JPH06170571A - Laser polishing method for diamond and device and diamond product formed by utilizing this method and device - Google Patents
Laser polishing method for diamond and device and diamond product formed by utilizing this method and deviceInfo
- Publication number
- JPH06170571A JPH06170571A JP4351759A JP35175992A JPH06170571A JP H06170571 A JPH06170571 A JP H06170571A JP 4351759 A JP4351759 A JP 4351759A JP 35175992 A JP35175992 A JP 35175992A JP H06170571 A JPH06170571 A JP H06170571A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- diamond
- polishing
- thin film
- driving device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/3568—Modifying rugosity
- B23K26/3576—Diminishing rugosity, e.g. grinding; Polishing; Smoothing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、切削工具、メス、ヒー
トシンク基板材料などに用いられるダイヤモンド薄膜の
レーザ研磨方法、その方法を実施するための装置および
その方法を利用したダイヤモンド製品に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser polishing method for a diamond thin film used for a cutting tool, a knife, a heat sink substrate material, etc., an apparatus for carrying out the method, and a diamond product using the method.
【0002】[0002]
【従来の技術】近時、気相合成法で形成したダイヤモン
ド薄膜を基材に固着した切削工具が提案されている。こ
の気相合成法で形成したダイヤモンド薄膜は表面の凹凸
が大きいため、たとえばダイヤモンド粒子を用いて表面
を研磨する必要がある。しかしこの方法は研磨速度が遅
いので、小さなダイヤモンドでも研磨加工が長時間にな
る。そこで、研磨時間短縮のため、エネルギ密度の高い
レーザビームを用いて析出ダイヤモンドの表面を平滑に
加工する研磨方法が提案されている(特開平3−264
181号公報、特開平3−272810号公報参照)。
この研磨方法では、図9に示すように、まず析出ダイヤ
モンド101の端部近辺に凸レンズ102で円錐状に集
束させたレーザビーム103の側面104を平行に配置
する。そして凸部101aを熱で除去しながらレーザー
ビームを設計研磨面に沿って相対的に移動させる(矢印
X)。さらに端部の帯状の領域R1の研磨が完了する
と、テーブル105を矢印Y方向に移動して、つぎの帯
状の領域R2を同じように研磨していくのである。2. Description of the Related Art Recently, a cutting tool has been proposed in which a diamond thin film formed by a vapor phase synthesis method is fixed to a base material. Since the diamond thin film formed by this vapor phase synthesis method has large irregularities on the surface, it is necessary to polish the surface using, for example, diamond particles. However, since this method has a slow polishing rate, even a small diamond requires a long polishing time. Therefore, in order to shorten the polishing time, a polishing method has been proposed in which the surface of the deposited diamond is processed to be smooth by using a laser beam having a high energy density (Japanese Patent Laid-Open No. 3-264).
181 and JP-A-3-272810).
In this polishing method, as shown in FIG. 9, first, the side surface 104 of the laser beam 103 focused in a conical shape by the convex lens 102 is arranged in parallel with the vicinity of the end of the deposited diamond 101. Then, the laser beam is relatively moved along the designed polishing surface while removing the convex portion 101a by heat (arrow X). When the polishing of the strip-shaped region R1 at the end is completed, the table 105 is moved in the direction of the arrow Y, and the next strip-shaped region R2 is similarly polished.
【0003】[0003]
【発明が解決しようとする課題】前記従来の研磨方法は
1度に研磨できる領域の幅Wを300μm程度と比較的
大きくとれる利点がある反面、エネルギ密度の低いレー
ザビーム側面で研磨するので、研磨効率が低いという欠
点がある。そのためレーザビームの移動速度を速くする
ことができず、たとえば平均出力8W、パルス周波数1
kHzで、面積7mm×3mmの析出ダイヤモンド薄膜
の表面粗度を、Rmax=3μmにまで平滑にするには
約20分かかる。The conventional polishing method has the advantage that the width W of the region that can be polished at one time is relatively large, about 300 μm, but it is polished on the side surface of the laser beam having a low energy density. It has the disadvantage of low efficiency. Therefore, the moving speed of the laser beam cannot be increased, and for example, the average output is 8 W and the pulse frequency is 1
It takes about 20 minutes to smooth the surface roughness of the deposited diamond thin film having an area of 7 mm × 3 mm to Rmax = 3 μm at kHz.
【0004】本発明は前記従来のレーザーによるダイヤ
モンドの研磨方法を改良し、研磨効率を向上させて加工
速度を速くすること、およびその方法を実施する装置を
提供することを課題としている。An object of the present invention is to improve the conventional method for polishing a diamond by a laser, to improve the polishing efficiency to increase the processing speed, and to provide an apparatus for carrying out the method.
【0005】[0005]
【課題を解決するための手段】本発明のダイヤモンドの
レーザ研磨方法は、ダイヤモンドの表面に対し、その表
面近辺に焦点を結ぶようにレーザを斜め方向から照射
し、レーザの焦点がダイヤモンドの表面上を走査するよ
うに両者に相対的に運動を与えることを特徴としてい
る。このような方法においてはレーザの照射角度を変え
ることにより前記走査を行うことが好ましい。さらにレ
ーザをパルス状に照射すると共に、レーザの焦点がダイ
ヤモンドの表面上を移動する速度に応じて前記パルス幅
を制御することが好ましい。本発明のレーザ研磨装置
は、ダイヤモンドを備えた加工対象物を載置するテーブ
ルと、該テーブルに対し、斜め方向からレーザを照射す
るように、かつ加工対象物の表面に焦点を結ぶように配
置したレーザ照射源と、前記テーブルにテーブルの表面
に平行の一次元の運動を生じさせるテーブル駆動装置
と、前記レーザの照射方向を揺動させることにより焦点
を走査するレーザ照射源駆動装置とを備えていることを
特徴としている。かかる装置においては、前記テーブル
駆動装置が、テーブルを往復運動をさせるものであるの
が好ましく、また、前記テーブル駆動装置がテーブルを
その表面に対して垂直な軸まわりに回転駆動させるもの
であり、前記レーザ照射源駆動装置がレーザの焦点を半
径方向に走査するものであることが好ましい。本発明の
ダイヤモンド製品は、基板と、該基板上に気相合成法で
形成されたダイヤモンド薄膜とからなり、該ダイヤモン
ド薄膜の外側の折出面が前記いずれかの方法で平滑に研
磨されていることを特徴とする。さらに本発明の切削工
具はそのようなダイヤモンド製品を、研磨面が外側にな
るように取り付けたことを特徴とする。According to the method of laser polishing a diamond of the present invention, a laser is obliquely irradiated to a surface of a diamond so that a focal point near the surface of the diamond is focused, and the focal point of the laser is on the surface of the diamond. It is characterized by giving a relative motion to both so as to scan. In such a method, it is preferable to perform the scanning by changing the irradiation angle of the laser. Further, it is preferable to irradiate the laser in pulse form and to control the pulse width according to the speed at which the laser focus moves on the surface of the diamond. The laser polishing apparatus of the present invention is provided with a table on which a workpiece including diamond is placed, and a laser that is arranged to irradiate the table with a laser obliquely and to focus on the surface of the workpiece. A laser irradiation source, a table driving device that causes a one-dimensional movement of the table parallel to the surface of the table, and a laser irradiation source driving device that scans a focus by swinging the laser irradiation direction. It is characterized by In such a device, it is preferable that the table drive device reciprocates the table, and the table drive device rotationally drives the table about an axis perpendicular to the surface thereof. It is preferable that the laser irradiation source driving device scans the focal point of the laser in the radial direction. The diamond product of the present invention comprises a substrate and a diamond thin film formed on the substrate by a vapor phase synthesis method, and the outer protruding surface of the diamond thin film is polished smoothly by any of the above methods. Is characterized by. Furthermore, the cutting tool of the present invention is characterized in that such a diamond product is attached such that the polishing surface is on the outside.
【0006】[0006]
【作用】本発明の方法においては、析出ダイヤモンドの
表面に対し、その表面近辺に焦点を結ぶようにレーザを
照射するので、最もエネルギ密度の高い焦点で加工する
ことができる。そのため研磨速度を従来の方法に比して
はるかに速くすることができる。また斜め方向、好まし
くは45度以下の方向から照射するので、表面に部分的
に穴(欠陥)をあけてしまうといった問題が回避され、
析出ダイヤモンド表面の凸部のみを効率的に除去し得
る。請求項2の方法はレーザビームを振ることにより走
査するので、加工速度を一層速くすることができる。請
求項3の方法においては、レーザをパルス状に照射する
と共に、レーザとダイヤモンドとの相対移動速度に応じ
てパルス幅を制御するので、表面に対して均一なピッチ
でパルス照射を行うことができる。したがって相対移動
速度が変化するような走査方法も自由に採用しうる。請
求項4の本発明の装置は、テーブルに一次元の運動を行
わせると共に、レーザ照射の方向一軸まわりに揺動させ
るので、両者の相対運動によりレーザの焦点が加工対象
の表面に沿って二次元の走査を行う。そのため簡単な走
査機構で高速の平面ないし曲面研磨を行うことができ
る。請求項5の装置はテーブルが回転し、レーザの焦点
をテーブルの半径方向に走査させるので、焦点は、全体
として「うず巻状」の軌跡を描きながら研磨を行う。こ
の場合、テーブルの回転速度を徐々に変化させてもよ
く、レーザのパルス幅を変化させてもよい。本発明のダ
イヤモンド製品は、硬度が高く緻密なダイヤモンド析出
面を外側にしているので、製品耐久性が高い利点があ
る。本発明の切削工具は、前記方法で研磨したダイヤモ
ンド製品を、平滑な研磨面が外側になるように取り付け
ているので切れ味がよく、耐久性が高い。According to the method of the present invention, the surface of the precipitated diamond is irradiated with the laser so that the vicinity of the surface is focused, so that the processing can be performed at the focus having the highest energy density. Therefore, the polishing rate can be made much faster than the conventional method. Moreover, since the irradiation is performed from an oblique direction, preferably from a direction of 45 degrees or less, the problem of partially making holes (defects) on the surface is avoided,
Only the protrusions on the surface of the deposited diamond can be efficiently removed. In the method of the second aspect, the scanning is performed by shaking the laser beam, so that the processing speed can be further increased. In the method of claim 3, since the laser is irradiated in a pulsed manner and the pulse width is controlled according to the relative moving speed of the laser and the diamond, the surface can be irradiated with the pulse at a uniform pitch. . Therefore, a scanning method in which the relative moving speed changes can be freely adopted. In the apparatus of the present invention according to claim 4, the table is caused to perform a one-dimensional movement and is oscillated around one axis in the direction of laser irradiation. Therefore, the relative movement of the two causes the focus of the laser to move along the surface of the object to be processed. Perform a dimensional scan. Therefore, high-speed flat or curved surface polishing can be performed with a simple scanning mechanism. In the apparatus according to the fifth aspect, the table rotates, and the focal point of the laser is scanned in the radial direction of the table. Therefore, the focal point performs polishing while drawing a "spiral-shaped" locus as a whole. In this case, the rotation speed of the table may be gradually changed and the pulse width of the laser may be changed. The diamond product of the present invention has the advantage that the product durability is high because the diamond deposition surface, which has high hardness and is dense, is located outside. Since the cutting tool of the present invention is mounted with the diamond product polished by the above-mentioned method so that the smooth polished surface faces outward, the cutting tool has good sharpness and high durability.
【0007】[0007]
【実施例】つぎに図面を参照しながら本発明の方法およ
び装置を説明する。図1は本発明の方法の一実施例を示
す工程説明図、図2は図1のa工程の拡大図、図3は本
発明の装置の一実施例を示す全体配置図、図4は本発明
の装置にかかわるテーブルの一実施例を示す斜視図、図
5aおよび図5bはそれぞれ本発明のダイヤモンド製品
の一実施例を示す加工前および加工後の断面図、図6a
および図6bはそれぞれ本発明の方法で研磨する前およ
び研磨後のダイヤモンド薄膜の表面状態を示す拡大断面
図、図7は本発明の方法で研磨したダイヤモンド薄膜の
拡大斜視図、図8は本発明の切削工具の一実施例を示す
斜視図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The method and apparatus of the present invention will be described below with reference to the drawings. 1 is a process explanatory view showing an embodiment of the method of the present invention, FIG. 2 is an enlarged view of the step a in FIG. 1, FIG. 3 is an overall layout drawing showing an embodiment of the apparatus of the present invention, and FIG. 4 is a book. FIG. 6a is a perspective view showing an embodiment of a table relating to the apparatus of the invention, and FIGS. 5a and 5b are sectional views before and after processing showing an embodiment of the diamond product of the present invention, respectively.
And FIG. 6b are enlarged cross-sectional views showing the surface states of the diamond thin film before and after polishing by the method of the present invention, FIG. 7 is an enlarged perspective view of the diamond thin film polished by the method of the present invention, and FIG. 8 is the present invention. It is a perspective view which shows one Example of the cutting tool of.
【0008】まず図1a〜1cを参照して本発明の方法
を説明する。図1の1はシリコン基板2上に気相合成法
により形成したダイヤモンド薄膜(以下、薄膜という)
である。その自由表面3、すなわち析出面は不純物や空
隙が少ないので硬度は高いが、多数の凸部4が突出して
いる。図1の場合は、このような薄膜1の表面3に凸レ
ンズ5で集束したレーザビーム6の焦点7を当てること
により前記凸部4を除去する。図1aの実施例ではさら
にレーザビーム6の光軸8が表面3に対してある角度
(照射角度)θで傾斜しており、そのため凸部4に対し
ては斜め側方から照射している。なおこの照射角度はも
っと大きくてもよい。ただし90度になると凸部4を除
去するにとどまらず、表面3に穴があき表面欠陥となる
ので90度未満とする。すなわち請求の範囲にいう「斜
め方向から照射する」とは、図1aのθが0度<θ<9
0度の範囲にあることを意味する。なお図1aの符号9
はレーザビームを薄膜1の表面に沿って走査するための
ガルバノミラーを模式的に表したものである。First, the method of the present invention will be described with reference to FIGS. 1 in FIG. 1 is a diamond thin film (hereinafter referred to as a thin film) formed on a silicon substrate 2 by a vapor phase synthesis method.
Is. The free surface 3, that is, the deposition surface has a high hardness because there are few impurities and voids, but a large number of convex portions 4 are projected. In the case of FIG. 1, the convex portion 4 is removed by focusing the laser beam 6 focused by the convex lens 5 on the surface 3 of such a thin film 1. In the embodiment of FIG. 1a, the optical axis 8 of the laser beam 6 is further inclined at an angle (irradiation angle) θ with respect to the surface 3, so that the projection 4 is irradiated obliquely from the lateral side. The irradiation angle may be larger. However, when it becomes 90 degrees, not only the convex portion 4 is removed, but also holes are formed in the surface 3 to cause a surface defect, so the angle is set to less than 90 degrees. That is, in the claims, “irradiate from an oblique direction” means that θ in FIG. 1A is 0 ° <θ <9.
It means in the range of 0 degree. Incidentally, reference numeral 9 in FIG.
Is a schematic representation of a galvanometer mirror for scanning the laser beam along the surface of the thin film 1.
【0009】図1の実施例では図1aに示す基本的な研
磨の形態を維持しながら、焦点7を薄膜1の表面に2次
的に走査し、全体を研磨する。走査の方法はたとえば図
1aのガルバノミラー9を軸10まわりに振り、図1b
に示すようにレーザビーム6を縦方向、すなわちレーザ
ビーム6を含み、かつ薄膜1に垂直な平面Pと薄膜表面
との交線Lに沿う方向(矢印S)に振ることにより焦点
7を薄膜1表面に沿って走査する。さらにこのように交
線に沿った研磨が完了すると、図1cに示すように薄膜
1を有する素材を矢印N方向にずらせ、つぎの隣接する
直線L2に沿って研磨していく。そしてさらに同様に次
々とL3、L4、……の順に研磨をすすめていく。図1
cの1方向の研磨後、さらに対象物を90度回転させ、
全体として2方向の研磨をしてもよい(図1d)。なお
前記ガルバノミラー9の軸10と直角方向に軸を形成さ
せたガルバノミラーをもう1台設置し、前記矢印N方向
に素材をずらせるかわりに、レーザビームを2次元的に
走査することも可能である。前記図1bのようにレーザ
ビームを振る場合、厳密には、図2の焦点距離Frをこ
れに応じて変えなければ、焦点7が表面に当たらない。
しかし焦点距離Frが大きい場合、たとえば200mm
以上の場合は、薄膜の大きさ(たとえば1辺16mmの
正方形)に比してほとんど問題にならない。しかも焦点
7部分のレーザビーム径が0.06〜0.1mm程度の
場合、図2の焦点7の前後1〜5mmの領域Rであれば
充分に研磨できる。そのためレーザビーム6は平行移動
させずに単にガルバノミラー9などで振ることにより走
査すれば充分である。なお図1b、図1cでレーザ研磨
部分を薄膜1の表面に不連続な領域Rとして示している
のは、レーザビームをパルス状に照射することを表して
いる。このようにパルス状に不連続に照射すると、尖頭
値出力は連続発振時の約1000倍に達し、ダイヤモン
ド表面を研磨加工するのに十分のパワー密度を得ること
ができるという効果がある。また後述するように、二次
元相対運動の駆動方法により焦点の移動速度が変化する
場合でも、パルス幅を制御することにより容易に均一な
研磨を行うことができる利点がある。In the embodiment of FIG. 1, while maintaining the basic polishing mode shown in FIG. 1a, the focal point 7 is secondarily scanned on the surface of the thin film 1 to polish the entire surface. The scanning method is, for example, by swinging the galvanometer mirror 9 shown in FIG.
As shown in FIG. 2, the focal point 7 is moved by swinging the laser beam 6 in the vertical direction, that is, in the direction (arrow S) along the intersection line L between the plane P including the laser beam 6 and perpendicular to the thin film 1 and the thin film surface. Scan along the surface. Further, when the polishing along the intersecting line is completed in this way, as shown in FIG. 1c, the material having the thin film 1 is displaced in the direction of the arrow N, and polishing is performed along the next adjacent straight line L2. Further, similarly, polishing is sequentially advanced in order of L3, L4, .... Figure 1
After polishing in one direction of c, the object is further rotated 90 degrees,
The polishing may be performed in two directions as a whole (FIG. 1d). It is also possible to install another galvano mirror having an axis formed in a direction perpendicular to the axis 10 of the galvano mirror 9 and scan the laser beam two-dimensionally instead of shifting the material in the direction of the arrow N. Is. When the laser beam is shaken as shown in FIG. 1b, strictly speaking, the focal point 7 does not hit the surface unless the focal length Fr of FIG. 2 is changed accordingly.
However, if the focal length Fr is large, for example, 200 mm
In the above case, there is almost no problem compared with the size of the thin film (for example, a square having a side of 16 mm). Moreover, when the diameter of the laser beam at the focal point 7 is about 0.06 to 0.1 mm, the area R of 1 to 5 mm before and after the focal point 7 in FIG. Therefore, it suffices to scan the laser beam 6 by simply shaking it with the galvanometer mirror 9 or the like without moving it in parallel. In FIGS. 1b and 1c, the laser-polished portion is shown as a discontinuous region R on the surface of the thin film 1, which means that the laser beam is applied in a pulsed manner. When pulsed irradiation is performed discontinuously in this way, the peak value output reaches about 1000 times that during continuous oscillation, and there is an effect that a sufficient power density for polishing the diamond surface can be obtained. Further, as will be described later, even if the moving speed of the focus changes due to the driving method of the two-dimensional relative motion, there is an advantage that uniform polishing can be easily performed by controlling the pulse width.
【0010】つぎに図3〜4を参照して前記研磨方法を
実施するための装置の好ましい実施例を説明する。図3
の11は光学系およびQスイッチを含むレーザ発生源で
あり、このものはガルバノミラーで走査するガルバノメ
ータ型オプテカスルキャナ方式を採用している。焦点近
傍のレーザのビーム径は、たとえば0.06〜0.1m
mである。なおQスイッチとはパルス幅制御のためのも
のである。このようなレーザ発生源(レーザ照射装置)
11に対しては、Qスイッチドライバを含む電源ボック
ス12からレーザ発振用の電力およびQスイッチを制御
する信号が送られるようにしている。さらに前記レーザ
発生源11および電源ボックス12はパーソナルコンピ
ュータを含む制御装置13により制御される。またレー
ザ発生源11のビーム照射口11aに対向して研磨対象
物を載置するテーブル14が配置されている。A preferred embodiment of an apparatus for carrying out the polishing method will be described with reference to FIGS. Figure 3
No. 11 is a laser generation source including an optical system and a Q switch, which adopts a galvanometer type optecasul caner system in which scanning is performed by a galvanometer mirror. The beam diameter of the laser near the focus is, for example, 0.06 to 0.1 m.
m. The Q switch is for controlling the pulse width. Such a laser source (laser irradiation device)
A power supply box 12 including a Q switch driver sends a power for laser oscillation and a signal for controlling the Q switch to 11. Further, the laser source 11 and the power supply box 12 are controlled by a controller 13 including a personal computer. Further, a table 14 on which the object to be polished is placed is arranged facing the beam irradiation port 11a of the laser generation source 11.
【0011】図4は研磨対象物(表面にダイヤモンド薄
膜を備えたシリコン基板2)を載せるためのテーブルの
一実施例を示しており、この実施例では軸15まわりに
回転するターンテーブル16を採用している。本実施例
の場合は、レーザビーム6の照射角度をS方向に振って
半径方向に走査する。したがって走査速度を大きくしう
る。ターンテーブル16を矢印A方向に回転させながら
レーザビームを矢印S方向に振ると、焦点7はうず巻き
状または同心円状の軌跡17を描きながら薄膜1の表面
を研磨していく。ターンテーブル16の回転速度および
パルスの周波数は一定でもよいが、変化させてもよい。
すなわち焦点が半径内側に近づくにつれてターンテーブ
ル16の1回転当たりのうず巻線の長さが短くなるが、
たとえばターンテーブル16の回転数を次第に増加する
ことにより、焦点7の相対移動速度を均一にし、レーザ
ビームの線長さ当たりの照射量を均一化するようにして
もよい。また前記Qスイッチの制御を通じ、パルス幅を
次第に大きくすることにより、レーザビームの線長さ当
たりの照射量を均一化するようにしてもよい。FIG. 4 shows an embodiment of a table on which an object to be polished (silicon substrate 2 having a diamond thin film on the surface) is placed. In this embodiment, a turntable 16 rotating around a shaft 15 is adopted. is doing. In the case of the present embodiment, the irradiation angle of the laser beam 6 is swung in the S direction and scanning is performed in the radial direction. Therefore, the scanning speed can be increased. When the laser beam is swung in the direction of arrow S while rotating the turntable 16 in the direction of arrow A, the focal point 7 polishes the surface of the thin film 1 while drawing a spiral or concentric locus 17. The rotation speed of the turntable 16 and the pulse frequency may be constant or may be changed.
That is, the length of the vortex winding per rotation of the turntable 16 becomes shorter as the focus approaches the inner side of the radius,
For example, the relative movement speed of the focus 7 may be made uniform by gradually increasing the number of revolutions of the turntable 16 so that the irradiation amount of the laser beam per line length is made uniform. Further, the irradiation amount per line length of the laser beam may be made uniform by gradually increasing the pulse width through the control of the Q switch.
【0012】前記レーザビームによる研磨加工を行うこ
とにより、図5Aに示すダイヤモンド薄膜は、図5Bに
示すように平滑化される。本発明の方法は、シリコン基
板上に気相合成法によりダイヤモンド薄膜を形成する場
合のように、表面の凹凸が大きい場合に用いられるが、
他の製法により形成したダイヤモンド薄膜あるいはダイ
ヤモンド小片の表面の平滑化に用いることができる。ま
たシリコン以外の基板も使用しうる。By performing the polishing process with the laser beam, the diamond thin film shown in FIG. 5A is smoothed as shown in FIG. 5B. The method of the present invention is used when the surface irregularities are large, such as when a diamond thin film is formed on a silicon substrate by a vapor phase synthesis method.
It can be used for smoothing the surface of a diamond thin film or a diamond piece formed by another manufacturing method. Substrates other than silicon may also be used.
【0013】ダイヤモンドの気相合成法としては、熱電
子放射材法、直流アーク放電法、直流グロー放電法、マ
イクロ波放電法、あるいは高同波放電法など、任意の方
法を用いることができる。またレーザ発生源としてはレ
ーザ加工に通常用いられるYAGレーザ(イットリウム
アルゴンガーネットレーザ)が好ましいが、他の種類の
レーザであってもよい。つぎに具体的な実施例をあげて
本発明の方法を説明する。As the vapor phase synthesis method of diamond, any method such as a thermionic emission material method, a DC arc discharge method, a DC glow discharge method, a microwave discharge method, or a high homowave discharge method can be used. A YAG laser (yttrium argon garnet laser) usually used for laser processing is preferable as the laser source, but other types of lasers may be used. Next, the method of the present invention will be described with reference to specific examples.
【0014】(実施例1)シリコン基板として8mm角
で厚さ0.3mmの(100)面を用い、マイクロ波放
電法によりシリコン基板に厚さ300μmのダイヤモン
ド薄膜を形成した。このときのマイクロ波放電法の条件
としては、水素流量が85ml/min、メタン流量が
15ml/min、作動圧力が120torrであり、
基板は強制水冷し、そして放電電力が1000Wで10
0時間ダイヤモンドを形成した。得られたダイヤモンド
薄膜の表面の凹凸状態を図6Aに示す。なお縦軸は横軸
の40倍に拡大している。析出したままのダイヤモンド
薄膜の表面の粗度はRa(平均粗度)=5.8μm、R
max(最大粗度)=45.0μmで、このものに対
し、以下の条件でレーザ研磨を行った。使用したレーザ
は、レーザ平均出力0〜9W、Qスイッチ周波数0.1
〜50kHzのYAGレーザである。Example 1 A silicon thin film having a thickness of 300 μm was formed on a silicon substrate by a microwave discharge method using a (100) plane of 8 mm square and a thickness of 0.3 mm. The conditions of the microwave discharge method at this time are that the hydrogen flow rate is 85 ml / min, the methane flow rate is 15 ml / min, and the operating pressure is 120 torr.
The substrate is forced water cooled, and the discharge power is 1000W and 10
Diamond was formed for 0 hours. The surface roughness of the obtained diamond thin film is shown in FIG. 6A. The vertical axis is 40 times larger than the horizontal axis. The surface roughness of the as-deposited diamond thin film is Ra (average roughness) = 5.8 μm, R
Max (maximum roughness) = 45.0 μm, and this was laser-polished under the following conditions. The laser used had a laser average output of 0 to 9 W and a Q switch frequency of 0.1.
It is a YAG laser of ˜50 kHz.
【0015】まず前記対象物をX−Yテーブル上に載
せ、レーザの光軸とテーブル表面との角度θを1度、1
0度、20度、45度、80度のいずれかに維持し、8
mm×8mmの薄膜の中心に焦点を合わせたうえで、ミ
ラーの振りに基づくマーキング速度(研磨面上の焦点移
動速度)v=10mm/秒で加工した。このときパルス
間隔λを3.3μmに条件設定したので、v=λ・f
(v:mm/秒、λ:μm、f:kHz)より、Qスイ
ッチ周波数fは3kHzとなる。また加工時の平均出力
=6.4W、尖頭値出力=23.7kwであった。さら
に広角レンズを使用して、レーザビームの焦点距離は2
44mmとした。なお隣接する加工線同士の間隔、すな
わちハッチング間隔は、5μmとした。これにより全体
の加工線の総長さは8×8(シリコン基板の面積)/
0.005(ハッチング間隔)=12800mmであ
る。前記加工条件で、レーザビームの照射角θを変えて
1方向研磨(図1c参照)および2方向研磨(図1d参
照)の方法で加工した。First, the object is placed on an XY table, and the angle θ between the laser optical axis and the table surface is 1 degree, 1 degree.
Maintain at 0, 20, 45, or 80 degrees, 8
After focusing on the center of a thin film of 8 mm × 8 mm, processing was performed at a marking speed (focus moving speed on the polishing surface) v = 10 mm / sec based on the swing of the mirror. At this time, since the pulse interval λ was set to 3.3 μm, v = λ · f
From (v: mm / sec, λ: μm, f: kHz), the Q switch frequency f becomes 3 kHz. The average output during processing was 6.4 W and the peak value output was 23.7 kw. Furthermore, using a wide-angle lens, the focal length of the laser beam is 2
It was set to 44 mm. The interval between adjacent processing lines, that is, the hatching interval was 5 μm. As a result, the total length of the entire processing line is 8 x 8 (area of silicon substrate) /
0.005 (hatching interval) = 12800 mm. Under the above processing conditions, the irradiation angle θ of the laser beam was changed, and processing was performed by one-way polishing (see FIG. 1c) and two-way polishing (see FIG. 1d).
【0016】つぎに比較例として、短焦点レンズを用い
てレーザビームの焦点距離を50mm(拡がり角度約3
0度)とし、図9に示すような従来法で、レーザビーム
の側面を薄膜表面に当てた状態で、テーブルをレーザビ
ームと直角に移動しながら加工した。他の条件は実施例
の場合と同じにした。前記実施例の方法で加工した後、
表面粗度計により表面粗度を測定した。その結果を表1
に示す。Next, as a comparative example, the focal length of the laser beam is 50 mm (divergence angle of about 3 using a short focus lens.
0 degree) and processing was performed by moving the table at right angles to the laser beam with the side surface of the laser beam applied to the thin film surface by the conventional method as shown in FIG. Other conditions were the same as in the example. After processing by the method of the above embodiment,
The surface roughness was measured with a surface roughness meter. The results are shown in Table 1.
Shown in.
【0017】[0017]
【表1】 [Table 1]
【0018】なお実施例の照射角を10度にして、4回
研磨の条件で研磨した場合の顕微鏡写真に基づく表面粗
度曲線を図6Bに示し、その表面の顕微鏡写真に基づく
模式的斜視図を図7に示す。上記の結果から、実施例の
方法では1方向研磨でも表面粗度がもとのRa=5.
8、Rmax=45.0から、Ra=2.3〜5.0、
Rmax=15.5〜40.1と顕著な平滑化がなされ
たことがわかる。また照射角度θは小さいほうが好まし
く、45度以下、とくに1〜20度程度が好ましいこと
がわかる。さらに1方向研磨よりも2方向研磨の方が表
面粗度をほぼ半減させ、一層の平滑化が達成されること
がわかる。Incidentally, FIG. 6B shows a surface roughness curve based on a micrograph when polishing was performed under the condition of polishing four times with the irradiation angle of 10 degrees in the example, and a schematic perspective view based on the micrograph of the surface. Is shown in FIG. From the above results, in the method of the example, the surface roughness was Ra = 5.
8, Rmax = 45.0, Ra = 2.3-5.0,
It can be seen that remarkable smoothing was performed with Rmax = 15.5 to 40.1. Further, it is found that the irradiation angle θ is preferably small, and is preferably 45 degrees or less, particularly preferably about 1 to 20 degrees. Further, it can be seen that the two-way polishing reduces the surface roughness by almost half and achieves further smoothing, as compared with the one-way polishing.
【0019】ちなみに従来例の方法では、同等の研磨粗
度を得るためには、加工時間は本発明の約4倍を要し
た。Incidentally, in the conventional method, the processing time required about four times as long as that of the present invention in order to obtain the same polishing roughness.
【0020】以上の結果より、本発明のレーザビームの
焦点を加工対象面上を走査させる方法は、従来のレーザ
ビームの側面を当てる方法に比してはるかに効率的に研
磨加工ができることがわかる。From the above results, it is understood that the method of scanning the focus of the laser beam on the surface to be processed according to the present invention can perform the polishing process much more efficiently than the conventional method of applying the side surface of the laser beam. .
【0021】前記本発明の方法で研磨したダイヤモンド
製品は、たとえば一辺3mmの正三角形に切断して図8
に示す切削バイト20用のスローアウェーチップ21な
ど、種々の切削工具に好適に使用しうる。このものは硬
度が高い析出面を切削面として用いることができるの
で、切れ味および耐久性が高い利点がある。The diamond product polished by the method of the present invention is cut into, for example, an equilateral triangle having a side of 3 mm, and the diamond product shown in FIG.
It can be suitably used for various cutting tools such as the throw away tip 21 for the cutting tool 20 shown in FIG. Since this one can use the precipitation surface having high hardness as a cutting surface, it has an advantage of high sharpness and durability.
【0022】[0022]
【発明の効果】本発明の方法はエネルギ密度の高い焦点
を研磨対象物の表面に沿って走査するので、加工効率を
従来の4倍程度にすることができる。本発明の装置は前
記方法を効率的に実施することができる。本発明のダイ
ヤモンド製品および切削工具は、気相合成法によるダイ
ヤモンド薄膜のうち硬度が高い析出面を外表面に用いる
ので、耐久性や切れ味が高い利点がある。According to the method of the present invention, since the focal point having a high energy density is scanned along the surface of the object to be polished, the processing efficiency can be increased to about 4 times that of the conventional method. The device of the present invention can efficiently carry out the method. The diamond product and the cutting tool of the present invention have the advantage of high durability and sharpness because the deposition surface with high hardness of the diamond thin film by the vapor phase synthesis method is used as the outer surface.
【図1】本発明の方法の一実施例を示す工程説明図であ
る。FIG. 1 is a process explanatory view showing an embodiment of a method of the present invention.
【図2】図1のa工程の拡大図である。FIG. 2 is an enlarged view of step a in FIG.
【図3】本発明の装置の一実施例を示す全体配置図であ
る。FIG. 3 is an overall layout drawing showing an embodiment of the apparatus of the present invention.
【図4】本発明の装置にかかわるテーブルの一実施例を
示す斜視図である。FIG. 4 is a perspective view showing an embodiment of a table relating to the apparatus of the present invention.
【図5】図5aは本発明のダイヤモンド製品の一実施例
を示す加工前の断面図、図5bはその加工後の断面図で
ある。FIG. 5a is a cross-sectional view before processing showing an embodiment of the diamond product of the present invention, and FIG. 5b is a cross-sectional view after processing.
【図6】図6Aおよび図6Bはそれぞれ本発明の方法で
研磨する前および研磨後のダイヤモンド薄膜の表面状態
を示す拡大断面図である。6A and 6B are enlarged cross-sectional views showing the surface state of a diamond thin film before and after polishing by the method of the present invention, respectively.
【図7】本発明の方法で研磨したダイヤモンド薄膜表面
の模式的斜視図である。FIG. 7 is a schematic perspective view of a diamond thin film surface polished by the method of the present invention.
【図8】本発明の切削工具の一実施例を示す斜視図であ
る。FIG. 8 is a perspective view showing an embodiment of a cutting tool of the present invention.
1・・・ダイヤモンド 2・・・シリコン基板 3・・・表面 6・・・レーザビーム 7・・・焦点 9・・・ガルバノミラー 11・・・レーザ発生源 12・・・電源ボックス 13・・・制御装置 14・・・テーブル 16・・・ターンテーブル 1 ... Diamond 2 ... Silicon substrate 3 ... Surface 6 ... Laser beam 7 ... Focus 9 ... Galvanometer mirror 11 ... Laser source 12 ... Power supply box 13 ... Controller 14 ... Table 16 ... Turntable
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年7月13日[Submission date] July 13, 1993
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の方法の一実施例を示す工程説明図であ
る。FIG. 1 is a process explanatory view showing an embodiment of a method of the present invention.
【図2】図1のa工程の拡大図である。FIG. 2 is an enlarged view of step a in FIG.
【図3】本発明の装置の一実施例を示す全体配置図であ
る。FIG. 3 is an overall layout drawing showing an embodiment of the apparatus of the present invention.
【図4】本発明の装置にかかわるテーブルの一実施例を
示す斜視図である。FIG. 4 is a perspective view showing an embodiment of a table relating to the apparatus of the present invention.
【図5】図5aは本発明のダイヤモンド製品の一実施例
を示す加工前の断面図、図5bはその加工後の断面図で
ある。FIG. 5a is a cross-sectional view before processing showing an embodiment of the diamond product of the present invention, and FIG. 5b is a cross-sectional view after processing.
【図6】図6Aおよび図6Bはそれぞれ本発明の方法で
研磨する前および研磨後のダイヤモンド薄膜の表面状態
を示す拡大断面図である。6A and 6B are enlarged cross-sectional views showing the surface state of a diamond thin film before and after polishing by the method of the present invention, respectively.
【図7】本発明の方法で研磨したダイヤモンド薄膜表面
の模式的斜視図である。FIG. 7 is a schematic perspective view of a diamond thin film surface polished by the method of the present invention.
【図8】本発明の切削工具の一実施例を示す斜視図であ
る。FIG. 8 is a perspective view showing an embodiment of a cutting tool of the present invention.
【図9】従来の研磨方法を示す概略図である。FIG. 9 is a schematic view showing a conventional polishing method.
【符号の説明】 1・・・ダイヤモンド 2・・・シリコン基板 3・・・表面 6・・・レーザビーム 7・・・焦点 9・・・ガルバノミラー 11・・・レーザ発生源 12・・・電源ボックス 13・・・制御装置 14・・・テーブル 16・・・ターンテーブル[Explanation of Codes] 1 ... Diamond 2 ... Silicon substrate 3 ... Surface 6 ... Laser beam 7 ... Focus 9 ... Galvano mirror 11 ... Laser source 12 ... Power supply Box 13 ... Control device 14 ... Table 16 ... Turntable
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C30B 29/04 V 7821−4G Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C30B 29/04 V 7821-4G
Claims (8)
辺に焦点を結ぶようにレーザを斜め方向から照射し、レ
ーザの焦点がダイヤモンドの表面上を走査するように両
者に相対的に運動を与えるダイヤモンドのレーザ研磨方
法。1. A diamond which irradiates a diamond surface from an oblique direction so that a focal point near the surface of the diamond is focused, and gives a relative motion to both so that the focal point of the laser scans the surface of the diamond. Laser polishing method.
り前記走査を行う請求項1記載の方法。2. The method according to claim 1, wherein the scanning is performed by changing an irradiation angle of the laser.
に、レーザの焦点がダイヤモンドの表面上を移動する速
度に応じて前記パルス幅を制御する請求項1記載の方
法。3. The method of claim 1, wherein the laser is pulsed and the pulse width is controlled according to the speed at which the laser focus moves on the surface of the diamond.
するテーブルと、該テーブルに対し、斜め方向からレー
ザを照射するように、かつ加工対象物の表面に焦点を結
ぶように配置したレーザ照射源と、前記テーブルにテー
ブルの表面に平行の一次元の運動を生じさせるテーブル
駆動装置と、前記レーザの照射方向を揺動させることに
より焦点を走査するレーザ照射源駆動装置とを備えたレ
ーザ研磨装置。4. A table on which a processing object having diamond is placed, and laser irradiation arranged so that the table is irradiated with a laser from an oblique direction and the surface of the processing object is focused. Laser polishing provided with a laser source, a table driving device that causes the table to make a one-dimensional movement parallel to the surface of the table, and a laser irradiation source driving device that scans a focus by swinging the irradiation direction of the laser. apparatus.
復運動をさせるものである請求項4記載の装置。5. The device according to claim 4, wherein the table driving device reciprocates the table.
表面に対して垂直な軸まわりに回転駆動させるものであ
り、前記レーザ照射源駆動装置がレーザの焦点を半径方
向に走査するものである請求項4記載の装置。6. The table driving device drives the table to rotate about a vertical axis to the surface of the table, and the laser irradiation source driving device scans the laser focal point in the radial direction. 4. The device according to 4.
れたダイヤモンド薄膜とからなり、該ダイヤモンド薄膜
の外側の折出面が請求項1、2または3記載の方法で平
滑に研磨されてなるダイヤモンド製品。7. A substrate and a diamond thin film formed on the substrate by a vapor phase synthesis method, and an outer protruding surface of the diamond thin film is smoothly polished by the method according to claim 1, 2 or 3. A diamond product.
磨面が外側になるように取り付けた切削工具。8. A cutting tool in which the diamond product according to claim 7 is attached so that the polishing surface is on the outside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04351759A JP3096943B2 (en) | 1992-12-07 | 1992-12-07 | Laser polishing method and apparatus for diamond and diamond product using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04351759A JP3096943B2 (en) | 1992-12-07 | 1992-12-07 | Laser polishing method and apparatus for diamond and diamond product using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06170571A true JPH06170571A (en) | 1994-06-21 |
JP3096943B2 JP3096943B2 (en) | 2000-10-10 |
Family
ID=18419418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04351759A Expired - Fee Related JP3096943B2 (en) | 1992-12-07 | 1992-12-07 | Laser polishing method and apparatus for diamond and diamond product using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3096943B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09225659A (en) * | 1996-01-05 | 1997-09-02 | Lazare Kaplan Internatl Inc | Mark forming system by laser |
US6023040A (en) * | 1997-10-06 | 2000-02-08 | Dov Zahavi | Laser assisted polishing |
JP2010247189A (en) * | 2009-04-16 | 2010-11-04 | Shin Etsu Polymer Co Ltd | Method of manufacturing semiconductor wafer and apparatus therefor |
JP2011003624A (en) * | 2009-06-17 | 2011-01-06 | Shin Etsu Polymer Co Ltd | Method and apparatus for manufacturing semiconductor wafer |
JP2011200935A (en) * | 2010-03-15 | 2011-10-13 | Ewag Ag | Laser machining apparatus and method for manufacture of rotationally symmetrical tool |
WO2012000986A1 (en) * | 2010-06-28 | 2012-01-05 | Bohle Ag | Cutting tool, in particular cutting wheels, and method for producing the same using an inclined laser beam |
WO2012090540A1 (en) | 2010-12-28 | 2012-07-05 | 東洋製罐株式会社 | Diamond surface polishing method |
US8863864B1 (en) | 2011-05-26 | 2014-10-21 | Us Synthetic Corporation | Liquid-metal-embrittlement resistant superabrasive compact, and related drill bits and methods |
JP2014221480A (en) * | 2013-05-13 | 2014-11-27 | トヨタ自動車株式会社 | Laser surface treatment method and laser surface treatment device |
US8950519B2 (en) | 2011-05-26 | 2015-02-10 | Us Synthetic Corporation | Polycrystalline diamond compacts with partitioned substrate, polycrystalline diamond table, or both |
US9062505B2 (en) * | 2011-06-22 | 2015-06-23 | Us Synthetic Corporation | Method for laser cutting polycrystalline diamond structures |
US9149901B2 (en) | 2010-02-03 | 2015-10-06 | Toyo Seikan Group Holdings, Ltd. | Method of polishing the diamond-surface |
US9297411B2 (en) | 2011-05-26 | 2016-03-29 | Us Synthetic Corporation | Bearing assemblies, apparatuses, and motor assemblies using the same |
CN111360411A (en) * | 2020-03-27 | 2020-07-03 | 湖州中芯半导体科技有限公司 | Method for producing ultrathin CVD diamond |
US10710200B2 (en) * | 2017-05-23 | 2020-07-14 | Sakai Display Products Corporation | Method for producing device support base and laser cleaning apparatus |
EP3580013A4 (en) * | 2017-02-09 | 2020-12-16 | US Synthetic Corporation | ENERGY-PROCESSED POLYCRYSTALLINE DIAMOND COMPACT AND ASSOCIATED PROCESSES |
CN112461263A (en) * | 2020-11-20 | 2021-03-09 | 大连理工大学 | Nano manufacturing method of diamond gyro harmonic oscillator |
CN118143837A (en) * | 2024-05-11 | 2024-06-07 | 四川航空股份有限公司 | Maintenance device for corrosion lines of aircraft parts |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5899904B2 (en) * | 2010-12-26 | 2016-04-06 | 三菱マテリアル株式会社 | Carbon film coated end mill and method for producing the same |
JP2013202657A (en) * | 2012-03-28 | 2013-10-07 | Mitsubishi Materials Corp | Laser machining method and laser machining apparatus |
WO2023091054A1 (en) * | 2021-11-17 | 2023-05-25 | Общество С Ограниченной Ответственностью "Вандер Технолоджис" | Method for multi-beam laser polishing of a diamond surface |
-
1992
- 1992-12-07 JP JP04351759A patent/JP3096943B2/en not_active Expired - Fee Related
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5932119A (en) * | 1996-01-05 | 1999-08-03 | Lazare Kaplan International, Inc. | Laser marking system |
US6211484B1 (en) | 1996-01-05 | 2001-04-03 | Lazare Kaplan International, Inc. | Laser making system and certificate for a gemstone |
JP3238875B2 (en) * | 1996-01-05 | 2001-12-17 | ラザール カプラン インターナショナル,インコーポレイティド | Apparatus and method for micro-engraving by laser energy |
JPH09225659A (en) * | 1996-01-05 | 1997-09-02 | Lazare Kaplan Internatl Inc | Mark forming system by laser |
US6023040A (en) * | 1997-10-06 | 2000-02-08 | Dov Zahavi | Laser assisted polishing |
JP2010247189A (en) * | 2009-04-16 | 2010-11-04 | Shin Etsu Polymer Co Ltd | Method of manufacturing semiconductor wafer and apparatus therefor |
JP2011003624A (en) * | 2009-06-17 | 2011-01-06 | Shin Etsu Polymer Co Ltd | Method and apparatus for manufacturing semiconductor wafer |
US9149901B2 (en) | 2010-02-03 | 2015-10-06 | Toyo Seikan Group Holdings, Ltd. | Method of polishing the diamond-surface |
JP2011200935A (en) * | 2010-03-15 | 2011-10-13 | Ewag Ag | Laser machining apparatus and method for manufacture of rotationally symmetrical tool |
WO2012000986A1 (en) * | 2010-06-28 | 2012-01-05 | Bohle Ag | Cutting tool, in particular cutting wheels, and method for producing the same using an inclined laser beam |
WO2012090540A1 (en) | 2010-12-28 | 2012-07-05 | 東洋製罐株式会社 | Diamond surface polishing method |
US9334694B2 (en) | 2011-05-26 | 2016-05-10 | Us Synthetic Corporation | Polycrystalline diamond compacts with partitioned substrate, polycrystalline diamond table, or both |
US8863864B1 (en) | 2011-05-26 | 2014-10-21 | Us Synthetic Corporation | Liquid-metal-embrittlement resistant superabrasive compact, and related drill bits and methods |
US9759015B2 (en) | 2011-05-26 | 2017-09-12 | Us Synthetic Corporation | Liquid-metal-embrittlement resistant superabrasive compacts |
US8950519B2 (en) | 2011-05-26 | 2015-02-10 | Us Synthetic Corporation | Polycrystalline diamond compacts with partitioned substrate, polycrystalline diamond table, or both |
US9297411B2 (en) | 2011-05-26 | 2016-03-29 | Us Synthetic Corporation | Bearing assemblies, apparatuses, and motor assemblies using the same |
US9062505B2 (en) * | 2011-06-22 | 2015-06-23 | Us Synthetic Corporation | Method for laser cutting polycrystalline diamond structures |
US9999962B2 (en) | 2011-06-22 | 2018-06-19 | Us Synthetic Corporation | Method for laser cutting polycrystalline diamond structures |
US10946500B2 (en) | 2011-06-22 | 2021-03-16 | Us Synthetic Corporation | Methods for laser cutting a polycrystalline diamond structure |
US12042906B2 (en) | 2011-06-22 | 2024-07-23 | Us Synthetic Corporation | Method for laser cutting polycrystalline diamond structures |
JP2014221480A (en) * | 2013-05-13 | 2014-11-27 | トヨタ自動車株式会社 | Laser surface treatment method and laser surface treatment device |
US10016841B2 (en) | 2013-05-13 | 2018-07-10 | Toyota Jidosha Kabushiki Kaisha | Laser surface treatment method and laser surface treatment apparatus with radiating the surface to be treated along an acute angle |
EP3580013A4 (en) * | 2017-02-09 | 2020-12-16 | US Synthetic Corporation | ENERGY-PROCESSED POLYCRYSTALLINE DIAMOND COMPACT AND ASSOCIATED PROCESSES |
US10710200B2 (en) * | 2017-05-23 | 2020-07-14 | Sakai Display Products Corporation | Method for producing device support base and laser cleaning apparatus |
CN111360411A (en) * | 2020-03-27 | 2020-07-03 | 湖州中芯半导体科技有限公司 | Method for producing ultrathin CVD diamond |
CN112461263A (en) * | 2020-11-20 | 2021-03-09 | 大连理工大学 | Nano manufacturing method of diamond gyro harmonic oscillator |
CN112461263B (en) * | 2020-11-20 | 2023-03-24 | 大连理工大学 | Nano manufacturing method of diamond gyro harmonic oscillator |
CN118143837A (en) * | 2024-05-11 | 2024-06-07 | 四川航空股份有限公司 | Maintenance device for corrosion lines of aircraft parts |
Also Published As
Publication number | Publication date |
---|---|
JP3096943B2 (en) | 2000-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3096943B2 (en) | Laser polishing method and apparatus for diamond and diamond product using the same | |
CN100363143C (en) | Laser processing apparatus with polygon mirror | |
JP4027930B2 (en) | Laser processing apparatus and method using polygon mirror | |
JPS63502811A (en) | Laser processing equipment | |
JP5201424B2 (en) | Carbon film coated cutting tool and method for manufacturing the same | |
CN115846880B (en) | Laser polishing method, system and computer storage medium for hemispherical workpiece | |
JP2001121278A (en) | Laser cutting method | |
JP2798223B2 (en) | Laser cutting method | |
JP2000071088A (en) | Laser processing machine | |
JP2019181656A (en) | Cutting blade shaping method | |
JPH11245074A (en) | Focal point spot diameter variable device of laser beam in laser processing machine | |
JPH05504723A (en) | Cutting method using high energy radiation | |
JP2581574B2 (en) | Laser processing method and apparatus | |
JP2004098120A (en) | Method and device of laser beam machining | |
JP7351479B2 (en) | Laser surface treatment method | |
JP2018039101A (en) | Manufacturing method of cutting tool and honing face formation device | |
JPH0159076B2 (en) | ||
JP2008207223A (en) | Smoothing method of diamond film | |
RU2797105C2 (en) | Method for multi-beam laser polishing of a diamond surface and device for implementation | |
JP2012135828A (en) | Carbon film-coated insert tip, and method of manufacturing the same | |
JPH04311814A (en) | Texturing method of glass substrate | |
JPH03146284A (en) | Production of dynamic fluid bearing | |
JPH08265931A (en) | Laser beam machining system | |
JPS61230318A (en) | Method for scanning laser | |
JPH01271084A (en) | Laser cutting method for glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |