[go: up one dir, main page]

JPH06172038A - Aluminum nitride sintered compact - Google Patents

Aluminum nitride sintered compact

Info

Publication number
JPH06172038A
JPH06172038A JP43A JP32903592A JPH06172038A JP H06172038 A JPH06172038 A JP H06172038A JP 43 A JP43 A JP 43A JP 32903592 A JP32903592 A JP 32903592A JP H06172038 A JPH06172038 A JP H06172038A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
nitride sintered
grain boundary
boundary phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Yutaka Kubo
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP43A priority Critical patent/JPH06172038A/en
Publication of JPH06172038A publication Critical patent/JPH06172038A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide an aluminum nitride sintered compact capable of firmly joining a metallic layer formed by metallizing treatment to an aluminum nitride sintered compact. CONSTITUTION:This aluminum nitride sintered compact has a grain boundary phase consisting essentially of 3Y2O3.5Al2O3 compound and a 2Y2O3.Al2O3 at >=0.60 to <=0.95 component ratio (C) (atomic ratio) of the grain boundary phase when the ratio 3Y2O3.5Al2O3/(3Y2O3.5Al2O3+2Y2O3.Al2O3) is assumed as the (C). The aluminum nitride sintered compact preferably has <=15% area ratio of the grain boundary phase occupying the sintered compact surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属膜を表面に形成する
処理であるいわゆるメタライズ処理を行う窒化アルミニ
ウム焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body which is subjected to a so-called metallizing treatment for forming a metal film on its surface.

【0002】[0002]

【従来の技術】近年、半導体の高密度化、高集積化が急
速に進んでおり、それに伴って半導体からの発熱量が著
しく増加する傾向にある。そのため発生した熱をいかに
逃すかが重要な課題となっている。従来このような用途
にはベリリア(BeO)焼結体が使用されていたが、毒
性があるため用途が限られていた。これに替わって、熱
伝導率がアルミナ(Al23)の7倍以上あり、熱膨張
係数がシリコンに近い窒化アルミニウム焼結体が放熱用
の基板、パッケージとして注目されている。窒化アルミ
ニウムは共有結合性の物質であるためそのままでは焼結
がむずかしく、希土類など焼結助剤を添加して焼結体が
得られる。この焼結助剤は焼結時に窒化アルミニウム粒
子表面に存在するアルミナなどと反応して液相を形成
し、焼結を促進する役割を果たすものである。
2. Description of the Related Art In recent years, the density and integration of semiconductors have been rapidly increasing, and along with this, the amount of heat generated from the semiconductor tends to significantly increase. Therefore, how to dissipate the generated heat is an important issue. Conventionally, a beryllia (BeO) sintered body has been used for such an application, but the application is limited because it is toxic. Instead, an aluminum nitride sintered body, which has a thermal conductivity of 7 times or more that of alumina (Al 2 O 3 ) and a thermal expansion coefficient close to that of silicon, is attracting attention as a substrate and a package for heat dissipation. Since aluminum nitride is a covalent bond substance, it is difficult to sinter as it is, and a sintered body can be obtained by adding a sintering aid such as rare earth. This sintering aid plays a role of accelerating the sintering by reacting with alumina or the like existing on the surface of the aluminum nitride particles to form a liquid phase.

【0003】窒化アルミニウム焼結体を基板やパッケー
ジなどに使用する場合には、窒化アルミニウム焼結体同
士あるいは他のセラミックスや金属との接合が必要にな
る。窒化アルミニウム焼結体は金属に濡れにくいもので
あり、窒化アルミニウム焼結体表面にあらかじめ金属層
を形成するメタライズ処理を施しておき、はんだ等によ
り接合することが行われている。この時のメタライズ処
理はイオンプレーティング、スパッタリングなどの物理
蒸着法が用いられることが多い。また窒化アルミニウム
焼結体表面に導電経路となる金属層を形成するメタライ
ズ処理もしばしば行われている。この時のメタライズ処
理には、主としてMo、Wなどの高融点金属の粉末に、
各種無機化合物、有機化合物を添加した導体ペースト
を、焼結体上にスクリーン印刷し、パターンを形成し、
これを焼成することにより金属層を形成する厚膜法、お
よびイオンプレーティング、スパッタなどを用いて焼結
体上に薄膜を形成することにより、金属層を形成する薄
膜法が用いられることが多い。
When the aluminum nitride sintered body is used for a substrate or a package, it is necessary to bond the aluminum nitride sintered bodies to each other or to other ceramics or metal. The aluminum nitride sintered body is hard to be wet with a metal, and a metallizing treatment for forming a metal layer on the surface of the aluminum nitride sintered body is performed in advance, and the aluminum nitride sintered body is joined by soldering or the like. For the metallizing treatment at this time, a physical vapor deposition method such as ion plating or sputtering is often used. In addition, a metallizing treatment is often performed to form a metal layer which becomes a conductive path on the surface of the aluminum nitride sintered body. For the metallizing treatment at this time, powder of refractory metal such as Mo and W is mainly added.
Conductor paste to which various inorganic compounds and organic compounds are added is screen-printed on the sintered body to form a pattern,
A thick film method of forming a metal layer by firing this and a thin film method of forming a metal layer by forming a thin film on a sintered body using ion plating, sputtering, etc. are often used. .

【0004】[0004]

【発明が解決しようとする課題】上述したメタライズ処
理を行う窒化アルミニウム焼結体表面は形成する金属層
を充分な強度で接合するような品質にする必要がある。
窒化アルミニウム焼結体の表面状態は焼結時の雰囲気、
焼結温度等の影響を受け、焼結体表面部に液相がにじみ
出したり、表面部から焼結助剤が揮散したりするという
現象がおこる。金属相と高い接合強度が得られる窒化ア
ルミニウム焼結体表面を得る試みとして、特開平2−9
766号のように基板中の粒界相を基板の表面部分に偏
在させる方法や特開平2−258686号のように焼結
体表面の変質相を10μm以上研削することにより表面
部における粒界構成相成分の濃度を3重量%以下とする
方法が提案されている。
The surface of the aluminum nitride sintered body which is subjected to the above-mentioned metallizing treatment must be of such a quality that the metal layers to be formed can be joined with sufficient strength.
The surface condition of the aluminum nitride sintered body is the atmosphere during sintering,
Due to the influence of the sintering temperature and the like, a phenomenon occurs in which the liquid phase oozes out on the surface of the sintered body and the sintering aid volatilizes from the surface. As an attempt to obtain a surface of an aluminum nitride sintered body which can obtain a high bonding strength with a metal phase, JP-A-2-9
No. 766, in which the grain boundary phase in the substrate is unevenly distributed on the surface of the substrate; A method has been proposed in which the concentration of the phase component is 3% by weight or less.

【0005】また上述したように、窒化アルミニウム焼
結体を得るための焼結過程において、結晶粒界から液相
がにじみ出したりするため、焼結体表面に縞模様を発生
し、外観上の欠陥になる場合がある。また縞模様などの
色調の不均一性は熱伝導率、比抵抗や誘電率などの物性
の局部的な不均一をもたらすものである。このような縞
模様の発生による外観上の欠陥や物性の局部的な不均一
を解決した窒化アルミニウム焼結体として、特開平2−
204367号には焼結時の降温速度を調整して、窒化
アルミニウム粒子間の結晶粒界層が、それぞれ焼結助剤
を主成分とするガーネット型酸化物(Y23が焼結助剤
の場合には3Y23・5Al23,(3:5))および
ペロブスカイト型酸化物(Y23が焼結助剤の場合には
23・Al23,(1:1))の略同量の混合物から
構成される焼結体とし色調及び物性の均一化を図ること
が開示されている。
Further, as described above, in the sintering process for obtaining the aluminum nitride sintered body, the liquid phase oozes out from the grain boundaries, so that a striped pattern is generated on the surface of the sintered body, and the appearance is deteriorated. May be defective. The nonuniformity of color tone such as a striped pattern causes local nonuniformity of physical properties such as thermal conductivity, specific resistance and dielectric constant. As an aluminum nitride sintered body which has solved the appearance defect and the local nonuniformity of the physical properties due to the generation of such a striped pattern, there is disclosed in
In No. 204367, the temperature decreasing rate at the time of sintering is adjusted so that the grain boundary layer between the aluminum nitride particles is a garnet-type oxide (Y 2 O 3 is a sintering additive containing a sintering additive as a main component). in the case of 3Y 2 O 3 · 5Al 2 O 3, (3: 5)) and the perovskite oxide (Y 2 when O 3 is sintering aid Y 2 O 3 · Al 2 O 3, ( It is disclosed that the color tone and the physical properties are made uniform by using a sintered body composed of a mixture of approximately the same amount of 1: 1)).

【0006】しかし、高い接合強度を得るために最適な
粒界相の性状は従来は特定されていなかった。特に、3
次元形状部品などにおいて、焼結体の表面を加工せずに
使用する場合、あるいは加工コスト等の関係で加工量が
わずかの場合には、その表面の性状に大きな影響を及ぼ
す粒界相を特定することは極めて重要である。本発明は
メタライズ処理によって形成する金属層と窒化アルミニ
ウム焼結体とを強固に接合可能な窒化アルミニウム焼結
体を提供することである。
However, the optimum properties of the grain boundary phase for obtaining high bonding strength have not been specified so far. Especially 3
When using the surface of a sintered body without processing it in three-dimensionally shaped parts, or when the processing amount is small due to processing costs etc., identify the grain boundary phase that has a great influence on the surface properties. Doing is extremely important. The present invention is to provide an aluminum nitride sintered body capable of firmly joining a metal layer formed by a metallizing treatment and an aluminum nitride sintered body.

【0007】[0007]

【課題を解決するための手段】本発明者は、粒界相を形
成する化合物の種類と存在量とメタライズ処理により形
成する金属層が有する接合強度の関係から接合強度の高
い窒化アルミニウム焼結体を見い出すに至った。すなわ
ち、本発明は3Y23・5Al23化合物と2Y23
Al23化合物を主体とする粒界相を有し、かつ前記粒
界相は、 3Y23・5Al23/(3Y23・5Al23+2Y
23・Al23)=C と置くときの組成比C(原子比)が0.60以上、0.
95以下であり、好ましくは焼結体表面に占める粒界相
の面積率が15%以下であることを特徴とする窒化アル
ミニウム焼結体である。
The inventors of the present invention have found that an aluminum nitride sintered body having a high bonding strength is obtained from the relationship between the kind and the amount of the compound forming the grain boundary phase and the bonding strength of the metal layer formed by the metallizing treatment. I came to find out. That is, the present invention provides a 3Y 2 O 3 .5Al 2 O 3 compound and a 2Y 2 O 3 .multidot.
It has a grain boundary phase mainly composed of an Al 2 O 3 compound, and the grain boundary phase is 3Y 2 O 3 .5Al 2 O 3 / (3Y 2 O 3 .5Al 2 O 3 + 2Y
2 O 3 · Al 2 O 3 ) = C, the composition ratio C (atomic ratio) is 0.60 or more, 0.
It is 95 or less, preferably the area ratio of the grain boundary phase occupying on the surface of the sintered body is 15% or less, and the aluminum nitride sintered body is characterized.

【0008】[0008]

【作用】イットリアを焼結助剤として焼結した窒化アル
ミニウム焼結体においては、添加量、焼結時の加熱冷却
条件に依存して、2Y23・Al23、3Y23・5A
23、Y23・Al23といったY23−Al23
化合物が粒界相として生成する。(セラミックス、vo
l.26,(1991),731.参照) イットリアの添加量を変え、さらに焼結温度を変えるこ
とによって化合物相の種類および量の異なる種々の窒化
アルミニウム焼結体を得ることができる。粒界相を上述
した組成比Cの範囲にすればメタライズ層と焼結体の間
に極めて高い接合強度が得られることを見い出したので
ある。本発明において3Y23・5Al23および2Y
23・Al23を主相としたのはこれ以外では結晶相量
が多くなり、接合強度が低下するためである。また本発
明において組成比Cを0.60−0.95としたのは、
この組成比の範囲を外れるとメタライズ層と焼結体の間
の接合強度が低下するためである。表面ににじみ出した
粒界相量が多すぎると接合強度は低下するので好ましい
焼結体表面に占める粒界相は面積率で15%以下であ
る。
[Act as the sintered aluminum nitride sintered body of yttria sintering aid additive amount, depending on the heating and cooling conditions during sintering, 2Y 2 O 3 · Al 2 O 3, 3Y 2 O 3・ 5A
l 2 O 3, Y 2 O 3 · Al 2 O 3 such as Y 2 O 3 -Al 2 O 3 compound is produced as a grain boundary phase. (Ceramics, vo
l. 26, (1991), 731. See) By changing the amount of yttria added and further changing the sintering temperature, various aluminum nitride sintered bodies having different kinds and amounts of compound phases can be obtained. It has been found that when the grain boundary phase is set in the above range of the composition ratio C, extremely high bonding strength can be obtained between the metallized layer and the sintered body. In the present invention, 3Y 2 O 3 .5Al 2 O 3 and 2Y
The main phase of 2 O 3 · Al 2 O 3 is that the amount of crystal phase is large and the bonding strength is reduced in other cases. In the present invention, the composition ratio C is set to 0.60-0.95,
This is because if the composition ratio is out of this range, the bonding strength between the metallized layer and the sintered body will be reduced. If the amount of the grain boundary phase exuded to the surface is too large, the bonding strength will decrease. Therefore, the grain boundary phase occupying the surface of the sintered body is preferably 15% or less in area ratio.

【0009】本発明の窒化アルミニウム焼結体は、窒化
アルミニウム原料粉末にイットリア粉末を3〜10wt
%添加し、成形方法に応じた、バインダ、分散剤、潤滑
剤、溶剤等を添加し、ボールミル等により混合し、例え
ば、シート成形の場合にはそのままの状態で、またプレ
ス成形の場合にはスプレードライヤ等で、乾燥、造粒の
後、成形に供する。成形の後、最大1000℃まで加熱
して、成形体中のバインダ等を除去してから焼結を行な
う。焼結は非酸化性雰囲気中、通常は窒素雰囲気中、1
700〜2000℃で1時間以上行なう。焼結温度が高
すぎると、窒化アルミニウム粒子が成長し焼結体の強度
が著しく低下するし、焼結温度が低すぎると液相の形成
が不十分となったり形成されなくなり、焼結が進まず緻
密化しない。得られる焼結体中の粒界相の組成は、原料
粉末組成、バインダ除去条件、焼結条件などの製造条件
に大きく依存するため、本発明では製造方法は特に規定
しない。
The aluminum nitride sintered body of the present invention contains 3 to 10 wt% of yttria powder in the aluminum nitride raw material powder.
%, According to the molding method, a binder, a dispersant, a lubricant, a solvent, etc. are added, and mixed by a ball mill or the like. After drying and granulating with a spray dryer, etc., it is used for molding. After the molding, heating is performed up to 1000 ° C. to remove the binder and the like in the molded body, and then sintering is performed. Sintering is performed in a non-oxidizing atmosphere, usually in a nitrogen atmosphere, 1
Perform at 700 to 2000 ° C. for 1 hour or more. If the sintering temperature is too high, aluminum nitride particles will grow and the strength of the sintered body will be significantly reduced.If the sintering temperature is too low, the liquid phase will be insufficiently formed or will not be formed, and sintering will proceed. First, do not densify. The composition of the grain boundary phase in the obtained sintered body largely depends on the production conditions such as the raw material powder composition, the binder removal conditions, and the sintering conditions. Therefore, the production method is not particularly specified in the present invention.

【0010】本発明の焼結体に行うメタライズ処理の方
法としては、主としてMo、Wなどの高融点金属の粉末
に、各種無機化合物、有機化合物を添加した導体ペース
トを、焼結体上にスクリーン印刷し、パターンを形成
し、これを焼成することにより導体層を形成する厚膜
法、およびイオンプレーティング、スパッタなどを用い
て焼結体上に薄膜を形成することにより、導体層を形成
する薄膜法等のいずれの方法を用いることも出来る。
As a method of metallizing the sintered body of the present invention, a conductor paste prepared by adding various inorganic compounds and organic compounds to powder of refractory metal such as Mo and W is screened on the sintered body. A thick film method of forming a conductor layer by printing, forming a pattern, and baking the pattern, and forming a thin film on a sintered body by using ion plating, sputtering, etc., form a conductor layer. Any method such as a thin film method can be used.

【0011】本発明の焼結体の粒界相の特定はX線回折
法によって求めることができる。また、3Y23・5A
23については(211)面、d=2.62オングス
トロームのピークのピーク高さ、2Y23・Al23
ついては(22−1)面、d=3.01オングストロー
ムのピークのピーク高さを求めその比率から組成比Cを
求めることができる。
The grain boundary phase of the sintered body of the present invention can be specified by an X-ray diffraction method. In addition, 3Y 2 O 3 · 5A
surface (211) for l 2 O 3, d = 2.62 Å peak height of the peak, for 2Y 2 O 3 · Al 2 O 3 (22-1) plane, d = 3.01 Å peak The compositional ratio C can be determined from the ratio of the peak heights.

【0012】[0012]

【実施例】【Example】

(実施例1)原料粉末として酸素含有量1.0%の窒化
アルミニウム粉末を用い、5wt%のY23を添加し、
有機溶剤、有機バインダ、潤滑剤を添加し、ボールミル
にて混合、粉砕したのち、スプレードライヤにて造粒を
行い、窒化アルミニウム造粒粉末を得た。これらの粉末
を金型成形し、成形体を得た。これらの成形体を、40
0−800℃にて脱脂した後、1750−1830℃、
常圧窒素中にて焼結し、表1に示す各種の表面状態を有
する焼結体を得た。得られた焼結体はX線回折分析によ
り3Y23・5Al23および2Y23・Al23相以
外の相は検出されず、これらの相を主相とするものであ
る。
(Example 1) Aluminum nitride powder having an oxygen content of 1.0% was used as a raw material powder, and 5 wt% of Y 2 O 3 was added,
After adding an organic solvent, an organic binder, and a lubricant, mixing and pulverizing with a ball mill, granulation was performed with a spray dryer to obtain an aluminum nitride granulated powder. These powders were mold-molded to obtain a molded body. 40 these molded bodies
After degreasing at 0-800 ° C, 1750-1830 ° C,
Sintering was performed in nitrogen at atmospheric pressure to obtain sintered bodies having various surface states shown in Table 1. The resulting sintered body 3Y 2 O 3 · 5Al 2 O 3 and 2Y 2 O 3 · Al 2 O 3 other than phase phase was not detected by X-ray diffraction analysis, these phases in which the main phase is there.

【0013】X線回折分析の結果から、Y23・5Al
23相および2Y23・Al23相の組成比Cを求め
た。焼結体表面に占める粒界相の面積率を画像解析によ
り求めた。その後、メタライズ層と焼結体との接合強度
をさらに高めるために一部の試料については試料表面を
加工量を変えて焼結体の表1に示す研削深さで表面部分
の除去を行った。得られた試料をMoを主成分とするペ
ーストを塗布後、1700℃で焼成し、30μm厚さの
Mo層を有するメタライズ基板を作製した。これらメタ
ライズ基板にNi 0.5μm、Au 0.5μmの順で
メッキを行なった後、切断して5mm×5mmとし、こ
れにコバールのピンをハンダ付けし、これをメタライズ
剥離強度用テストピースとして、剥離に必要な強度から
接合強度を測定した。これらの結果を表1に示す。
From the results of X-ray diffraction analysis, it was confirmed that Y 2 O 3 .5Al
The composition ratio C of the 2 O 3 phase and the 2Y 2 O 3 .Al 2 O 3 phase was determined. The area ratio of the grain boundary phase occupied on the surface of the sintered body was obtained by image analysis. After that, in order to further increase the bonding strength between the metallized layer and the sintered body, the surface area of some of the samples was removed at the grinding depth shown in Table 1 by changing the processing amount of the sample. . The obtained sample was coated with a paste containing Mo as a main component and then baked at 1700 ° C. to prepare a metallized substrate having a Mo layer with a thickness of 30 μm. After plating 0.5 μm of Ni and 0.5 μm of Au on these metallized substrates in this order, the metallized substrate was cut to a size of 5 mm × 5 mm, and Kovar pins were soldered to the metallized peel strength test pieces. The bonding strength was measured from the strength required for peeling. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に示すように本発明の粒界相の組成比
Cが0.60−0.95は表面の研削を行わない(研削
量=0)場合であっても、8kgf/mm2以上という
高い接合強度が得られることがわかる。さらに本発明の
焼結体は2μm程度の研削により最大の接合強度が得ら
れるため、比較例のように多量な研削によって接合強度
を確保する必要がないことがわかる。
As shown in Table 1, when the composition ratio C of the grain boundary phase of the present invention is 0.60 to 0.95, even if the surface is not ground (grinding amount = 0), 8 kgf / mm 2 It can be seen that the above high bonding strength can be obtained. Further, since the sintered body of the present invention can obtain the maximum bonding strength by grinding about 2 μm, it is understood that it is not necessary to secure the bonding strength by a large amount of grinding as in the comparative example.

【0016】(実施例2)実施例1と同様の焼結体を用
い、表面の研削深さを変えて加工した後、イオンプレー
ティングにてTi 0.5μm、Ni 0.5μmの薄膜
を順に形成し、さらにNi 1.0μm、Au 0.5μ
mメッキを行なった。このメタライズ基板に実施例1と
同様にメタライズ層の接合強度を測定した。結果を表2
に示す。
(Embodiment 2) Using a sintered body similar to that of Embodiment 1, the surface was machined by changing the grinding depth, and then a thin film of Ti 0.5 μm and Ni 0.5 μm was sequentially formed by ion plating. Formed, Ni 1.0 μm, Au 0.5 μ
m plating was performed. The bonding strength of the metallized layer was measured on this metallized substrate in the same manner as in Example 1. The results are shown in Table 2.
Shown in.

【0017】[0017]

【表2】 [Table 2]

【0018】表2に示すように本発明の粒界相の組成比
Cが0.60−0.95の焼結体は表面の研削を行わな
い(研削量=0)場合であっても、比較例よりも高い
6.5kgf/mm2以上という接合強度が得られるこ
とがわかる。さらに本発明の焼結体は実施例1と同様に
2μm程度の研削により最大の接合強度が得られるた
め、比較例のように多量な研削によって接合強度を確保
する必要がないことがわかる。
As shown in Table 2, even if the surface of the sintered body of the present invention having a composition ratio C of the grain boundary phase of 0.60 to 0.95 is not ground (grinding amount = 0), It can be seen that a bonding strength of 6.5 kgf / mm 2 or higher, which is higher than that of the comparative example, can be obtained. Further, the sintered body of the present invention can obtain the maximum bonding strength by grinding about 2 μm as in Example 1, so that it is not necessary to secure the bonding strength by a large amount of grinding as in the comparative example.

【0019】[0019]

【発明の効果】本発明によれば、窒化アルミニウム焼結
体の粒界相の組成を規定することにより、窒化アルミニ
ウムを他の部材に接合する際に必須であるメタライズ相
を高い接合強度で形成できるため、気密性や他の部材と
の接合強度が要求される用途には極めて有用である。
According to the present invention, by defining the composition of the grain boundary phase of the aluminum nitride sintered body, a metallized phase, which is essential when joining aluminum nitride to other members, is formed with high bonding strength. Therefore, it is extremely useful for applications in which airtightness and bonding strength with other members are required.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 3Y23・5Al23化合物と2Y23
・Al23化合物を主体とする粒界相を有し、かつ前記
粒界相は、 3Y23・5Al23/(3Y23・5Al23+2Y
23・Al23)=C と置くときの組成比C(原子比)が0.60以上、0.
95以下であることを特徴とする窒化アルミニウム焼結
体。
1. A 3Y 2 O 3 .5Al 2 O 3 compound and 2Y 2 O 3
-Has a grain boundary phase mainly composed of an Al 2 O 3 compound, and the grain boundary phase is 3Y 2 O 3 .5Al 2 O 3 / (3Y 2 O 3 .5Al 2 O 3 + 2Y
2 O 3 · Al 2 O 3 ) = C, the composition ratio C (atomic ratio) is 0.60 or more, 0.
An aluminum nitride sintered body characterized by being 95 or less.
【請求項2】 焼結体表面に占める粒界相の面積率が1
5%以下であることを特徴とする請求項1に記載の窒化
アルミニウム焼結体。
2. The area ratio of the grain boundary phase on the surface of the sintered body is 1
It is 5% or less, The aluminum nitride sintered compact of Claim 1 characterized by the above-mentioned.
JP43A 1992-12-09 1992-12-09 Aluminum nitride sintered compact Pending JPH06172038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06172038A (en) 1992-12-09 1992-12-09 Aluminum nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06172038A (en) 1992-12-09 1992-12-09 Aluminum nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH06172038A true JPH06172038A (en) 1994-06-21

Family

ID=18216875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06172038A (en) 1992-12-09 1992-12-09 Aluminum nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH06172038A (en)

Similar Documents

Publication Publication Date Title
KR920004211B1 (en) Sintered aluminum nitride body having high thermal conductivity and its production
EP0287841B1 (en) Sintered body of aluminum nitride
JP3176219B2 (en) Electrostatic chuck
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
EP0598399B1 (en) Aluminum nitride sintered body, method for manufacturing the same, and ceramic circuit board
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JPH06219844A (en) Aln sintered compact and production thereof
US5250358A (en) Palladium thick film resistor containing boron nitride
JPH02275765A (en) Production of sintered aluminum nitride
JPH0323512B2 (en)
JPH06172038A (en) Aluminum nitride sintered compact
TWI764320B (en) Composite sintered body and method of manufacturing composite sintered body
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
US5932043A (en) Method for flat firing aluminum nitride/tungsten electronic modules
JP2807429B2 (en) Aluminum nitride sintered body
JPH0312363A (en) Aluminum nitride sintered body and its manufacturing method
JP3230861B2 (en) Silicon nitride metallized substrate
JPH03228873A (en) Aluminum nitride-based substrate
JPH01300584A (en) Circuit board
JPH04144967A (en) Aluminum nitride sintered body and its manufacturing method
JPS63222043A (en) Low-temperature sintering ceramic
JPH029766A (en) Ceramic substrate
JP4406150B2 (en) Aluminum nitride metallized substrate and semiconductor device
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP3198139B2 (en) AlN metallized substrate