (l) Since it is basically formed of polymer particles and water, it is easy to handle and safe. (2) Since the viscosity of latex depends on the size of particles at a constant concentration, the viscosity does not increase even if the molecular weight is increased. Therefore, it becomes possible to polymerize and improve the performance such as adhesiveness. Further, it is possible to increase the concentration by enlarging the particles.

【0006】このような長所を利用してラテックスは接
着剤,塗料,繊維加工用,タイヤコードなど多岐にわた
る分野に使用されている(高分子刊行会 発行“高分子
ラテックス接着剤”室井宗一著、(株)大成社 発行
“エマルジヨン・ラテックスハンドブツク”)。
Taking advantage of these advantages, latex is used in various fields such as adhesives, paints, fiber processing, tire cords, etc. , "Emulsion Latex Handbook," published by Taisei Co., Ltd.).

【0007】[0007]

【発明が解決しようとする課題】然しながら、ラテック
スは前述した様にポリマー粒子と水で構成されているた
め、乾燥後は通常のポリマー製品と同等の特徴を有す
る。一般にポリマー製品は1013Ωcmを上回る体積固
有抵抗、及び1013Ωを上回る表面固有抵抗を有してお
り、その電気絶縁性はポリマー製品の特徴の一つと言え
る。
However, since the latex is composed of polymer particles and water as described above, it has the same characteristics as ordinary polymer products after drying. Generally, a polymer product has a volume resistivity of more than 10 13 Ωcm and a surface resistivity of more than 10 13 Ω, and its electrical insulation is one of the characteristics of the polymer product.

【0008】この特徴はポリマー製品の需要拡大に大き
く寄与してきたが、その反面、帯電による静電気障害を
生じている。例えば塗料分野においては塗装後に汚れが
付着し外見上著しくその商品としての価値を低下させて
いる。
Although this feature has greatly contributed to the expansion of demand for polymer products, on the other hand, electrostatic damage due to electrification occurs. For example, in the field of paints, stains are attached after painting, and the value of the product is remarkably reduced in appearance.

【0009】このような問題を解決するために一般に導
電性界面活性剤の使用が考えられるが、ラテックスにお
いてはその分散安定性を損なう危険性があり実用には至
っていない。
In order to solve such a problem, it is generally conceivable to use a conductive surfactant, but latex has a risk of impairing its dispersion stability and is not in practical use.

【0010】前述したように帯電防止性に優れたラテッ
クス組成物は未だ得られておらず、かかるラテックス組
成物が強く要望されていた。
As described above, a latex composition having an excellent antistatic property has not yet been obtained, and such a latex composition has been strongly demanded.

【0011】本発明はかかる観点から、ラテックス本来
の特徴を損なう事なく帯電防止性に優れたラテックス組
成物を得ることを目的としてなされたものである。
From this point of view, the present invention has been made for the purpose of obtaining a latex composition having excellent antistatic properties without impairing the original characteristics of the latex.

【0012】[0012]

【課題を解決するための手段及び作用】本発明者らは、
研究を積み重ねた結果、ラテックスにスメクタイト系粘
土鉱物を含有させ、更にこの含有させたスメクタイト系
粘土鉱物に対して一定割合で縮合リン酸塩を含有させる
ことで、上述した、ラテックス本来の特徴を損なう事な
く帯電防止性に優れたラテックス組成物を得るという目
的を達成できることを見出し、本発明を完成するに至っ
た。
Means and Actions for Solving the Problems The present inventors have
As a result of accumulated research, latex contains smectite-based clay minerals and further contains a fixed proportion of condensed phosphate with respect to the contained smectite-based clay minerals, thereby impairing the original characteristics of latex described above. The inventors have found that the object of obtaining a latex composition having excellent antistatic properties can be achieved without any problem, and have completed the present invention.

【0013】すなわち本発明の特徴は、ラテックス10
0重量部に対してスメクタイト系粘土鉱物を5乃至50
重量部含有させ、且つ、該スメクタイト系粘土鉱物10
0重量部に対して縮合リン酸塩を3乃至10重量部含有
させるようにしたところにある。
That is, the feature of the present invention is that latex 10 is used.
5 to 50 of smectite clay mineral to 0 part by weight
10 parts by weight of the smectite clay mineral 10
3 to 10 parts by weight of the condensed phosphate is contained in 0 part by weight.

【0014】本発明において使用されるラテックスとし
ては、特に限定されずいずれにおいても帯電防止効果を
発揮する。
The latex used in the present invention is not particularly limited, and any one exhibits an antistatic effect.

【0015】本発明においてラテツクスに添加されるス
メクタイト系粘土鉱物とは、以下の一般式
The smectite clay mineral added to the latex in the present invention has the following general formula:

【0016】[0016]

【化1】 [Chemical 1]

【0017】を有する粘土鉱物である。この粘土鉱物は
天然にも産するが、合成品としても得られる。スメクタ
イト系粘土鉱物としては、モンモリロナイト、ソーコナ
イト、バンデライト、ヘクトライト等があり、いずれで
もよいが特にヘクトライトが好ましい。また天然品、合
成品のいずれでもよい。
Is a clay mineral having This clay mineral naturally occurs, but it is also available as a synthetic product. Examples of smectite clay minerals include montmorillonite, sauconite, banderite, and hectorite, and any of them may be used, but hectorite is particularly preferable. Further, either a natural product or a synthetic product may be used.

【0018】このようなスメクタイト系粘土鉱物の層状
構造における結晶構造各層は、厚さ約1mμの2次元小
板状を形成しており、この小板ユニットに存在するマグ
ネシウム原子やアルミニウム原子はより低原子価陽イオ
ンの原子と同型置換しており、小板ユニットは負に帯電
している。乾燥状態ではこの負電荷はプレート面の格子
構造外側にある置換可能陽イオン(通常ナトリウムイオ
ン)と釣り合っており、固層ではこれらの粒子はフアン
デルワールス力により互いに結合し平板の束になってい
る。
Each layer of the crystal structure in the layered structure of such a smectite clay mineral forms a two-dimensional plate-like shape having a thickness of about 1 mμ, and the magnesium atom and the aluminum atom present in this plate-like unit are lower. It is isomorphic with the atoms of the valence cation, and the platelet unit is negatively charged. In the dry state, this negative charge balances the displaceable cations (usually sodium ions) outside the lattice structure of the plate surface, and in the solid layer these particles are bound together by the van der Waals force to form a bundle of flat plates. There is.

【0019】これをラテックス中に分散すると置換可能
な陽イオンが水和されて粒子が膨潤を起こし小板が分離
する。水中などのイオン状態では小板は表面負電荷とな
り端部は正電荷となる。表面負電荷が端部正電荷よりか
なり大きい条件下では安定なゾル状態となる。しかし粒
子濃度の増加やイオン濃度の増加により表面負電荷によ
る反発力が減少し、表面負電荷と端部正電荷の吸引によ
る、いわゆるカードハウス構造を形成し増粘あるいはゲ
ル化を生じる。このような現象を生じるとラテックスの
特徴である取り扱いの容易さが損なわれる。
When this is dispersed in latex, the replaceable cations are hydrated and the particles swell and the platelets separate. In an ionic state such as water, the platelets have a negative surface charge and the edges have a positive charge. A stable sol state is obtained under conditions where the surface negative charge is much larger than the edge positive charge. However, the repulsive force due to the surface negative charges decreases due to the increase in the particle concentration and the ion concentration, and the so-called card house structure is formed by the attraction of the surface negative charges and the edge positive charges to cause thickening or gelation. When such a phenomenon occurs, the ease of handling, which is a characteristic of latex, is impaired.

【0020】一方、帯電防止性に着目すると、導電性粒
子であるスメクタイト系粘土鉱物の濃度が高いほどその
効果を発揮する。この相反する問題を解決するために解
膠剤である縮合リン酸塩を併用することが必要である。
定かではないが、縮合リン酸塩はラテックス中において
イオン解離し大きな陰イオンであるリン酸イオンとナト
リウム等の金属カチオンあるいはアンモニウムイオンの
ような陽イオンを生成する。このリン酸イオンが端部正
電荷部分に電気的に吸着してカードハウス構造の形成を
阻害するために、解膠的な働きをする。このため粘度の
上昇を抑えたままスメクタイト系粘土鉱物をラテックス
中に添加することが可能となり、優れた帯電防止効果を
与える。
On the other hand, when attention is paid to the antistatic property, the higher the concentration of the smectite clay mineral, which is the conductive particle, the more effective it is. In order to solve this contradictory problem, it is necessary to use a deflocculant, which is a condensed phosphate.
Although it is not known, the condensed phosphate ion-dissociates in the latex to form a phosphate ion which is a large anion and a metal cation such as sodium or a cation such as ammonium ion. This phosphate ion electrically adsorbs to the positively charged portion at the end and inhibits the formation of the card house structure, and thus acts as a peptizing agent. Therefore, it becomes possible to add the smectite-based clay mineral to the latex while suppressing the increase in viscosity, and to provide an excellent antistatic effect.

【0021】帯電防止性に優れたラテックス組成物を得
るには、ラテックス100重量部に対しスメクタイト系
粘土鉱物を5乃至50重量部含有するのが好ましい。上
記範囲未満では帯電防止効果が劣り、上記範囲より過剰
にスメクタイト系粘土鉱物を含有すると粘土が上昇し作
業性が悪くなる。
In order to obtain a latex composition having excellent antistatic properties, it is preferable to contain 5 to 50 parts by weight of smectite clay mineral per 100 parts by weight of latex. If it is less than the above range, the antistatic effect is inferior, and if the smectite clay mineral is contained in excess of the above range, the amount of clay rises and the workability deteriorates.

【0022】又、縮合リン酸塩はスメクタイト系粘土鉱
物100重量部に対し3乃至10重量部含有するのが好
ましい。上記範囲未満ではスメクタイト系粘土鉱物の高
濃度配合が困難になり帯電防止効果が劣る。上記範囲よ
り過剰に縮合リン酸塩を含有するとラテックスの分散安
定性が損なわれる危険があり好ましくない。
The condensed phosphate is preferably contained in an amount of 3 to 10 parts by weight based on 100 parts by weight of the smectite clay mineral. If the amount is less than the above range, it becomes difficult to mix the smectite clay mineral at a high concentration, and the antistatic effect becomes poor. If the condensed phosphate is contained in excess of the above range, the dispersion stability of the latex may be impaired, which is not preferable.

【0023】縮合リン酸塩としては、例えばピロリン酸
ナトリウム、ピロリン酸カリウム、トリポリリン酸ナト
リウム、トリポリリン酸カリウム、ヘキサメタリン酸ナ
トリウム等を使用することができるが、特にピロリン酸
塩が好ましい。
As the condensed phosphate, for example, sodium pyrophosphate, potassium pyrophosphate, sodium tripolyphosphate, potassium tripolyphosphate, sodium hexametaphosphate and the like can be used, but the pyrophosphate is particularly preferable.

【0024】本発明のラテックス組成物には、上記の必
須成分の他、必要に応じて加硫剤、加硫促進剤など、こ
の種の組成物に通常添加されるものを添加できる。
To the latex composition of the present invention, in addition to the above-mentioned essential components, vulcanizing agents, vulcanization accelerators and the like, which are usually added to this type of composition, can be added, if necessary.

【0025】本発明のラテックス組成物は、帯電防止性
が求められるラテックスの用途に好ましく使用すること
ができ、特に、織維加工、塗料の充填剤として好ましく
用いることができる。
The latex composition of the present invention can be preferably used for the use of latex required to have antistatic properties, and particularly preferably used as a filler for textile processing and paints.

【0026】[0026]

【実施例】以下本発明を実施例及び比較例をあげて更に
詳細に説明する。尚、粘度測定、テストピースの作成、
電気特性の測定などは以下の方法に従って実施した。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, viscosity measurement, test piece creation,
The measurement of electrical characteristics and the like were performed according to the following methods.

【0027】(粘度測定)ラテックスにスメクタイト粘
土鉱物、縮合リン酸塩および加硫剤の所定配合量を、ハ
イスピードミキサーにより1000rpmで20分混合
後、2時間室温で放置する。その後BL型粘度計により
粘度を測定した(測定温度は25℃,BL型粘度計12
rpm値)。
(Viscosity measurement) A predetermined amount of smectite clay mineral, condensed phosphate and vulcanizing agent was mixed with latex by a high speed mixer at 1000 rpm for 20 minutes, and then left at room temperature for 2 hours. Then, the viscosity was measured by a BL type viscometer (measurement temperature was 25 ° C., BL type viscometer 12
rpm value).

【0028】(テストピースの作成)一定の形状の金型
に組成物を流し込み、NRラテックスについては60℃
で24時間、CRラテックスについては80℃で20時
間加硫を行いテストピースとした。
(Preparation of test piece) The composition was poured into a mold having a certain shape, and the NR latex was at 60 ° C.
24 hours, and the CR latex was vulcanized at 80 ° C. for 20 hours to prepare test pieces.

【0029】(電気特性の測定)4329A HIGH RE
SISTANCE METER (横河ヒューレツトパツカード社製)
を用い表面固有抵抗を測定した。
(Measurement of electrical characteristics) 4329A HIGH RE
SISTANCE METER (made by Yokogawa Hewlet Patz Card Co., Ltd.)
Was used to measure the surface resistivity.

【0030】(塗膜外観)目視によりラテックス塗膜の
外観を判断し〇,×で示した。
(Appearance of coating film) The appearance of the latex coating film was judged by visual observation and indicated by ◯ and ×.

【0031】実施例1 NRラテックス(N.V60%)l00重量部 ピロリ
ン酸ソーダ6%含有の含成ヘクトライト粘土鉱物(商品
名ラポナイトS:Lapolte Industries Ltd製)5重量
部,加硫剤(S;1.3、ZnO;1.0、BZ(加硫
促進剤;ジブチルチオカルバミン酸亜鉛);4.0、
水;5.0、ヴイモタール(分散剤);0.5,カゼイ
ン;0.15・・・・ボールミル72時間混合品)3.
3重量部を混合し、前記方法に従いテストピースを作成
し評価試験を実施した。結果を第1表に示した。
Example 1 100 parts by weight of NR latex (N.V. 60%) 5 parts by weight of a conjugated hectorite clay mineral containing 6% of sodium pyrophosphate (trade name Laponite S: manufactured by Lapolte Industries Ltd), a vulcanizing agent (S 1.3, ZnO; 1.0, BZ (vulcanization accelerator; zinc dibutylthiocarbamate); 4.0,
Water; 5.0, Vimotal (dispersant); 0.5, casein; 0.15 ... ・ Ball mill 72 hours mixed product) 3.
3 parts by weight were mixed, a test piece was prepared according to the above method, and an evaluation test was performed. The results are shown in Table 1.

【0032】実施例2 実施例1で使用した合成ヘクトライト粘土鉱物の配合量
を50重量部に変更し、後は同様にテストピースを作成
し評価試験を実施した。結果を第1表に示した。
Example 2 The compounding amount of the synthetic hectorite clay mineral used in Example 1 was changed to 50 parts by weight, and thereafter a test piece was similarly prepared and an evaluation test was carried out. The results are shown in Table 1.

【0033】実施例3:CRラテックス(スカイプレン
ラテックスLA−502:東ソー社製)100重量部、
ピロリン酸ソーダ6%含有の合成スメクタイト系粘土鉱
物(商品名ラポナイトS:Laporte Lndustries Ltd製)
50重量部、加硫剤(水;20、ハードクレー;5.
0、ZnO;5.0、S(コロイド);1.0、D(老
化防止剤;1,3−ジフェニルグアニジン);2.0、
NS6(老化防止剤;2,2′−メチレンビス(4−メ
チル6−tert−ブチルフェノール));1.0、BZ
(加硫促進剤);1.0・・・・ボールミル72時間混合
品)9重量部を混合し、前記方法に従いテストピースを
作成し評価試験を実施した。結果を第1表に示した。
Example 3: 100 parts by weight of CR latex (Skyprene latex LA-502: manufactured by Tosoh Corporation),
Synthetic smectite clay mineral containing 6% sodium pyrophosphate (trade name Laponite S: manufactured by Laporte Lndustries Ltd)
50 parts by weight, vulcanizing agent (water; 20, hard clay; 5.
0, ZnO; 5.0, S (colloid); 1.0, D (antiaging agent; 1,3-diphenylguanidine); 2.0,
NS6 (antiaging agent; 2,2'-methylenebis (4-methyl 6-tert-butylphenol)); 1.0, BZ
(Vulcanization accelerator); 1.0 ... Ball mill 72 hours mixed product) 9 parts by weight were mixed, and a test piece was prepared according to the above method, and an evaluation test was performed. The results are shown in Table 1.

【0034】比較例1:実施例1でピロリン酸ソーダ6
%含有の合成ヘクトライト粘土鉱物の配合量を60部に
変更し、後は同様にテストピースを作成し評価試験を実
施した。結果を第1表に示した。
Comparative Example 1: Sodium pyrophosphate 6 in Example 1
%, The compounding amount of the synthetic hectorite clay mineral was changed to 60 parts, and thereafter, a test piece was similarly prepared and an evaluation test was performed. The results are shown in Table 1.

【0035】比較例2:実施例1でピロリン酸ソーダ6
%含有の合成へクトライト粘土鉱物の代わりに、ピロリ
ン酸ソーダを含有しない合成ヘクトライト粘土鉱物(商
品名ラポナイトB:Lapolte Industries Ltd製)を使用
し、後は同様にテストピースを作成し評価試験を実施し
た。結果を第1表に示した。
Comparative Example 2: Sodium pyrophosphate 6 in Example 1
%, A synthetic hectorite clay mineral containing no sodium pyrophosphate (trade name Laponite B: manufactured by Lapolte Industries Ltd) was used in place of the synthetic hectorite clay mineral containing 100%, and the test pieces were prepared in the same manner as above for the evaluation test. Carried out. The results are shown in Table 1.

【0036】比較例3:実施例1でピロリン酸ソーダの
含有量を6%から15%に変更し、他は同様にテストピ
ースを作成し評価試験を実施した。結果を第1表に示し
た。
Comparative Example 3: In Example 1, the content of sodium pyrophosphate was changed from 6% to 15%, and the other test pieces were similarly prepared and the evaluation test was carried out. The results are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】以上の説明から明らかなように、本発明
によれば、増粘あるいはゲル化によってラテックスの特
徴を損なうという問題を招くことなく、帯電防止性に優
れたラテックス組成物を提供できるという効果がある。
As is apparent from the above description, according to the present invention, it is possible to provide a latex composition having excellent antistatic properties without causing the problem of impairing the characteristics of the latex due to thickening or gelation. There is an effect.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ラテックス100重量部に対しスメクタ
イト系粘土鉱物を5乃至50重量部含有し、且つスメク
タイト系粘土鉱物100重量部に対し縮合リン酸塩を3
乃至10重量部含有することを特徴とする帯電防止性に
優れたラテックス組成物
1. A latex containing 100 to 5 parts by weight of a smectite-based clay mineral, and 100 parts by weight of a smectite-based clay mineral to 3 parts of a condensed phosphate.
To 10 parts by weight, which is excellent in antistatic property, latex composition
JP32805392A 1992-12-08 1992-12-08 Latex composition with excellent antistatic properties Expired - Lifetime JP3247167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32805392A JP3247167B2 (en) 1992-12-08 1992-12-08 Latex composition with excellent antistatic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32805392A JP3247167B2 (en) 1992-12-08 1992-12-08 Latex composition with excellent antistatic properties

Publications (2)

Publication Number Publication Date
JPH06172657A true JPH06172657A (en) 1994-06-21
JP3247167B2 JP3247167B2 (en) 2002-01-15

Family

ID=18205987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32805392A Expired - Lifetime JP3247167B2 (en) 1992-12-08 1992-12-08 Latex composition with excellent antistatic properties

Country Status (1)

Country Link
JP (1) JP3247167B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303374A (en) * 1995-07-18 1997-02-19 Laporte Industries Ltd Surface coating composition
US6645569B2 (en) 2001-01-30 2003-11-11 The Procter & Gamble Company Method of applying nanoparticles
JP2006070137A (en) * 2004-09-01 2006-03-16 Tokai Rubber Ind Ltd Manufacturing method of rubber product and rubber product obtained thereby
EP1440998B1 (en) * 2003-01-27 2008-05-07 Elementis Specialties, Inc. Natural rubber composites containing smectite clay, methods of manufacture and uses thereof
JP2018052126A (en) * 2017-12-07 2018-04-05 株式会社リコー Molding device and molding body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303374A (en) * 1995-07-18 1997-02-19 Laporte Industries Ltd Surface coating composition
GB2303373A (en) * 1995-07-18 1997-02-19 Laporte Industries Ltd Surface coating composition
US6645569B2 (en) 2001-01-30 2003-11-11 The Procter & Gamble Company Method of applying nanoparticles
US6863933B2 (en) 2001-01-30 2005-03-08 The Procter And Gamble Company Method of hydrophilizing materials
US6872444B2 (en) 2001-01-30 2005-03-29 The Procter & Gamble Company Enhancement of color on surfaces
US7112621B2 (en) 2001-01-30 2006-09-26 The Proctor & Gamble Company Coating compositions for modifying surfaces
EP1440998B1 (en) * 2003-01-27 2008-05-07 Elementis Specialties, Inc. Natural rubber composites containing smectite clay, methods of manufacture and uses thereof
JP2006070137A (en) * 2004-09-01 2006-03-16 Tokai Rubber Ind Ltd Manufacturing method of rubber product and rubber product obtained thereby
JP2018052126A (en) * 2017-12-07 2018-04-05 株式会社リコー Molding device and molding body

Also Published As

Publication number Publication date
JP3247167B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
Makino et al. Surface structure of latex particles covered with temperature-sensitive hydrogel layers
Pelton et al. Particle sizes and electrophoretic mobilities of poly (N-isopropylacrylamide) latex
Johnson et al. Surface chemistry–rheology relationships in concentrated mineral suspensions
Emerson The structure of soil crumbs
EP0615535B1 (en) Process for particle adsorption
US3970573A (en) Electroviscous fluids
Emerson et al. Exchangeable calcium, magnesium and sodium and the dispersion of illites in water. II. Dispersion of illites in water
JP2008538539A (en) Barrier paint mixtures and coated products containing inelastic acrylic polymers with silicate fillers
JP2016523989A (en) Nanosilica / clay composition and coated article and method for producing the same
JPH06172657A (en) Latex composition excellent in antistatic properties
US2640088A (en) Vulcanization accelerators
Rami et al. Colloidal stability for concentrated zirconia aqueous suspensions
JPH03169540A (en) Coating-treated film
Babick Fundamentals in colloid science
Chang et al. Effect of the adsorption of polyvinyl alcohol on the rheology and stability of clay suspensions
Atta et al. Effect of inorganic nanomaterials types functionalized with smart nanogel on anti-corrosion and mechanical performances of epoxy coatings
Lucks et al. Inorganic suspensions-interaction with salts and ionic surfactants
JP4507684B2 (en) Aqueous vibration damping composition and vibration-damped article
Delgado et al. A study of the electrophoretic properties of montmorillonite particles in aqueous electrolyte solutions
Burke et al. Experimental methods for measuring the optimum amount of dispersant for seven Sumitomo alumina powders
Leong Effects of steric and hydrophobic forces on the rheological properties of ZrO2 suspensions
Tripp et al. Effect of ionic strength and ionic species on partitioning behavior of hydrophobic and hydrophilic polystyrene latex beads in aqueous two-phase polymer systems
McAtee Jr et al. Mutual adsorption of clay minerals and colloidal hydrous chromium oxide: An electron microscopy investigation
Keren Adsorbed Sodium Fraction's Effect on Rheology of Montmorillonite‐Kaolinite Suspensions
Stoylov Relation between stability of oxide and clay disperse systems and the electric properties of their particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101102

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20131102

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20131102